throbber
Research article
`
`Chronic lymphocytic leukemia cells
`induce changes in gene expression
`of CD4 and CD8 T cells
`
`Güllü Görgün,1 Tobias A.W. Holderried,1 David Zahrieh,1 Donna Neuberg,1 and John G. Gribben2
`
`1Department of Medical Oncology and Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute,
`Harvard Medical School, Boston, Massachusetts, USA. 2Cancer Research United Kingdom, Department of Medical Oncology,
`Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom.
`
`To examine the impact of tumors on the immune system, we compared global gene expression profiles of
`peripheral blood T cells from previously untreated patients with B cell chronic lymphocytic leukemia (CLL)
`with those from age-matched healthy donors. Although the cells analyzed were not part of the malignant clone,
`analysis revealed differentially expressed genes, mainly involved in cell differentiation in CD4 cells and defects
`in cytoskeleton formation, vesicle trafficking, and cytotoxicity in CD8 cells of the CLL patients. In coculture
`experiments using CLL cells and T cells from healthy allogeneic donors, similar defects developed in both CD4
`and CD8 cells. These changes were induced only with direct contact and were not cytokine mediated. Identifi-
`cation of the specific pathways perturbed in the T cells of cancer-bearing patients will allow us to assess steps
`to repair these defects, which will likely be required to enhance antitumor immunity.
`
`Introduction
`Development of cancer is associated with immune suppression in 
`the host, contributing to the failure to mount an effective immune 
`response against the cancer cells (1). The mechanisms whereby 
`specific T cell defects occur are not well understood but include 
`production of immune-suppressive factors by cancer cells, direct 
`tumor cell–T cell interactions, and induction of regulatory T cell 
`subsets. Identification of the specific T cell defects that occur in 
`cancer-bearing patients usually requires isolation of tumor-infil-
`trating lymphocytes, which limits the number of T cells that can 
`be obtained for study. Tumor cells circulate in leukemia, so there is 
`widespread interaction of cancer cells with T cells that can readily 
`be sampled from peripheral blood. Specifically in B cell chronic 
`lymphocytic leukemia (CLL), a number of well-characterized T cell 
`defects have been described, and it is most likely that immunosup-
`pression induced by the malignant B cells plays an important role 
`in the induction of subsequent immune deficiency in this disease. 
`CLL cells express high levels of immunomodulatory factors includ-
`ing TGF-β and IL-10 that suppress response to antigens, T cell 
`activation, expansion, and effector function (2–5). FasL has been 
`detected on a number of tumors, including CLL, and FasL-posi-
`tive tumor cells can induce apoptosis in vitro (6, 7). T cells from 
`patients with CLL have low levels of expression of CD80, CD86, 
`and CD154 and are Th2-preponderant (8–11). We have observed 
`functional T cell defects and increased expression of Th2-type 
`chemokine receptors on T cells from patients with CLL compared 
`with T cells of healthy donors (12). To examine the mechanisms 
`of T cell defects in tumor-bearing patients, we analyzed the global 
`gene expression profiles of highly purified CD4 and CD8 cells 
`from peripheral blood from individuals with CLL compared with 
`
`Nonstandard abbreviations used: CLL, chronic lymphocytic leukemia;  
`cRNA, complementary RNA; siRNA, small interfering RNA.
`Conflict of interest: The authors have declared that no conflict of interest exists.
`Citation for this article: J. Clin. Invest. 115:1797–1805 (2005).  
`doi:10.1172/JCI24176.
`
`age-matched healthy donors. Similar defects requiring cell-cell 
`contact were induced by coculture of healthy T cells with CLL cells. 
`Therefore, contact with leukemic cells induces specific changes in 
`both CD4 and CD8 T cells, resulting in functional impairment.
`
`Results
`Gene expression profiling of CD4 and CD8 T cells from CLL patients
`and healthy donors. CD4 and CD8 cells were isolated from healthy 
`donors and from previously untreated patients with B cell CLL, 
`who were selected to represent the heterogeneity of this disease 
`(Table 1). Global gene expression profiles were obtained and the 
`microarray data analyzed using both unsupervised and supervised 
`learning. Even though the cells being analyzed were not part of 
`the malignant clone, in an unsupervised analysis, delineation of 
`patients from healthy donors was possible in all cases using hier-
`archical clustering of CD8 T cells, and in the majority of cases 
`using hierarchical clustering of CD4 T cells (see Supplemental 
`Figure 1; supplemental material available online with this article; 
`doi:10.1172/JCI24176DS1).
`In  supervised  analyses,  there  were  no  significant  differences 
`between gene expression profiles of CD4 or CD8 T cells from 
`patients with CLL and gene expression profiles of CD4 or CD8  
`T cells from healthy donors, based on cell purity (less than 85% ver-
`sus 85% or more), time from diagnosis (1–5 years versus 6–10 years), 
`absolute white blood cell count (less than 20 mm3 versus 20 mm3 or 
`more), stage of disease (0–I versus II–III), Ig heavy chain mutational 
`status (mutated versus unmutated), or cytogenetic abnormalities 
`(deletion 13q versus others). The majority of the contaminating cells 
`in the T cell population were CD19 B cells.
`Molecular defects in CD4 cells in tumor-bearing patients. By supervised 
`analysis of CD4 cells, we identified 22 genes that had significantly 
`increased expression and 68 genes that had significantly decreased 
`expression (P < 0.05) in CD4 cells of CLL patients (n = 22) com-
`pared with healthy donors (n = 12) (Figure 1A). The differentially 
`expressed genes were classified by their involvement in specific cel-
`lular pathways, and the full listing of these differentially expressed 
`
`The Journal of Clinical Investigation      http://www.jci.org      Volume 115      Number 7      July 2005 
`
`1797
`
`UPenn Ex. 2069
`Miltenyi v. UPenn
`IPR2022-00855
`
`

`

`research article
`
`Table 1
`Patients’ clinical disease characteristics
`
`
`
`Time from
` Age
` Sex
`diagnosis
`
`
` F M
` 14 15 40–80 yr 1–10 yr
`
`Rai stage of disease
`
`Stage Stage Stage Stage
`0
`I
`II
`III
`8
`14
`5
`2
`
`Ig VH
`mutation status
`UM
`M
`
`
`7
`22
`
`Cytogenetics by FISH
`
`Normal Deletion Deletion Deletion Trisomy T(5;14)
`
`13q
`11q
`17p
`12
`12
`11
`1
`1
`3
`
`1
`
`CD4 and CD8 cells were obtained from peripheral blood of patients with CLL. The patients were untreated and were chosen to represent the heterogeneity
`of this disease. Healthy donors were age matched. UM, unmutated; M, mutated.
`
`genes is shown in Supplemental Table 1. The majority of the genes 
`were involved in cell differentiation and proliferation, survival, 
`cytoskeleton formation, and vesicle trafficking. For genes select-
`ed as representative of the defective pathways, changes in RNA 
`expression were confirmed by real-time PCR and changes in pro-
`tein expression by Western blot (Figure 2, A and B).
`In the CD4 cells of CLL patients, there was decreased expression 
`in a number of genes in the Ras-dependent JNK and p38 MAPK 
`pathways. The JNK–p38 MAPK pathway plays major roles in CD4 
`T cell differentiation into Th1 or Th2 subsets (13–15). There was 
`decreased gene expression in a number of components of this path-
`way, including the activator MINK (MAP4K6) (16); GDI1 (17, 18),  
`which serves as a negative regulator of small GTP-binding pro-
`teins in the Ras-dependent MAPK pathway in induction of NF-κB  
`or actin cytoskeleton remodeling via the Arp2/3 complex; and NFRKB, 
`which binds to several of the κB regulatory elements (17, 19, 20)  
`(Figure 1B). There was also decreased expression of PIK3CB, a 
`regulator of cell growth in response to various mitogenic stimuli 
`through TCR/CD28, IL-1 receptor, G-protein coupled receptor, 
`and members of the TNF receptor family (20, 21).
`Differential expression of genes involved in cytoskeleton forma-
`tion and vesicle trafficking in CD4 cells from CLL patients includ-
`ed decreases in AAK1, which plays a regulatory role in cell migra-
`
`tion and clathrin-mediated endocytosis (22), and AP3M2, which 
`facilitates budding of vesicles from the Golgi membrane and 
`trafficking to lysosomes (23). There was increased expression, in 
`CD4 cells from CLL patients, of SPTBN1; of ARPC1, which encodes 
`an actin cytoskeleton–associated protein that plays a role in cell 
`migration/motility or cytokine production/secretory functions by 
`controlling actin polymerization; and of ADIR (Figure 1B).
`Functionally,  these  changes  would  be  expected  to  result  in 
`decreased Th1 differentiation, and we and others have previously 
`demonstrated skewing of T cell responses to Th2 rather than Th1 
`differentiation in patients with CLL (12, 24).
`Molecular defects in CD8 T cells in patients with CLL. By supervised 
`analysis, a larger number of genes (n = 273) had deregulated 
`expression in CD8 cells, including 105 genes that were downreg-
`ulated and 168 genes upregulated in CD8 T cells from patients 
`with CLL (n = 20) compared with healthy donors (n = 12) (P < 0.05)
`(Figure 3A). The differentially expressed genes were classified by 
`their involvement in specific cellular pathways, and a number of 
`representative genes of those pathways are listed in Supplemental  
`Table 2. On analysis of these genes, the majority were involved 
`in cytoskeleton formation, intracellular transportation, vesicle 
`trafficking, or cellular secretion as well as cytotoxicity pathways 
`in CD8 T cells (Figure 3B).
`
`Figure 1
`Differentially expressed genes in CD4 cells from patients with CLL compared with healthy donors. Dendrogram of differentially expressed genes
`by supervised analysis (P < 0.05). (A) CD4 cells from patients with CLL compared with healthy donors. Twenty-two genes were significantly
`increased (red) and 68 genes significantly decreased (blue) in CD4 cells from CLL patients. (B) Genes involved in Ras-dependent JNK and p38
`MAPK pathways in CD4 cells. The dendrogram represents selected genes from A.
`
`1798
`
`The Journal of Clinical Investigation      http://www.jci.org      Volume 115      Number 7      July 2005
`
`UPenn Ex. 2069
`Miltenyi v. UPenn
`IPR2022-00855
`
`

`

`research article
`
`Figure 2
`Validation of gene expression observed by microarray. (A) Concordant with data seen on microarray, by quantitative PCR there was decreased
`expression of NFRKB in CD4 cells and VAMP2 in CD8 cells from CLL patients compared with healthy donors. The figure represents data
`from CD4 cells from 6 CLL patients and 5 healthy donors and CD8 cells from 4 CLL patients and 6 healthy donors. Statistical significance was
`assessed in a 2-tailed Student’s t test. (B) Decreased expression of NF-κBp65 in CD4 cells and Rho-GAP p190 proteins in CD8 cells from CLL
`patients compared with healthy donors. The left 2 lanes represent protein expression in CD4 or CD8 cells from 2 CLL patients (C1 and C2), and
`the right 2 lanes represent 2 healthy donors (H1 and H2). The expression of proteins was normalized by GAPDH expression level and is shown
`as protein bands and densitometric intensity of each band. The figure is representative of 3 additional experiments performed on 6 different
`donors, all showing a similar pattern (P < 0.05). (C) Intracytoplasmic expression of the GP1 gene product granzyme B, detected in CD8 cells from
`CLL patients and healthy donors by flow cytometry and fluorescent microscopy. To obtain at least 99% CD8 cell population, cells were purified
`using magnetically labeled negative cell-depletion antibodies. High expression of granzyme B in CD8 cells from healthy donors (CD8-FITC+
`granzyme B–PE+, orange-brown) was observed compared with that in CD8 cells from CLL patients (CD8-FITC+ granzyme B–PE–, green). The
`figure is representative of experiments performed with 4 different patients and healthy donors (P < 0.05).
`
`Impaired cytoskeleton formation, intracellular transportation, and
`cytotoxicity in CD8 T cells from CLL patients. We observed decreased 
`expression of ARAP3, a Rho repressor gene that induces PI3K-
`dependent rearrangements in the cell cytoskeleton (25); myosin
`IXB, a GTPase-activating protein for the G protein Rho (26); 
`AP3M2; VAMP2; GPR57; and AKAP9. There was increased expres-
`sion of CDC42, PIK4CB, RAB35, FLNA, and FMNL, which asso-
`ciate with both Rac and profilin and regulate reorganization 
`of the actin cytoskeleton in association with Rac (27, 28). Actin 
`polymerization at the immune synapse is required for T cell acti-
`vation and effector function, and T cell binding to APCs induces 
`localized activation of CDC42 and WASP at the immune synapse 
`(29, 30). There was increased expression of ARPC1B, required for 
`the formation and stabilization of the immunological synapse at 
`the interface between APCs and T lymphocytes (27–29). We also 
`observed increased expression in SPEC1, which encodes a GTPase 
`inhibitor  protein  that  regulates  CDC42  function,  and  NCK2, 
`which encodes an src homology domain–containing (SH2 and 
`SH3 domain–containing) adaptor protein that couples receptor 
`tyrosine phosphorylation to downstream effector molecules in 
`cytoskeleton formation processes (31).
`There was also dysregulation of genes involved in secretory 
`vesicle formation and cytotoxic activity. Such decreased genes 
`
`included VAMP2; SCAMP1, which encodes a carrier to the cell 
`surface in post-Golgi recycling pathways during vesicular trans-
`port; XAB2, a Ras superfamily member involved in controlling 
`a diverse set of essential cellular functions; and GPR57, a GTP-
`binding protein that activates JNK-, MAPK-, and p38-dependent 
`pathways in the cytotoxic immune response (32). We observed 
`increased expression in inhibitor genes including the Rab family 
`members RAB35, RAB22A, the ral guanine nucleotide dissocia-
`tion stimulator RALGDS that inhibits binding of Raf to Ras, and 
`RASGRP2, an inhibitor of guanine nucleotide exchange factor. 
`Also increased was AP2B1, an adaptin family member essential 
`for the formation of adaptor complexes of clathrin-coded vesi-
`cles (31, 33). Adaptins interact with the cytoplasmic domains of 
`membrane-spanning receptors in the course of their endocytic/ 
`exocytic transport. Likely as a consequence of these changes in 
`structural proteins, we observed a decrease in cytotoxicity in 
`CD8 cells of CLL patients compared with healthy donors (data 
`not shown) and a decrease in granzyme B protein in CD8 T cells 
`of CLL patients compared with healthy donors (Figure 2C). 
`Of note, there was no decrease in granzyme B mRNA expres-
`sion in the CD8 T cells in CLL patients, and we conclude that 
`the decreased granzyme B protein expression reflects failure to 
`package the protein in secretory vesicles.
`
`
`
`The Journal of Clinical Investigation      http://www.jci.org      Volume 115      Number 7      July 2005 
`
`1799
`
`UPenn Ex. 2069
`Miltenyi v. UPenn
`IPR2022-00855
`
`

`

`research article
`
`Figure 3
`Differentially expressed genes in CD8 cells from patients with CLL. Dendrogram of differentially expressed genes by supervised analysis in CD8
`cells from patients with CLL compared with healthy donors (P < 0.05). (A) One hundred sixty-eight genes were significantly increased (red) and
`105 genes were significantly decreased (blue) in CD8 cells from CLL patients. (B) Dendrogram of differentially expressed genes involved in
`cytoskeleton formation, vesicle trafficking, and cytotoxicity pathways in CD8 cells. The dendrogram represents selected genes from A.
`
`These  changes  would  be  expected  to  result  in  decreased 
`cytotoxicity and effector function. We and others have previ-
`ously demonstrated that such defects occur in the CD8 T cells in 
`patients with CLL (12, 34, 35).
`We therefore identified specific pathways with altered expression 
`in CD4 and CD8 cells of CLL patients. From this we developed a 
`representative protein expression panel using Western blot analysis 
`and used this proteomic approach to assess whether CLL cells could 
`induce similar changes in healthy allogeneic T cells and to elucidate 
`the mechanism(s) whereby CLL cells could induce changes in these 
`pathways, using cocultures of healthy T cells with CLL cells.
`The CLL B cell–derived soluble factors induce alterations in chemokine and
`chemokine receptor expression but not cytoskeletal proteins in healthy T cells.  
`CLL cells express cytokines known to inhibit T cell responses, 
`including IL-10. We therefore hypothesized that release of these 
`inhibitory cytokines would induce the changes in gene expression 
`observed in healthy CD4 and CD8 cells. However, following culture 
`of healthy CD4 or CD8 cells with sera from CLL patients or cocul-
`ture of CLL cells or healthy B cells with healthy CD4 or CD8 cells in 
`transwell culture plates, we did not observe changes in expression 
`of cytoskeleton proteins or other genes that we have shown to be 
`decreased in CD4 or CD8 cells in CLL patients (data not shown). 
`The only defects shown to be induced by culture of healthy T cells 
`with these soluble factors were altered expression of chemokines 
`and chemokine receptors, including decreases in CXCR1, CXCR2, 
`and CXCR4 and increases in CXCR3, CCR4, and CCR5 in CD4 T 
`cells from healthy donors (Supplemental Figure 2). When IL-10 
`mRNA expression was inhibited by transient transfection of small 
`interfering RNA (siRNA) targeting IL-10 (Supplemental Figure 3) 
`in B cells from both CLL patients and healthy donors or by use of 
`neutralizing anti–IL-10 mAbs, there was no change in expression 
`
`level of cytoskeletal proteins, but this blocked the changes in che-
`mokine and chemokine receptor expression, suggesting that these 
`alterations were indeed induced by IL-10 and not by other soluble 
`factors (Supplemental Figure 2).
`CLL B cells induce alteration in cytoskeleton formation and vesicle trans-
`portation pathways in T cells by cell-cell contact. Since soluble factors 
`did not induce changes in healthy T cells, we cocultured CLL cells 
`in direct contact with T cells from healthy donors and analyzed 
`expression of proteins representative of the pathways found to be 
`abnormal in the cancer-bearing patients. By 48 hours of culture of 
`healthy donor CD4 T cells with tumor cells, we observed changes 
`in protein expression patterns consistent with that seen in the 
`CD4 cells of the CLL patients. Such changes included increased 
`expression of Arp3 and decreased expression of NF-κBp65 and 
`GDI1 (Figure 4A). Similarly, in CD8 cells, we observed changes 
`in the expression pattern consistent with that observed by gene 
`expression profiling, including decreased Rho-GAP and increased 
`Arp3 and CDC42 protein (Figure 4B). Induction of these changes 
`required cell-cell contact, and these changes were not observed 
`after blockade of adhesion molecules using anti-CD54 and anti-
`CD11a mAbs (Figure 4C). These changes were not induced by 
`coculture of allogeneic T cells with healthy B cells from the donors 
`who were HLA matched to the CLL patients.
`
`Discussion
`Microarray-based expression profiling has been used most com-
`monly to compare and contrast heterogeneous groups of human 
`tumors to identify expression patterns associated with prognosis 
`and to examine altered expression in tumor cells compared with 
`their normal cellular counterparts. Here we performed gene expres-
`sion profiling on nonmalignant components in cancer-bearing  
`
`1800
`
`The Journal of Clinical Investigation      http://www.jci.org      Volume 115      Number 7      July 2005
`
`UPenn Ex. 2069
`Miltenyi v. UPenn
`IPR2022-00855
`
`

`

`research article
`
`Figure 4
`Impact of T cell–cancer cell contact on
`healthy T cells. Highly purified T cells from
`healthy donors were cocultured with B
`cells from CLL patients or from their HLA-
`matched healthy donors at a 2:1 (T/B cell)
`ratio for 48 hours. (A) Decrease in 65-kDa
`NF-κB and increase in 41-kDa Arp3 in
`healthy CD4 cells after contact with allo-
`geneic CLL cells (C1 and C2) and healthy
`B cells (H). (B) Decrease in 190-kDa
`Rho-GAP and increase in 41-kDa Arp3 in
`healthy CD8 cells after contact with CLL
`cells (C1 and C2) and healthy allogeneic B
`cells (H). (C) Impact of CLL cell contact on
`cytoskeletal protein expression in alloge-
`neic healthy T cells, confirmed by ICAM1
`or LFA1 blocking. Highly purified CD4
`or CD8 cells from healthy donors were
`cocultured with B cells from CLL patients
`(C1 and C2) or healthy donors (H) with or
`without blockade of the LFA1 or ICAM1
`interaction. Expression of 190-kDa
`Rho-GAP in healthy CD8 cells was
`increased after blockade of the ICAM1 dur-
`ing CLL cell–T cell contact, and expression
`of 41-kDa Arp3 in CD4 T cells and 25-kDa
`CDC42 in healthy CD8 cells was decreased
`after blockade of the LFA1 or ICAM1.
`–, protein expression in nonblocked cells;
`+, protein expression in blocked cells.
`Protein expressions were normalized by
`GAPDH expression level and are shown as
`protein bands and densitometric intensity
`of each band. The figure is representative
`of 3 different experiments performed with
`6 different patients with CLL and 6 dif-
`ferent healthy donors showing a similar
`pattern (P < 0.05).
`
`patients and demonstrate profound changes in gene expression of 
`T cells in patients with CLL compared with healthy donors. Impor-
`tantly, we demonstrate that these changes can be induced at the 
`protein level in healthy T cells following short-term culture with 
`direct contact with CLL cells.
`Analysis of the differentially expressed genes in the T cells in 
`CLL patients demonstrates a number of abnormalities in spe-
`cific pathways. In CD4 cells, among the most marked changes 
`observed were in the Ras-dependent JNK and p38 MAPK path-
`ways (Figure 5). JNK and p38 MAPK pathways play a major role 
`in regulating CD4 T cell differentiation into Th1 or Th2. JNK2 
`and p38 MAPKs mediate IFN-γ production and Th1 cell differ-
`entiation, and inhibition of p38 MAPK in dnp38 transgenic mice 
`results in decreased IFN-γ production by Th1 cells (15, 36, 37). 
`ADIR encodes a protein involved in protein processing in the 
`endoplasmic reticulum and contains a putative IFN-responsive 
`ATP-binding site involved in regulating expression of genes criti-
`cal for antigen presentation and immune surveillance against 
`viruses and tumor cells (38). Our data, demonstrating decreased 
`expression in the p38 MAPK pathway activator genes such as 
`MINK, NFRKB, and PIK3CB, are in keeping with our hypothesis 
`that the defects induced by the leukemic cells impair subsequent 
`CD4 differentiation into Th1 cells.
`
`In CD8 cells, our findings are in keeping with the hypothesis that 
`cell contact with CLL cells induces changes in gene expression in 
`genes regulating cytoskeleton formation and vesicle trafficking  
`(Figure 5), thereby resulting in the decreased cytotoxicity and effec-
`tor function noted in this disease. The cytoskeleton is a cellular net-
`work of structural, adaptor, and signaling molecules that regulates 
`most cellular functions during immune responses, including migra-
`tion, extravasation, antigen recognition, activation, and phagocy-
`tosis. CD8 cytotoxic T lymphocytes mediate killing of cancer cells 
`through polarized delivery of vesicles referred to as lytic lysosomes 
`that contain apoptosis-inducing proteins including perforin and 
`granzymes (39–41). Positioning of the secretory cleft and secre-
`tory lysosome polarization targeting cancer cells depend on cyto-
`skeletal connections that regulate granule transport to the plasma 
`membrane (40). The altered expression in regulator genes, includ-
`ing increased RAB11B and RAB22A and decreased RAB35, VAMP2, 
`SLC21A11, and SCAMP1, indicated defects in vesicle formation and 
`intracellular trafficking in CD8 cells in CLL patients. We observed 
`decreased expression of GP2 (41), and TPSB1, a gene encoding a 
`tetrameric serine protease, concentrated and stored selectively in 
`secretory granules (40, 42). In CD8 also we observed defects in the 
`p38 MAPK pathway, which also regulates the production of TNF-α, 
`perforin, and granzyme as well as apoptosis in CD8 cells (43–45). 
`
`
`
`The Journal of Clinical Investigation      http://www.jci.org      Volume 115      Number 7      July 2005 
`
`1801
`
`UPenn Ex. 2069
`Miltenyi v. UPenn
`IPR2022-00855
`
`

`

`research article
`
`Taken together, the results presented 
`here  demonstrate  that  contact  with 
`cancer cells can induce changes in gene 
`expression in healthy cells in the cancer-
`bearing  patient.  These  changes  likely 
`contribute  to  the  decreased  immune 
`responses observed in these patients and 
`ostensibly may contribute to the lack of 
`autologous antitumor responses. We are 
`currently studying the impact of tumor 
`development  in  vivo  on  T  cell  func-
`tion and expression profiles using the  
`Eµ-TCL-1 transgenic mouse model of 
`CLL (51). As these mice develop leuke-
`mia, there are changes in expression pro-
`files of their CD4 and CD8 cells similar 
`in nature to those observed in patients 
`with CLL (data not shown). Moreover, 
`the observation that CLL cells are capa-
`ble of inducing similar changes in alloge-
`neic CD4 and CD8 cells has implications 
`for the field of allogeneic stem cell trans-
`plantation. As we have observed in the 
`in vitro assay systems, infusion of donor  
`T cells in patients with high tumor bur-
`den  could  induce  similar  changes  in 
`donor T cells with resulting decrease 
`in antitumor immunity, thereby limit-
`ing  the  graft-versus-leukemia  effect. 
`Characterization of these defects will 
`now allow us to examine mechanisms 
`to repair T cell function to increase anti-
`tumor immunity in both the allogeneic 
`and the autologous setting.
`
`Figure 5
`Differentially expressed genes by their involvement in specific signaling pathways. Representa-
`tive defects in T cell pathways and functions caused by CLL cell–T cell contact are shown in this
`diagram. Differentially expressed genes involved in cell differentiation, particularly JNK (pink) and
`p38 MAPK (yellow) pathways and cytoskeleton formation and vesicle transportation (blue), in
`CD4 T cells from CLL patients compared with healthy donors are represented by selected genes
`that were increased (rectangles) or decreased (ovals). Differentially expressed genes involved in
`cytoskeleton formation, vesicle trafficking (blue), and cytotoxicity (red) in CD8 T cells from CLL
`patients compared with healthy donors are represented by selected increased genes (rectangles)
`and decreased genes (ovals).
`
`Our data suggest that even though CD8 T cells in CLL appear mor-
`phologically intact, the production of cytolytic molecules includ-
`ing granzymes and their storage in lysosomes as well as intracellular 
`secretory vesicle transportation are significantly impaired. The 
`decreased expression in activators and increased expression in 
`repressor genes involved in cytoskeleton formation and intracellular 
`vesicle transportation, more specifically the decreased expression in 
`granzyme granules GP2 and TPSB1, likely contribute to the failure 
`of CD8 T cell responses against tumor cells in CLL.
`Several studies have shown that CLL cells secrete IL-10, TNF-α, 
`and TGF-β (2–5, 46). The inhibitory cytokine IL-10 initiates a wide 
`variety of activities on binding to its cellular receptor complex. The 
`mechanism of IL-10 inhibition of cytokine production was ini-
`tially believed to be inhibition of the antigen-presentation capac-
`ity of macrophages and DCs (47), but IL-10 also plays important 
`roles in blocking cytokine production, expression of costimulatory 
`molecules, and chemokine secretion. It also modifies chemokine 
`receptor expression, increases integrin ligand (e.g., ICAM1) expres-
`sion (48, 49), and induces CCR5 expression on monocytes (50). 
`Therefore IL-10 appeared an attractive candidate to induce specific 
`changes in gene expression in T cells in CLL patients. Our results 
`suggest that such changes are largely limited to changes in chemo-
`kine expression, but the additive effect of IL-10 production on the 
`changes that are induced by direct contact and in vivo in a murine 
`model is currently under investigation.
`
`Methods
`Cell isolation and RNA extraction. Heparinized venous blood samples from 29 
`CLL patients with Rai stages varying from 0 to 3 (Table 1) and age- and HLA-
`matched healthy donors were obtained after written informed consent. The 
`studies using peripheral blood sample collection from all individuals were 
`approved by the Institutional Review Board of the Dana-Farber Cancer 
`Institute. None of the CLL patients had received chemotherapy before the 
`blood was drawn for these studies. Mononuclear cells were separated by 
`Ficoll-Hypaque density gradient centrifugation, and CD4 T cells from 22 
`patients with CLL and 12 healthy donors, CD8 T cells from 20 patients with 
`CLL and 12 healthy donors, and normal and malignant B cells were nega-
`tively selected by depletion of the following as appropriate: CD4 or CD8  
`T cells, B cells, monocytes, granulocytes, platelets, early erythroid precursor 
`cells, and NK cells. For negative selection, a magnetically labeled cocktail of 
`hapten-modified anti-CD14, -CD16, -CD36, -CD56, -CD123, -TCRγδ, and  
`–glycophorin A, with or without CD4, CD8, or CD19 mAbs (Miltenyi Bio-
`tec), was used. The purity of the isolated T cells and B cells was detected 
`using anti-CD19, anti-CD4, and anti-CD8 antibodies. Frozen or freshly 
`isolated CD4 or CD8 T cells were lysed in TRIzol for total-RNA isolation 
`(Invitrogen Corp.), and 3–15 µg of total RNA was used for gene chip array.
`Gene chip array. Quality control of the RNA samples was performed by 
`spectrophotometric analysis to confirm the concentration and to detect 
`contaminating proteins and other molecules, and a size fractionation pro-
`cedure using a microfluidics instrument (Agilent Technologies) was used 
`to determine whether the RNA was intact.
`
`1802
`
`The Journal of Clinical Investigation      http://www.jci.org      Volume 115      Number 7      July 2005
`
`UPenn Ex. 2069
`Miltenyi v. UPenn
`IPR2022-00855
`
`

`

`research article
`
`RNA conversion of cDNA and subsequent hybridization to gene arrays 
`were performed in the Core Facility at Dana-Farber Cancer Institute, all 
`steps according to the manufacturer’s protocols (Affymetrix Inc.). Briefly,  
`RNA was converted into cDNA using a T7 promoter–tailed oligo-dT 
`primer in the synthesis of the first cDNA strand, and second-strand cDNA 
`synthesis was then carried out. The double-stranded cDNA was used as 
`the template in an in vitro transcription (IVT) reaction catalyzed by T7 
`polymerase and containing biotinylated CTP and UTP in addition to the 4 
`unmodified ribonucleoside triphosphates. The biotinylated complemen-
`tary RNA (cRNA) was purified from the IVT reaction mixture using the 
`RNeasy system (QIAGEN). Purified cRNA was fragmented in order to facil-
`itate the subsequent hybridization step. The cRNA was purified from the 
`fragmentation reaction using phenol/chloroform extraction and ethanol 
`precipitation. The fragmented cRNA was added to a hybridization solu-
`tion containing several biotinylated control oligonucleotides and hybrid-
`ized to an Affymetrix Inc. U133A microarray chip overnight at 45°C. The 
`chips were then washed to remove cRNA that had not hybridized to its 
`complementary oligonucleotide probe. The bound cRNA was fluorescently 
`labeled using PE-conjugated streptavidin (SAPE); additional fluors were 
`then added using biotinylated anti-streptavidin antibody and additional 
`SAPE. Each cRNA bound at its complementary oligonucleotide was excit-
`ed using a confocal laser scanner, and the positions and intensities of the 
`fluorescent emissions were captured. These measures provided the basis of 
`subsequent biostatistical analysis.
`Biostatistical analysis.  Gene  expression  profiling  was  performed  on 
`peripheral blood CD4 and CD8 T cells from 29 previously untreated 
`CLL patients and 25 healthy donors. To identify the genes whose expres-
`sion patterns best distinguished CLL CD4 and CD8 T cells from healthy 
`CD4 and CD8 T cells, the permutation distribution of the maximum t 
`statistic was analyzed using the permax test (52). The customized pro-
`gram Permax 2.1, written by Robert Gray, calculates Permax values and 
`is available free online (http://biowww.dfci.harvard.edu/~gray/permax.
`html). Within the CLL CD4 and CD8 T cells we compared gene expres-
`sion profiles using the permax test according to cell purity (less than 
`85% versus 85% or more), time from diagnosis (1–5 years versus 6–10 
`years), absolute white blood cell count (less than 20 mm

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket