`
`HSPA Performance and Evolution: A Practical Perspective Pablo Tapia, Jun Liu, Yasmin Karimli and Martin J. Feuerstein
`© 2009 John Wiley & Sons Ltd. ISBN: 978-0-470-69942-3
`
`APPLE 1017
`
`1
`
`
`
`HSPA Performance and Evolution
`
`A Practical Perspective
`
`Pablo Tapia, Jun Liu, Yasmin Karimli
`
`T-Mobile USA
`
`Martin J. Feuerstein
`
`Polaris Wireless, USA
`
`2
`
`
`
`This edition first published 2009
`# 2009 John Wiley & Sons Ltd.
`
`Registered office
`John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom
`
`For details of our global editorial offices, for customer services and for information about how to apply for
`permission to reuse the copyright material in this book please see our website at www.wiley.com.
`
`The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
`Designs and Patents Act 1988.
`
`All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
`form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
`Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
`
`Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
`available in electronic books.
`
`# 2006. 3GPPTM TSs and TRs are the property of ARIB, ATIS, CCSA, ETSI, TTA and TTC who jointly own the
`copyright in them. They are subject to further modifications and are therefore provided to you ‘‘as is’’ for
`information purposes only. Further use is strictly prohibited.
`
`Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
`product names used in this book are trade names, service marks, trademarks or registered trademarks of their
`respective owners. The publisher is not associated with any product or vendor mentioned in this book. This
`publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is
`sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice
`or other expert assistance is required, the services of a competent professional should be sought.
`
`Library of Congress Cataloging-in-Publication Data
`
`HSPA performance and evolution : a practical perspective / by Pablo Tapia ... [et al.].
`p. cm.
`Includes bibliographical references and index.
`ISBN 978-0-470-69942-3 (cloth)
`1. Packet switching (Data transmission) 2. Network performance (Telecomunication) 3. Radio–Packet
`transmission. I. Tapia, Pablo. II. Title: High speed packet access performance and evolution.
`TK5105.3.H73 2009
`621.382’16–dc22
`
`2008052332
`
`A catalogue record for this book is available from the British Library.
`
`ISBN 978-0-470-69942-3 (H/B)
`
`Typeset in 10/13pt Times by Thomson Digital, Noida, India.
`Printed in Great Britain by Antony Rowe
`
`3
`
`
`
`Contents
`
`Figures and Tables
`
`About the Authors
`
`Preface
`
`Foreword
`
`Acknowledgements
`
`1
`
`Introduction
`
`1.1 Services and Applications for HSPA
`1.2 Organization of the Book
`References
`
`2 Overview of UMTS/HSPA Systems
`
`2.1 UMTS: GSM Evolution to 3G Networks
`2.1.1 Overview of UMTS Standardization
`2.1.2 UMTS Network Architecture
`2.1.3 Air Interface Technology
`2.2 UMTS System Elements
`2.2.1 User Equipment (UE)
`2.2.2 Node-B
`2.2.3 Radio Network Controller (RNC)
`2.3 UMTS Radio Bearers and Services
`2.3.1
`Information Transfer Attributes
`2.3.2 Quality of Service (QoS) Attributes
`2.4 HSDPA (High Speed Downlink Packet Access)
`2.4.1 Motivation for the Introduction of HSDPA
`2.4.2 Main HSDPA Features
`2.5 HSUPA (High Speed Uplink Packet Access)
`2.5.1 Main HSUPA Features
`2.6 Summary
`References
`
`xi
`
`xix
`
`xxi
`
`xxiii
`
`xxv
`
`1
`
`3
`6
`7
`
`9
`
`9
`10
`11
`12
`14
`14
`14
`14
`15
`15
`15
`16
`16
`17
`22
`22
`25
`26
`
`4
`
`
`
`vi
`
`Contents
`
`3 Applications and Quality of Service in HSPA Networks
`
`3.1 Application Performance Requirements
`3.1.1 The Role of Latency in End-user Performance
`3.1.2 Considerations of TCP/IP
`3.1.3 Typical Application Profiles
`3.2 Support of QoS in HSPA Networks
`3.2.1
`3GPP QoS Attributes
`3.2.2 Negotiation of QoS Attributes
`3.2.3 QoS Modification for HSPA
`3.3 Summary
`References
`
`4 Radio Resource Management in UMTS/HSPA Networks
`
`4.1 Admission and Congestion Control
`4.1.1 Management of Transmit Power Resources
`4.1.2 Management of Channelization Codes
`4.2 Packet Scheduler
`4.2.1 HSDPA Scheduling
`4.2.2 HSUPA Scheduling
`4.3 HSDPA Power Allocation
`4.4 Power Control and Link Adaptation
`4.4.1 Power Control
`4.4.2 Link Adaptation
`4.5 Mobility Management
`4.5.1 HSDPA Mobility Management
`4.5.2 HSUPA Mobility Management
`4.6 Summary
`References
`
`5 HSPA Radio Network Planning and Optimization
`
`5.1 Key Differences Between HSPA and Legacy Rel.’99 Channels
`5.1.1 HSPA Data User Behavior Compared to Rel.’99 Voice Users
`5.1.2 HSPA Radio Performance Considerations Compared to Rel.’99
`5.1.3 HSPA Mobility Considerations Compared to Rel.’99
`5.1.4 HSPA Baseband and Backhaul Resource Considerations
`Compared to Rel.’99
`5.2 Link Budget Analysis
`5.2.1 Link Budget Methodology
`5.2.2 Downlink Analysis
`5.2.3 Uplink Link Budget Analysis
`5.3 Overview of System Level Simulations
`
`27
`
`28
`29
`30
`33
`38
`39
`41
`44
`46
`46
`
`47
`
`48
`50
`52
`52
`52
`56
`57
`59
`59
`61
`66
`66
`68
`69
`70
`
`71
`
`72
`72
`72
`74
`
`75
`75
`75
`77
`79
`84
`
`5
`
`
`
`Contents
`
`5.4 Cell Planning Process
`5.4.1 Practical Rules for UMTS/HSPA Cell Planning
`5.4.2 Automate Cell Planning (ACP) Tool Usage
`5.4.3 Deployment of ACP Network Configuration
`5.5 Optimization with Drive Test Tools
`5.6 Main Radio Parameters Affecting HSPA Performance
`5.6.1 Basic Activation Features
`5.6.2 Control of Resources
`5.6.3 Mobility Management Parameters
`5.6.4 Performance Parameters
`5.7 Dynamic Network Optimization (DNO) Tools
`5.7.1 Collection of Relevant Network Information
`5.7.2
`Identification of Parameters for DNO
`5.7.3 Definition of the DNO Strategy
`5.8 Summary
`References
`
`6 HSPA Radio Performance
`
`6.1 HSDPA Lab Performance Evaluation
`6.1.1 Lab Setup
`6.1.2 Basic Functionality Testing
`6.1.3 HSDPA Latency Improvement
`6.1.4 HSDPA Throughput and Link Performance
`6.1.5 HSDPA Link Adaptation Performance
`6.1.6 Dynamic Power Allocation
`6.1.7 HSDPA Scheduler Performance
`6.2 HSUPA Lab Performance Evaluation
`6.2.1 Throughput Performance
`6.2.2
`Scheduler Performance
`6.2.3 Latency Performance
`6.2.4 Mixed Voice and HSUPA Performance
`6.3 Field Evaluation
`6.3.1 Field Network Configurations
`6.3.2 HSDPA Performance
`6.3.3 HSUPA Performance
`6.4 Other Performance Considerations
`6.4.1 Terminal Device Performance
`6.4.2
`Infrastructure Performance
`6.4.3 Application Performance
`6.5 Summary
`References
`
`vii
`
`86
`87
`88
`91
`93
`97
`97
`100
`104
`105
`109
`111
`112
`112
`114
`114
`
`117
`
`118
`118
`119
`120
`121
`123
`125
`128
`129
`129
`130
`132
`132
`134
`134
`136
`148
`152
`152
`153
`154
`156
`157
`
`6
`
`
`
`viii
`
`Contents
`
`7 Capacity Growth Management
`
`7.1 UMTS/HSPA Carrier Deployment Strategy
`7.1.1 Factors Affecting the Carrier Planning Strategy
`7.1.2 Voice and HSPA on One Carrier
`7.1.3 Data Centric Carrier
`7.1.4 Factors Affecting the Shared vs. Data Centric Carrier Decision
`7.2 Data Traffic Profiling and Network Dimensioning
`7.2.1 Traffic Profiling
`7.2.2 Data Traffic Models
`7.2.3 Data Traffic Modeling Case Study
`7.3 Summary
`References
`
`8 HSPA Evolution (HSPA+)
`
`8.1 Standards Evolution
`8.1.1 Radio Evolution
`8.1.2 Architecture Evolution
`8.1.3 Vendor Ecosystem
`8.2 HSPA+ Radio Enhancements
`8.2.1 MIMO
`8.2.2 Higher Order Modulation (HOM)
`8.2.3 Advanced Receivers
`8.2.4 Continuous Packet Connectivity (CPC)
`8.2.5 Circuit-switched Voice Over HSPA
`8.2.6 Dual Carrier Operation in HSDPA
`8.3 Architecture Evolution
`8.3.1 GPRS Flat Architecture
`8.3.2 End-to-end Quality of Service (QoS) Architecture
`8.4 Converged Voice and Data Networks: VoIP
`8.4.1 Benefits of an All-IP Network
`8.4.2 Fundamentals of Voice over IP (VoIP)
`8.4.3 Requirements for VoIP as a Complete Voice Service
`8.4.4 HSPA Enablers for Voice Over IP
`8.4.5 Performance of VoIP in HSPA Networks
`8.5 Summary
`References
`
`9 Technology Strategy Beyond HSPA
`
`9.1
`
`Introduction to Evolved UTRAN
`9.1.1 Technology Choice and Key Features
`9.1.2 Architecture and Interfaces
`
`159
`
`160
`161
`163
`166
`168
`171
`171
`174
`178
`179
`179
`
`181
`
`182
`183
`183
`184
`184
`184
`187
`189
`191
`199
`200
`201
`201
`207
`211
`212
`214
`218
`220
`223
`228
`228
`
`231
`
`232
`234
`236
`
`7
`
`
`
`Contents
`
`9.1.3 Early LTE Trials
`9.2 Analysis of HSPA vs. LTE
`9.2.1 Performance Comparison of LTE vs. HSPA Rel.’6
`9.2.2 Performance Comparison of LTE vs. HSPA+
`9.3 LTE Deployment and Migration Scenarios
`9.3.1 Technology Timelines
`9.3.2 Key Factors for New Technology Overlay
`9.3.3 HSPA and LTE Overlay Scenarios
`9.4 Summary
`References
`
`Index
`
`ix
`
`237
`238
`240
`241
`245
`245
`247
`249
`251
`252
`
`253
`
`8
`
`
`
`Figures and Tables
`
`Figures
`
`Figure 1.1 Data traffic revenue in the US 2004–2008: absolute (top) and relative
`to total ARPU (bottom) (data from Refs. 1) . . . . . . . . . . . . . . . . . . . . . .
`Figure 1.2 Apple iPhone sales volume since its launch in June 2007 as compared
`to the rest of the smartphone industry (from Ref. 2) . . . . . . . . . . . . . . . . .
`Figure 1.3 Commercial availability of HSPA 2006–2008 (from Refs. 3). . . . . . . . . . .
`Figure 1.4 Typical data consumption depending on customer profile (type of device)
`compared against wired residential cable internet service . . . . . . . . . . . . .
`Figure 2.1 UTRAN architecture [1] # 2008 3GPP. . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 2.2 CDMA vs. TDMA: Different frequency utilization scheme . . . . . . . . . . .
`Figure 2.3 UMTS coverage for services with different data rate . . . . . . . . . . . . . . .
`Figure 2.4 Four-Channel SAW HARQ # 2008 3GPP. . . . . . . . . . . . . . . . . . . . . . .
`Figure 2.5 Enhanced uplink protocol architecture # 2008 3GPP . . . . . . . . . . . . . . .
`Figure 3.1 Network diagram for HSPA traffic (user plane) . . . . . . . . . . . . . . . . . . .
`Figure 3.2 User experience of a web page download (CNN.com) as
`a function of peak bitrate and latency . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 3.3 UE Protocol in a HSPA network (DL only) . . . . . . . . . . . . . . . . . . . . . .
`Figure 3.4 Generic diagram of a HTTP transaction on a UMTS network . . . . . . . . .
`Figure 3.5 Streaming bitrate capture from CNN.com video over LAN . . . . . . . . . . .
`Figure 3.6 Link traffic example at different conditions: separate users (left),
`simultaneous users without QoS (middle) and simultaneous
`users with QoS (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 3.7 UMTS QoS entities since Rel’99 [1] # 2008 3GPP . . . . . . . . . . . . . . . .
`Figure 3.8 Network diagram of QoS functions and information (Rel’4) . . . . . . . . . .
`Figure 3.9 QoS parameters known at the RNC and NodeB levels . . . . . . . . . . . . . .
`Figure 4.1 Block diagram of the HSPA network elements identifying
`the locations of the various RRM algorithms . . . . . . . . . . . . . . . . . . . . .
`Figure 4.2 Operating load curve of a CDMA system showing stable
`and overload (unstable) regions versus the traffic load
`(number of users) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`3
`
`4
`5
`
`6
`11
`13
`13
`21
`25
`28
`
`30
`30
`35
`38
`
`39
`40
`44
`45
`
`49
`
`50
`
`9
`
`
`
`xii
`
`Figures and Tables
`
`Figure 4.3
`
`51
`
`52
`54
`54
`56
`57
`58
`
`59
`
`61
`
`62
`65
`
`67
`69
`
`74
`
`76
`77
`83
`
`85
`
`90
`
`91
`92
`94
`
`96
`
`101
`107
`110
`
`113
`118
`
`Illustration of power resource management using the AC
`and CC mechanisms in RRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 4.4 Code tree illustrating spreading factors (SF) and code
`usage in a WCDMA system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 4.5 Example of different HSDPA scheduling strategies. . . . . . . . . . . . . . . .
`Figure 4.6 HSDPA Round Robin scheduler example . . . . . . . . . . . . . . . . . . . . . .
`Figure 4.7 HSDPA Proportional Fair Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 4.8 HSUPA scheduler inputs and outputs . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 4.9
`Illustration of Static vs. Dynamic Allocation . . . . . . . . . . . . . . . . . . . .
`Figure 4.10 Illustration of Dynamic Power Allocation (DPA) with power
`control using the ‘minimum power’ strategy . . . . . . . . . . . . . . . . . . . .
`Figure 4.11 Example of Link adaptation for HSDPA using a single
`modulation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 4.12 Illustration of HARQ functionality with acknowledgements (ACKs) and
`negative acknowledgements (NACKs) controlling retransmissions . . . . .
`Figure 4.13 Interaction between Link Adaptation, Scheduler & Power Control . . . . .
`Figure 4.14 Cell transition mechanisms with HSDPA illustrating two different
`methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 4.15 Illustration of soft-handover with HSUPA . . . . . . . . . . . . . . . . . . . . . .
`Figure 5.1
`Illustration of buffer area of Rel.’99 at the edge of 3G coverage
`between HSPA and 2G (E)GPRS to facilitate seamless transitions . . . . .
`Illustration of maximum uplink pathloss determined by the UE
`maximum transmit EIRP and the base station required receive power . . .
`Figure 5.3 Calculation of required minimum receive power at base station . . . . . . .
`Figure 5.4 HSUPA field trial result in Suburban environment (Cat 5 UE) . . . . . . . .
`Figure 5.5 HSDPA cell throughput vs. Rel’99 traffic load (from [10])
`# 2006 IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Illustration of ACP optimization: HSDPA throughput before
`(above) and after (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 5.7 Best server plot based on propagation (left) and after combination
`with drive test data (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 5.8 Analysis of RF planning cost vs. overall performance improvement . . . .
`Figure 5.9 Radio conditions (Ec/No) in a cluster from a drive test measurement . . .
`Figure 5.10 Example of follow-up HSDPA drive test to obtain second-level KPIs
`to measure performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 5.11 Illustration of TTI multiplexing (left, 3 HS-SCCH) vs. no
`multiplexing (right, 1 HS-SCCH) . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 5.12 State transition model for HSDPA data . . . . . . . . . . . . . . . . . . . . . . .
`Figure 5.13 Concept of DNO operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 5.14 Example of execution of an automated parameter optimization
`(reduction of call failures) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.1 Example lab setup for HSPA testing . . . . . . . . . . . . . . . . . . . . . . . . .
`
`Figure 5.2
`
`Figure 5.6
`
`10
`
`
`
`Figures and Tables
`
`Figure 6.2 Lab trial network diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.3 RTT breakdown of a 32 byte ping test . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.4 HSDPA user throughput in a lab environment (Cat 12 device) . . . . . . .
`Figure 6.5 HSDPA user throughput under different interference
`and fading conditions (Cat 12 device) . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.6 Coverage comparisons between R.’99 data and HSDPA (Cat 12) . . . . .
`Figure 6.7 NAK rate vs. CQI for different Link Adaptation algorithms . . . . . . . .
`Figure 6.8 Single user throughput vs pathloss for different Link
`Adaptation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.9 HSDPA dynamic power allocation algorithm . . . . . . . . . . . . . . . . . . .
`Figure 6.10 DPA power control for different modulation schemes
`(QPSK and 16QAM) and packet scheduler algorithms
`
`(RR ¼ Round Robin, PFS ¼ Proportional Fair Scheduler) . . . . . . . . . .
`
`Figure 6.11 Dynamic power allocation implementation comparison (single cell
`with 40% loading). Single user throughput (Cat 12 device) . . . . . . . . .
`Figure 6.12 Single HSUPA user UL throughput and transmit power performance
`in different vendor implementations (Vendor A vs Vendor B) . . . . . . .
`Figure 6.13 HSUPA cell throughput for two users without fading for Vendor A
`implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.14 HSUPA user throughput under PED_A channel profile,
`two HSUPA users in the cell with no voice traffic . . . . . . . . . . . . . . .
`Figure 6.15 HSUPA scheduler performance under different radio conditions. . . . . .
`Figure 6.16 HSPA latency improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.17 Voice traffic impact on HSUPA throughput . . . . . . . . . . . . . . . . . . . .
`Figure 6.18 Mixed voice/HSUPA performance at poor radio conditions . . . . . . . . .
`Figure 6.19 HSDPA drive test throughput in cluster A (QPSK only) . . . . . . . . . . .
`Figure 6.20 Drive test throughput in cluster C (Dense Urban) (QPSK only) . . . . . .
`Figure 6.21 Example of throughput distribution with Proportional
`Fair Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.22 HSDPA throughput performance vs. coverage (unloaded) for two
`different HSDPA power allocation methods: DPA with power
`control (top) and DPA with full power assignment (bottom) . . . . . . . .
`Figure 6.23 HSDPA throughput performance vs. coverage (60% loading). . . . . . . .
`Figure 6.24 Voice and HSDPA capacity sharing on single carrier (DPA with
`Power control, QPSK only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.25 HSDPA+Voice capacity depending on DPA scheme (no OCNS)
`illustrating throughput improvement with aggressive DPA
`scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.26 Voice and HSDPA capacity sharing on single carrier with cluster
`OCNS loading at 60% (DPA with Power Control) . . . . . . . . . . . . . . .
`Figure 6.27 Voice call BLER with Mixed Voice and HSDPA traffic test
`in Cluster A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`xiii
`
`119
`121
`121
`
`122
`123
`125
`
`125
`126
`
`127
`
`128
`
`129
`
`130
`
`131
`131
`132
`133
`133
`137
`137
`
`138
`
`139
`139
`
`140
`
`141
`
`142
`
`142
`
`11
`
`
`
`xiv
`
`Figures and Tables
`
`Figure 6.28 Data throughput for HS-DSCH intra Node-B cell change
`in Cluster D without network load . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.29 Data throughput for HS-DSCH inter Node-B cell change
`in Cluster D without network load . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.30 Data throughput for HS-DSCH inter Node-B cell change
`for low mobility use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.31 Inter RNC HSDPA cell change without SRNC relocation . . . . . . . . . .
`Figure 6.32 Inter RNC HSDPA mobility drive test in cluster D . . . . . . . . . . . . . . .
`Figure 6.33 HSUPA link budget validation at medium mobility (<35 miles/hr) . . . .
`Figure 6.34 HSUPA link budget validation (unload at 60 miles/hr) . . . . . . . . . . . .
`Figure 6.35 HSUPA link budget validation at high mobility (>60 miles/hr) . . . . . .
`Figure 6.36 HSUPA throughput performance in SHO zone (a) Intra Node-B
`(b) Inter Node-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.37 Effect of voice load on average UL throughput (3 HSUPA
`sessions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.38 HSDPA performance of Category 6 handsets from different
`manufacturers under the same radio condition . . . . . . . . . . . . . . . . . .
`Figure 6.39 Web download times for two different HSDPA devices . . . . . . . . . . . .
`Figure 6.40 Latency performance for different RAN platform . . . . . . . . . . . . . . . .
`Figure 6.41 Uplink Noise rise with 10 web browsing users (default channel
`switching timer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.42 Uplink noise rise with 10 web browsing users (new channel
`switching timer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.43 Web page download times for different pages and different
`amount of simultaneous users . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.44 Web performance improvement with new switching parameters . . . . . .
`Figure 7.1 Power sharing between HSDPA and R99 traffic on a single
`carrier where Dynamic Power Allocation assigns the HSDPA
`power usage based on the Rel.’99 power usage . . . . . . . . . . . . . . . . .
`Figure 7.2 HSPA data centric carrier deployment in hot spot scenario . . . . . . . . .
`Figure 7.3 Example for different voice and data growth projections:
`(a) low data growth, and (b) high data growth . . . . . . . . . . . . . . . . . .
`Figure 7.4 Different traffic characteristics between voice and data . . . . . . . . . . . .
`Figure 7.5 Backhaul dimensioning for different application profiles (a) Peak
`Throughput Dimensioning method and (b) Application
`QoS considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 7.6 Diagram of the dimensioning process . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 7.7 Web browsing packet arrival pattern . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 7.8 Traffic pattern within one web page . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 7.9 Traffic pattern for FTP applications . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 7.10 Traffic pattern for streaming applications. . . . . . . . . . . . . . . . . . . . . .
`
`144
`
`145
`
`145
`146
`147
`148
`149
`149
`
`151
`
`152
`
`153
`153
`154
`
`154
`
`155
`
`155
`156
`
`165
`168
`
`170
`171
`
`172
`174
`175
`176
`177
`177
`
`12
`
`
`
`Figures and Tables
`
`Figure 7.11 Results of several dimensioning simulations. Left: performance
`
`degradation with increased number of users (1T1); Right: web
`assumptions (1T1 and 2T1) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`download times for a large web page (300 KB) for different backhaul
`
`Figure 8.4
`
`Figure 8.1 Typical transmit-receive antenna combinations . . . . . . . . . . . . . . . . . .
`Figure 8.2 MIMO downlink transmitter structure for HS-PDSCH
`(UTRA FDD) [3] # 2008 3GPP. . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.3 Percentage of 16QAM usage in an urban cluster (left)
`and suburban (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`64QAM link level simulation for different network loads
`in (a) Pedestrian A, and (b) Typical Urban radio channel models
`# 2008 3GPP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.5 Distribution of identified interference for 0 dB geometry
`# 2008 3GPP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.6 F-DPCH channel structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.7 Cell throughput vs. number of inactive users in Cell-DCH [9]
`# 2008 3GPP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.8 Uplink data transmit pattern with gating [9] # 2008 3GPP . . . . . . . . .
`Figure 8.9 VoIP capacity gain with uplink gating [9] # 2008 3GPP. . . . . . . . . . .
`Figure 8.10 HS-SCCH-less capacity gain for VoIP and BE mixed service
`# 2008 3GPP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.11 TPC error rate for different new DPCCH slot format # 2008 3GPP . . .
`Figure 8.12 CQI report error rate for different DPCCH slot format
`# 2008 3GPP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.13 CS voice over HSPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.14 GPRS core architecture with main interfaces [12] # 2008 3GPP . . . . .
`Figure 8.15 GPRS Protocol architecture in UMTS [11] # 2008 3GPP . . . . . . . . . .
`Figure 8.16 GPRS protocol architecture with Direct Tunnel [11] # 2008 3GPP . . .
`Figure 8.17 Evolved HSPA Architecture [13] # 2008 3GPP . . . . . . . . . . . . . . . . .
`Figure 8.18 Improvement of RTT with HSPA Evolved architecture (left)
`and impact on web performance (right) . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.19 RNC capacity savings in a hotspot deployment scenario . . . . . . . . . . .
`Figure 8.20 QoS architecture introduced in Rel.’7 . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.21 Main QoS Policy entities in Rel.’7 [14] # 2008 3GPP . . . . . . . . . . . .
`Figure 8.22 Integration of 3GPP QoS with IP QoS [15] # 2008 3GPP . . . . . . . . .
`Figure 8.23 Illustration of VoIP packet communication in HSPA . . . . . . . . . . . . . .
`Figure 8.24 Illustration of the effect of the dejitter buffer . . . . . . . . . . . . . . . . . . .
`Figure 8.25 Tradeoff between delay and capacity in a VoIP HSDPA
`network [19] # 2006 IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.26 Comparison of VoIP capacity for different Schedulers
`and receivers [26] # 2006 IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`xv
`
`178
`185
`
`186
`
`187
`
`188
`
`191
`193
`
`194
`195
`196
`
`198
`198
`
`199
`200
`203
`203
`204
`205
`
`206
`207
`208
`209
`210
`214
`216
`
`222
`
`224
`
`13
`
`
`
`xvi
`
`Figures and Tables
`
`Figure 8.27 Comparison of voice quality offered by different vocoders
`with VoIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.28 Codec comparison under packet loss conditions
`(iLBC vs. GSM-FR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.29 Diagram of radio environment setup . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.30 VoIP lab setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.31 MOS results with different signal strength (left)
`and corresponding Ec/No (right). . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.32 VoIP performance in the Soft-Handover areas . . . . . . . . . . . . . . . . . .
`Figure 9.1 Overview of LTE technology timelines . . . . . . . . . . . . . . . . . . . . . . .
`Figure 9.2 Radio Access architecture evolution . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 9.3 LTE User Plane protocol architecture . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 9.4 LTE Control Plane protocol architecture . . . . . . . . . . . . . . . . . . . . . .
`Figure 9.5 E-UTRAN Packet core architecture [4] . . . . . . . . . . . . . . . . . . . . . . .
`Figure 9.6 Spectral Efficiency comparison between HSPA Rel.’6
`and LTE for 500 m ISD (Average of all contributions) . . . . . . . . . . . .
`Figure 9.7 Comparison of user experience, HSPA Rel.’6 vs. LTE . . . . . . . . . . . .
`Figure 9.8 Comparison of voice capacity, UMTS Rel.’6 vs. LTE . . . . . . . . . . . . .
`Figure 9.9 Comparison of sector capacity, HSPA+ vs. LTE (5 MHz) . . . . . . . . . .
`Figure 9.10 Comparison of cell-edge user throughput, HSPA+ vs. LTE . . . . . . . . .
`Figure 9.11 Comparison of VoIP capacity, HSPA+ vs. LTE . . . . . . . . . . . . . . . . .
`Figure 9.12 HSPA and LTE deployment time line . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 9.13 Technology migration paths for different networks . . . . . . . . . . . . . . .
`
`Tables
`
`New channels introduced for HSDPA . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 2.1
`HSDPA UE category defined by 3GPP . . . . . . . . . . . . . . . . . . . . . . . .
`Table 2.2
`Processing time for UE and network for SAW HARQ . . . . . . . . . . . . .
`Table 2.3
`Number of HARQ processes supported by different UE category . . . . .
`Table 2.4
`Differences between HSDPA and HSUPA . . . . . . . . . . . . . . . . . . . . . .
`Table 2.5
`HSUPA UE category (Rel.’7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 2.6
`Table 3.1 Main differences between TCP and UDP protocols . . . . . . . . . . . . . . .
`Table 3.2
`Example of application types and their corresponing QoS attributes. . . .
`Table 4.1
`CQI mapping table for UE categories 1 to 6 . . . . . . . . . . . . . . . . . . . .
`Table 4.2
`HSUPA UE categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 5.1
`HSDPA throughput vs. SINR (for 10% BLER) . . . . . . . . . . . . . . . . . .
`Table 5.2
`Expected HSDPA throughputs at the cell edge for different power
`allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Example HSDPA link budgets for different bitrate
`requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Bitrate achieved at different pathloss values for isolated cells
`(geometry factor, G, between 5 dB and 25 dB) . . . . . . . . . . . . . . . . . .
`
`Table 5.3
`
`Table 5.4
`
`225
`
`226
`226
`227
`
`227
`227
`233
`234
`235
`235
`237
`
`241
`241
`242
`243
`244
`244
`246
`250
`
`18
`19
`22
`22
`23
`24
`31
`42
`63
`65
`78
`
`79
`
`80
`
`80
`
`14
`
`
`
`Figures and Tables
`
`Table 5.5
`
`Bitrate achieved at different pathloss values, for locations
`where two cells are received with the same signal strength
`(geometry factor, G, factor around 0 dB) . . . . . . . . . . . . . . . . . . . . . .
`Table 5.6 Bitrate achieved at different pathloss values, for locations
`where three cells are received with the same signal strength
`(geometry factor, G, factor around –3 dB) . . . . . . . . . . . . . . . . . . . . . .
`Table 5.7 Eb/No vs. Throughput for a Category 5 HSUPA device
`(10 ms TTI, 1.92 Mbps Max Bitrate) [4] . . . . . . . . . . . . . . . . . . . . . . .
`Table 5.8 Example link budget calculations for different uplink bitrates . . . . . . . . .
`Table 5.9 Expected HSDPA sector capacity for different data code usage
`and voice call scenarios based on simulations (from [8–10]) . . . . . . . . . .
`Table 5.10 Expected HSUPA sector capacity with different parameter
`
`configurations for retransmissions and TTI times (Rtx ¼ number
`
`of retransmissions) (from [11–13]) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 5.11 Overview of principal HSPA parameters . . . . . . . . . . . . . . . . . . . . . . . .
`Table 6.1 HSDPA scheduler relative performance under different
`channel conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 6.2 Field clusters for HSPA feature evaluation . . . . . . . . . . . . . . . . . . . . .
`Table 7.1 Key factors for carrier planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 7.2 Examples of quality criteria defined per application . . . . . . . . . . . . . . .
`Table 7.3 Key parameters for traffic model generator . . . . . . . . . . . . . . . . . . . . .
`Table 7.4 Parameters for HTTP traffic generator . . . . . . . . . . . . . . . . . . . . . . . .
`Table 7.5 Parameters for WAP traffic model . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 7.6 Configuration of the HTTP traffic model in the example . . . . . . . . . . .
`Table 8.1 Type-3i receiver average gain over Type-3 under different geometries . .
`Table 8.2 Simulation assumptions for uplink gating . . . . . . . . . . . . . . . . . . . . . .
`Table 8.3 HS-SCCH information which are not needed
`in HS-SCCH-less operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 8.4 Example of 3GPP traffic class mapping with DiffServ . . . . . . . . . . . . .
`Table 8.5 Resource utilization comparison of popular voice codecs . . . . . . . . . . .
`Table 8.6 VoIP primary service requirements . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 8.7 Comparison between CS Voice and VoIP . . . . . . . . . . . . . . . . . . . . . .
`Table 9.1 Summary of LTE performance goals . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 9.2 Typical test scenarios for LTE performance bechmarking . . . . . . . . . . .
`Table 9.3 HSPA+ performance objectives proposed by Cingular . . . . . . . . . . . . .
`Table 9.4 Comparison of enhancement features (LTE vs. HSPA+) . . . . . . . . . . . .
`Table 9.5 Comparison of peak performance (HSPA+ vs. LTE). . . . . . . . . . . . . . .
`
`xvii
`
`81
`
`81
`
`81
`83
`
`85
`
`86
`98
`
`129
`135
`161
`174
`175
`176
`178
`178
`191
`195
`
`197
`211
`215
`220
`221
`238
`239
`239
`240
`240
`
`15
`
`
`
`About the Authors
`
`Pablo Tapia Pablo is a Principal Engineer in the Network Strategy
`team of T-Mobile USA, where he has worked in several projects
`including new technology evaluation, support
`to regulatory and
`business teams and technology strategy planning. He has over nine
`years of experience in the wireless industry, mostly focused on RAN
`technology efficiency and application performance. He began his
`career in Nokia Networks R&D, developing advanced features for
`GSM/EDGE networks. He h