throbber
HSPA Performance and Evolution
`
`HSPA Performance and Evolution: A Practical Perspective Pablo Tapia, Jun Liu, Yasmin Karimli and Martin J. Feuerstein
`© 2009 John Wiley & Sons Ltd. ISBN: 978-0-470-69942-3
`
`APPLE 1027
`Apple v. Ericsson
`IPR2022-00343
`
`1
`
`

`

`HSPA Performance and Evolution
`
`A Practical Perspective
`
`Pablo Tapia, Jun Liu, Yasmin Karimli
`
`T-Mobile USA
`
`Martin J. Feuerstein
`
`Polaris Wireless, USA
`
`2
`
`

`

`This edition first published 2009
`# 2009 John Wiley & Sons Ltd.
`
`Registered office
`John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom
`
`For details of our global editorial offices, for customer services and for information about how to apply for
`permission to reuse the copyright material in this book please see our website at www.wiley.com.
`
`The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
`Designs and Patents Act 1988.
`
`All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
`form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
`Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
`
`Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
`available in electronic books.
`
`# 2006. 3GPPTM TSs and TRs are the property of ARIB, ATIS, CCSA, ETSI, TTA and TTC who jointly own the
`copyright in them. They are subject to further modifications and are therefore provided to you ‘‘as is’’ for
`information purposes only. Further use is strictly prohibited.
`
`Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
`product names used in this book are trade names, service marks, trademarks or registered trademarks of their
`respective owners. The publisher is not associated with any product or vendor mentioned in this book. This
`publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is
`sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice
`or other expert assistance is required, the services of a competent professional should be sought.
`
`Library of Congress Cataloging-in-Publication Data
`
`HSPA performance and evolution : a practical perspective / by Pablo Tapia ... [et al.].
`p. cm.
`Includes bibliographical references and index.
`ISBN 978-0-470-69942-3 (cloth)
`1. Packet switching (Data transmission) 2. Network performance (Telecomunication) 3. Radio–Packet
`transmission. I. Tapia, Pablo. II. Title: High speed packet access performance and evolution.
`TK5105.3.H73 2009
`621.382’16–dc22
`
`2008052332
`
`A catalogue record for this book is available from the British Library.
`
`ISBN 978-0-470-69942-3 (H/B)
`
`Typeset in 10/13pt Times by Thomson Digital, Noida, India.
`Printed in Great Britain by Antony Rowe
`
`3
`
`

`

`Contents
`
`Figures and Tables
`
`About the Authors
`
`Preface
`
`Foreword
`
`Acknowledgements
`
`1
`
`Introduction
`
`1.1 Services and Applications for HSPA
`1.2 Organization of the Book
`References
`
`2 Overview of UMTS/HSPA Systems
`
`2.1 UMTS: GSM Evolution to 3G Networks
`2.1.1 Overview of UMTS Standardization
`2.1.2 UMTS Network Architecture
`2.1.3 Air Interface Technology
`2.2 UMTS System Elements
`2.2.1 User Equipment (UE)
`2.2.2 Node-B
`2.2.3 Radio Network Controller (RNC)
`2.3 UMTS Radio Bearers and Services
`2.3.1
`Information Transfer Attributes
`2.3.2 Quality of Service (QoS) Attributes
`2.4 HSDPA (High Speed Downlink Packet Access)
`2.4.1 Motivation for the Introduction of HSDPA
`2.4.2 Main HSDPA Features
`2.5 HSUPA (High Speed Uplink Packet Access)
`2.5.1 Main HSUPA Features
`2.6 Summary
`References
`
`xi
`
`xix
`
`xxi
`
`xxiii
`
`xxv
`
`1
`
`3
`6
`7
`
`9
`
`9
`10
`11
`12
`14
`14
`14
`14
`15
`15
`15
`16
`16
`17
`22
`22
`25
`26
`
`4
`
`

`

`vi
`
`Contents
`
`3 Applications and Quality of Service in HSPA Networks
`
`3.1 Application Performance Requirements
`3.1.1 The Role of Latency in End-user Performance
`3.1.2 Considerations of TCP/IP
`3.1.3 Typical Application Profiles
`3.2 Support of QoS in HSPA Networks
`3.2.1
`3GPP QoS Attributes
`3.2.2 Negotiation of QoS Attributes
`3.2.3 QoS Modification for HSPA
`3.3 Summary
`References
`
`4 Radio Resource Management in UMTS/HSPA Networks
`
`4.1 Admission and Congestion Control
`4.1.1 Management of Transmit Power Resources
`4.1.2 Management of Channelization Codes
`4.2 Packet Scheduler
`4.2.1 HSDPA Scheduling
`4.2.2 HSUPA Scheduling
`4.3 HSDPA Power Allocation
`4.4 Power Control and Link Adaptation
`4.4.1 Power Control
`4.4.2 Link Adaptation
`4.5 Mobility Management
`4.5.1 HSDPA Mobility Management
`4.5.2 HSUPA Mobility Management
`4.6 Summary
`References
`
`5 HSPA Radio Network Planning and Optimization
`
`5.1 Key Differences Between HSPA and Legacy Rel.’99 Channels
`5.1.1 HSPA Data User Behavior Compared to Rel.’99 Voice Users
`5.1.2 HSPA Radio Performance Considerations Compared to Rel.’99
`5.1.3 HSPA Mobility Considerations Compared to Rel.’99
`5.1.4 HSPA Baseband and Backhaul Resource Considerations
`Compared to Rel.’99
`5.2 Link Budget Analysis
`5.2.1 Link Budget Methodology
`5.2.2 Downlink Analysis
`5.2.3 Uplink Link Budget Analysis
`5.3 Overview of System Level Simulations
`
`27
`
`28
`29
`30
`33
`38
`39
`41
`44
`46
`46
`
`47
`
`48
`50
`52
`52
`52
`56
`57
`59
`59
`61
`66
`66
`68
`69
`70
`
`71
`
`72
`72
`72
`74
`
`75
`75
`75
`77
`79
`84
`
`5
`
`

`

`Contents
`
`5.4 Cell Planning Process
`5.4.1 Practical Rules for UMTS/HSPA Cell Planning
`5.4.2 Automate Cell Planning (ACP) Tool Usage
`5.4.3 Deployment of ACP Network Configuration
`5.5 Optimization with Drive Test Tools
`5.6 Main Radio Parameters Affecting HSPA Performance
`5.6.1 Basic Activation Features
`5.6.2 Control of Resources
`5.6.3 Mobility Management Parameters
`5.6.4 Performance Parameters
`5.7 Dynamic Network Optimization (DNO) Tools
`5.7.1 Collection of Relevant Network Information
`5.7.2
`Identification of Parameters for DNO
`5.7.3 Definition of the DNO Strategy
`5.8 Summary
`References
`
`6 HSPA Radio Performance
`
`6.1 HSDPA Lab Performance Evaluation
`6.1.1 Lab Setup
`6.1.2 Basic Functionality Testing
`6.1.3 HSDPA Latency Improvement
`6.1.4 HSDPA Throughput and Link Performance
`6.1.5 HSDPA Link Adaptation Performance
`6.1.6 Dynamic Power Allocation
`6.1.7 HSDPA Scheduler Performance
`6.2 HSUPA Lab Performance Evaluation
`6.2.1 Throughput Performance
`6.2.2
`Scheduler Performance
`6.2.3 Latency Performance
`6.2.4 Mixed Voice and HSUPA Performance
`6.3 Field Evaluation
`6.3.1 Field Network Configurations
`6.3.2 HSDPA Performance
`6.3.3 HSUPA Performance
`6.4 Other Performance Considerations
`6.4.1 Terminal Device Performance
`6.4.2
`Infrastructure Performance
`6.4.3 Application Performance
`6.5 Summary
`References
`
`vii
`
`86
`87
`88
`91
`93
`97
`97
`100
`104
`105
`109
`111
`112
`112
`114
`114
`
`117
`
`118
`118
`119
`120
`121
`123
`125
`128
`129
`129
`130
`132
`132
`134
`134
`136
`148
`152
`152
`153
`154
`156
`157
`
`6
`
`

`

`viii
`
`Contents
`
`7 Capacity Growth Management
`
`7.1 UMTS/HSPA Carrier Deployment Strategy
`7.1.1 Factors Affecting the Carrier Planning Strategy
`7.1.2 Voice and HSPA on One Carrier
`7.1.3 Data Centric Carrier
`7.1.4 Factors Affecting the Shared vs. Data Centric Carrier Decision
`7.2 Data Traffic Profiling and Network Dimensioning
`7.2.1 Traffic Profiling
`7.2.2 Data Traffic Models
`7.2.3 Data Traffic Modeling Case Study
`7.3 Summary
`References
`
`8 HSPA Evolution (HSPA+)
`
`8.1 Standards Evolution
`8.1.1 Radio Evolution
`8.1.2 Architecture Evolution
`8.1.3 Vendor Ecosystem
`8.2 HSPA+ Radio Enhancements
`8.2.1 MIMO
`8.2.2 Higher Order Modulation (HOM)
`8.2.3 Advanced Receivers
`8.2.4 Continuous Packet Connectivity (CPC)
`8.2.5 Circuit-switched Voice Over HSPA
`8.2.6 Dual Carrier Operation in HSDPA
`8.3 Architecture Evolution
`8.3.1 GPRS Flat Architecture
`8.3.2 End-to-end Quality of Service (QoS) Architecture
`8.4 Converged Voice and Data Networks: VoIP
`8.4.1 Benefits of an All-IP Network
`8.4.2 Fundamentals of Voice over IP (VoIP)
`8.4.3 Requirements for VoIP as a Complete Voice Service
`8.4.4 HSPA Enablers for Voice Over IP
`8.4.5 Performance of VoIP in HSPA Networks
`8.5 Summary
`References
`
`9 Technology Strategy Beyond HSPA
`
`9.1
`
`Introduction to Evolved UTRAN
`9.1.1 Technology Choice and Key Features
`9.1.2 Architecture and Interfaces
`
`159
`
`160
`161
`163
`166
`168
`171
`171
`174
`178
`179
`179
`
`181
`
`182
`183
`183
`184
`184
`184
`187
`189
`191
`199
`200
`201
`201
`207
`211
`212
`214
`218
`220
`223
`228
`228
`
`231
`
`232
`234
`236
`
`7
`
`

`

`Contents
`
`9.1.3 Early LTE Trials
`9.2 Analysis of HSPA vs. LTE
`9.2.1 Performance Comparison of LTE vs. HSPA Rel.’6
`9.2.2 Performance Comparison of LTE vs. HSPA+
`9.3 LTE Deployment and Migration Scenarios
`9.3.1 Technology Timelines
`9.3.2 Key Factors for New Technology Overlay
`9.3.3 HSPA and LTE Overlay Scenarios
`9.4 Summary
`References
`
`Index
`
`ix
`
`237
`238
`240
`241
`245
`245
`247
`249
`251
`252
`
`253
`
`8
`
`

`

`Figures and Tables
`
`Figures
`
`Figure 1.1 Data traffic revenue in the US 2004–2008: absolute (top) and relative
`to total ARPU (bottom) (data from Refs. 1) . . . . . . . . . . . . . . . . . . . . . .
`Figure 1.2 Apple iPhone sales volume since its launch in June 2007 as compared
`to the rest of the smartphone industry (from Ref. 2) . . . . . . . . . . . . . . . . .
`Figure 1.3 Commercial availability of HSPA 2006–2008 (from Refs. 3). . . . . . . . . . .
`Figure 1.4 Typical data consumption depending on customer profile (type of device)
`compared against wired residential cable internet service . . . . . . . . . . . . .
`Figure 2.1 UTRAN architecture [1] # 2008 3GPP. . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 2.2 CDMA vs. TDMA: Different frequency utilization scheme . . . . . . . . . . .
`Figure 2.3 UMTS coverage for services with different data rate . . . . . . . . . . . . . . .
`Figure 2.4 Four-Channel SAW HARQ # 2008 3GPP. . . . . . . . . . . . . . . . . . . . . . .
`Figure 2.5 Enhanced uplink protocol architecture # 2008 3GPP . . . . . . . . . . . . . . .
`Figure 3.1 Network diagram for HSPA traffic (user plane) . . . . . . . . . . . . . . . . . . .
`Figure 3.2 User experience of a web page download (CNN.com) as
`a function of peak bitrate and latency . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 3.3 UE Protocol in a HSPA network (DL only) . . . . . . . . . . . . . . . . . . . . . .
`Figure 3.4 Generic diagram of a HTTP transaction on a UMTS network . . . . . . . . .
`Figure 3.5 Streaming bitrate capture from CNN.com video over LAN . . . . . . . . . . .
`Figure 3.6 Link traffic example at different conditions: separate users (left),
`simultaneous users without QoS (middle) and simultaneous
`users with QoS (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 3.7 UMTS QoS entities since Rel’99 [1] # 2008 3GPP . . . . . . . . . . . . . . . .
`Figure 3.8 Network diagram of QoS functions and information (Rel’4) . . . . . . . . . .
`Figure 3.9 QoS parameters known at the RNC and NodeB levels . . . . . . . . . . . . . .
`Figure 4.1 Block diagram of the HSPA network elements identifying
`the locations of the various RRM algorithms . . . . . . . . . . . . . . . . . . . . .
`Figure 4.2 Operating load curve of a CDMA system showing stable
`and overload (unstable) regions versus the traffic load
`(number of users) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`3
`
`4
`5
`
`6
`11
`13
`13
`21
`25
`28
`
`30
`30
`35
`38
`
`39
`40
`44
`45
`
`49
`
`50
`
`9
`
`

`

`xii
`
`Figures and Tables
`
`Figure 4.3
`
`Figure 5.2
`
`Illustration of power resource management using the AC
`and CC mechanisms in RRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 4.4 Code tree illustrating spreading factors (SF) and code
`usage in a WCDMA system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 4.5 Example of different HSDPA scheduling strategies. . . . . . . . . . . . . . . .
`Figure 4.6 HSDPA Round Robin scheduler example . . . . . . . . . . . . . . . . . . . . . .
`Figure 4.7 HSDPA Proportional Fair Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 4.8 HSUPA scheduler inputs and outputs . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 4.9
`Illustration of Static vs. Dynamic Allocation . . . . . . . . . . . . . . . . . . . .
`Figure 4.10 Illustration of Dynamic Power Allocation (DPA) with power
`control using the ‘minimum power’ strategy . . . . . . . . . . . . . . . . . . . .
`Figure 4.11 Example of Link adaptation for HSDPA using a single
`modulation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 4.12 Illustration of HARQ functionality with acknowledgements (ACKs) and
`negative acknowledgements (NACKs) controlling retransmissions . . . . .
`Figure 4.13 Interaction between Link Adaptation, Scheduler & Power Control . . . . .
`Figure 4.14 Cell transition mechanisms with HSDPA illustrating two different
`methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 4.15 Illustration of soft-handover with HSUPA . . . . . . . . . . . . . . . . . . . . . .
`Figure 5.1
`Illustration of buffer area of Rel.’99 at the edge of 3G coverage
`between HSPA and 2G (E)GPRS to facilitate seamless transitions . . . . .
`Illustration of maximum uplink pathloss determined by the UE
`maximum transmit EIRP and the base station required receive power . . .
`Figure 5.3 Calculation of required minimum receive power at base station . . . . . . .
`Figure 5.4 HSUPA field trial result in Suburban environment (Cat 5 UE) . . . . . . . .
`Figure 5.5 HSDPA cell throughput vs. Rel’99 traffic load (from [10])
`# 2006 IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Illustration of ACP optimization: HSDPA throughput before
`(above) and after (below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 5.7 Best server plot based on propagation (left) and after combination
`with drive test data (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 5.8 Analysis of RF planning cost vs. overall performance improvement . . . .
`Figure 5.9 Radio conditions (Ec/No) in a cluster from a drive test measurement . . .
`Figure 5.10 Example of follow-up HSDPA drive test to obtain second-level KPIs
`to measure performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 5.11 Illustration of TTI multiplexing (left, 3 HS-SCCH) vs. no
`multiplexing (right, 1 HS-SCCH) . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 5.12 State transition model for HSDPA data . . . . . . . . . . . . . . . . . . . . . . .
`Figure 5.13 Concept of DNO operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 5.14 Example of execution of an automated parameter optimization
`(reduction of call failures) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.1 Example lab setup for HSPA testing . . . . . . . . . . . . . . . . . . . . . . . . .
`
`Figure 5.6
`
`51
`
`52
`54
`54
`56
`57
`58
`
`59
`
`61
`
`62
`65
`
`67
`69
`
`74
`
`76
`77
`83
`
`85
`
`90
`
`91
`92
`94
`
`96
`
`101
`107
`110
`
`113
`118
`
`10
`
`

`

`Figures and Tables
`
`Figure 6.2 Lab trial network diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.3 RTT breakdown of a 32 byte ping test . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.4 HSDPA user throughput in a lab environment (Cat 12 device) . . . . . . .
`Figure 6.5 HSDPA user throughput under different interference
`and fading conditions (Cat 12 device) . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.6 Coverage comparisons between R.’99 data and HSDPA (Cat 12) . . . . .
`Figure 6.7 NAK rate vs. CQI for different Link Adaptation algorithms . . . . . . . .
`Figure 6.8 Single user throughput vs pathloss for different Link
`Adaptation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.9 HSDPA dynamic power allocation algorithm . . . . . . . . . . . . . . . . . . .
`Figure 6.10 DPA power control for different modulation schemes
`(QPSK and 16QAM) and packet scheduler algorithms
`
`(RR ¼ Round Robin, PFS ¼ Proportional Fair Scheduler) . . . . . . . . . .
`
`Figure 6.11 Dynamic power allocation implementation comparison (single cell
`with 40% loading). Single user throughput (Cat 12 device) . . . . . . . . .
`Figure 6.12 Single HSUPA user UL throughput and transmit power performance
`in different vendor implementations (Vendor A vs Vendor B) . . . . . . .
`Figure 6.13 HSUPA cell throughput for two users without fading for Vendor A
`implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.14 HSUPA user throughput under PED_A channel profile,
`two HSUPA users in the cell with no voice traffic . . . . . . . . . . . . . . .
`Figure 6.15 HSUPA scheduler performance under different radio conditions. . . . . .
`Figure 6.16 HSPA latency improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.17 Voice traffic impact on HSUPA throughput . . . . . . . . . . . . . . . . . . . .
`Figure 6.18 Mixed voice/HSUPA performance at poor radio conditions . . . . . . . . .
`Figure 6.19 HSDPA drive test throughput in cluster A (QPSK only) . . . . . . . . . . .
`Figure 6.20 Drive test throughput in cluster C (Dense Urban) (QPSK only) . . . . . .
`Figure 6.21 Example of throughput distribution with Proportional
`Fair Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.22 HSDPA throughput performance vs. coverage (unloaded) for two
`different HSDPA power allocation methods: DPA with power
`control (top) and DPA with full power assignment (bottom) . . . . . . . .
`Figure 6.23 HSDPA throughput performance vs. coverage (60% loading). . . . . . . .
`Figure 6.24 Voice and HSDPA capacity sharing on single carrier (DPA with
`Power control, QPSK only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.25 HSDPA+Voice capacity depending on DPA scheme (no OCNS)
`illustrating throughput improvement with aggressive DPA
`scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.26 Voice and HSDPA capacity sharing on single carrier with cluster
`OCNS loading at 60% (DPA with Power Control) . . . . . . . . . . . . . . .
`Figure 6.27 Voice call BLER with Mixed Voice and HSDPA traffic test
`in Cluster A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`xiii
`
`119
`121
`121
`
`122
`123
`125
`
`125
`126
`
`127
`
`128
`
`129
`
`130
`
`131
`131
`132
`133
`133
`137
`137
`
`138
`
`139
`139
`
`140
`
`141
`
`142
`
`142
`
`11
`
`

`

`xiv
`
`Figures and Tables
`
`Figure 6.28 Data throughput for HS-DSCH intra Node-B cell change
`in Cluster D without network load . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.29 Data throughput for HS-DSCH inter Node-B cell change
`in Cluster D without network load . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.30 Data throughput for HS-DSCH inter Node-B cell change
`for low mobility use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.31 Inter RNC HSDPA cell change without SRNC relocation . . . . . . . . . .
`Figure 6.32 Inter RNC HSDPA mobility drive test in cluster D . . . . . . . . . . . . . . .
`Figure 6.33 HSUPA link budget validation at medium mobility (<35 miles/hr) . . . .
`Figure 6.34 HSUPA link budget validation (unload at 60 miles/hr) . . . . . . . . . . . .
`Figure 6.35 HSUPA link budget validation at high mobility (>60 miles/hr) . . . . . .
`Figure 6.36 HSUPA throughput performance in SHO zone (a) Intra Node-B
`(b) Inter Node-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.37 Effect of voice load on average UL throughput (3 HSUPA
`sessions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.38 HSDPA performance of Category 6 handsets from different
`manufacturers under the same radio condition . . . . . . . . . . . . . . . . . .
`Figure 6.39 Web download times for two different HSDPA devices . . . . . . . . . . . .
`Figure 6.40 Latency performance for different RAN platform . . . . . . . . . . . . . . . .
`Figure 6.41 Uplink Noise rise with 10 web browsing users (default channel
`switching timer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.42 Uplink noise rise with 10 web browsing users (new channel
`switching timer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.43 Web page download times for different pages and different
`amount of simultaneous users . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 6.44 Web performance improvement with new switching parameters . . . . . .
`Figure 7.1 Power sharing between HSDPA and R99 traffic on a single
`carrier where Dynamic Power Allocation assigns the HSDPA
`power usage based on the Rel.’99 power usage . . . . . . . . . . . . . . . . .
`Figure 7.2 HSPA data centric carrier deployment in hot spot scenario . . . . . . . . .
`Figure 7.3 Example for different voice and data growth projections:
`(a) low data growth, and (b) high data growth . . . . . . . . . . . . . . . . . .
`Figure 7.4 Different traffic characteristics between voice and data . . . . . . . . . . . .
`Figure 7.5 Backhaul dimensioning for different application profiles (a) Peak
`Throughput Dimensioning method and (b) Application
`QoS considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 7.6 Diagram of the dimensioning process . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 7.7 Web browsing packet arrival pattern . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 7.8 Traffic pattern within one web page . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 7.9 Traffic pattern for FTP applications . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 7.10 Traffic pattern for streaming applications. . . . . . . . . . . . . . . . . . . . . .
`
`144
`
`145
`
`145
`146
`147
`148
`149
`149
`
`151
`
`152
`
`153
`153
`154
`
`154
`
`155
`
`155
`156
`
`165
`168
`
`170
`171
`
`172
`174
`175
`176
`177
`177
`
`12
`
`

`

`Figures and Tables
`
`Figure 7.11 Results of several dimensioning simulations. Left: performance
`
`degradation with increased number of users (1T1); Right: web
`assumptions (1T1 and 2T1) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`download times for a large web page (300 KB) for different backhaul
`
`Figure 8.4
`
`Figure 8.1 Typical transmit-receive antenna combinations . . . . . . . . . . . . . . . . . .
`Figure 8.2 MIMO downlink transmitter structure for HS-PDSCH
`(UTRA FDD) [3] # 2008 3GPP. . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.3 Percentage of 16QAM usage in an urban cluster (left)
`and suburban (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`64QAM link level simulation for different network loads
`in (a) Pedestrian A, and (b) Typical Urban radio channel models
`# 2008 3GPP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.5 Distribution of identified interference for 0 dB geometry
`# 2008 3GPP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.6 F-DPCH channel structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.7 Cell throughput vs. number of inactive users in Cell-DCH [9]
`# 2008 3GPP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.8 Uplink data transmit pattern with gating [9] # 2008 3GPP . . . . . . . . .
`Figure 8.9 VoIP capacity gain with uplink gating [9] # 2008 3GPP. . . . . . . . . . .
`Figure 8.10 HS-SCCH-less capacity gain for VoIP and BE mixed service
`# 2008 3GPP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.11 TPC error rate for different new DPCCH slot format # 2008 3GPP . . .
`Figure 8.12 CQI report error rate for different DPCCH slot format
`# 2008 3GPP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.13 CS voice over HSPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.14 GPRS core architecture with main interfaces [12] # 2008 3GPP . . . . .
`Figure 8.15 GPRS Protocol architecture in UMTS [11] # 2008 3GPP . . . . . . . . . .
`Figure 8.16 GPRS protocol architecture with Direct Tunnel [11] # 2008 3GPP . . .
`Figure 8.17 Evolved HSPA Architecture [13] # 2008 3GPP . . . . . . . . . . . . . . . . .
`Figure 8.18 Improvement of RTT with HSPA Evolved architecture (left)
`and impact on web performance (right) . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.19 RNC capacity savings in a hotspot deployment scenario . . . . . . . . . . .
`Figure 8.20 QoS architecture introduced in Rel.’7 . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.21 Main QoS Policy entities in Rel.’7 [14] # 2008 3GPP . . . . . . . . . . . .
`Figure 8.22 Integration of 3GPP QoS with IP QoS [15] # 2008 3GPP . . . . . . . . .
`Figure 8.23 Illustration of VoIP packet communication in HSPA . . . . . . . . . . . . . .
`Figure 8.24 Illustration of the effect of the dejitter buffer . . . . . . . . . . . . . . . . . . .
`Figure 8.25 Tradeoff between delay and capacity in a VoIP HSDPA
`network [19] # 2006 IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.26 Comparison of VoIP capacity for different Schedulers
`and receivers [26] # 2006 IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`xv
`
`178
`185
`
`186
`
`187
`
`188
`
`191
`193
`
`194
`195
`196
`
`198
`198
`
`199
`200
`203
`203
`204
`205
`
`206
`207
`208
`209
`210
`214
`216
`
`222
`
`224
`
`13
`
`

`

`xvi
`
`Figures and Tables
`
`Figure 8.27 Comparison of voice quality offered by different vocoders
`with VoIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.28 Codec comparison under packet loss conditions
`(iLBC vs. GSM-FR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.29 Diagram of radio environment setup . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.30 VoIP lab setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.31 MOS results with different signal strength (left)
`and corresponding Ec/No (right). . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 8.32 VoIP performance in the Soft-Handover areas . . . . . . . . . . . . . . . . . .
`Figure 9.1 Overview of LTE technology timelines . . . . . . . . . . . . . . . . . . . . . . .
`Figure 9.2 Radio Access architecture evolution . . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 9.3 LTE User Plane protocol architecture . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 9.4 LTE Control Plane protocol architecture . . . . . . . . . . . . . . . . . . . . . .
`Figure 9.5 E-UTRAN Packet core architecture [4] . . . . . . . . . . . . . . . . . . . . . . .
`Figure 9.6 Spectral Efficiency comparison between HSPA Rel.’6
`and LTE for 500 m ISD (Average of all contributions) . . . . . . . . . . . .
`Figure 9.7 Comparison of user experience, HSPA Rel.’6 vs. LTE . . . . . . . . . . . .
`Figure 9.8 Comparison of voice capacity, UMTS Rel.’6 vs. LTE . . . . . . . . . . . . .
`Figure 9.9 Comparison of sector capacity, HSPA+ vs. LTE (5 MHz) . . . . . . . . . .
`Figure 9.10 Comparison of cell-edge user throughput, HSPA+ vs. LTE . . . . . . . . .
`Figure 9.11 Comparison of VoIP capacity, HSPA+ vs. LTE . . . . . . . . . . . . . . . . .
`Figure 9.12 HSPA and LTE deployment time line . . . . . . . . . . . . . . . . . . . . . . . .
`Figure 9.13 Technology migration paths for different networks . . . . . . . . . . . . . . .
`
`Tables
`
`New channels introduced for HSDPA . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 2.1
`HSDPA UE category defined by 3GPP . . . . . . . . . . . . . . . . . . . . . . . .
`Table 2.2
`Processing time for UE and network for SAW HARQ . . . . . . . . . . . . .
`Table 2.3
`Number of HARQ processes supported by different UE category . . . . .
`Table 2.4
`Differences between HSDPA and HSUPA . . . . . . . . . . . . . . . . . . . . . .
`Table 2.5
`HSUPA UE category (Rel.’7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 2.6
`Table 3.1 Main differences between TCP and UDP protocols . . . . . . . . . . . . . . .
`Table 3.2
`Example of application types and their corresponing QoS attributes. . . .
`Table 4.1
`CQI mapping table for UE categories 1 to 6 . . . . . . . . . . . . . . . . . . . .
`Table 4.2
`HSUPA UE categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 5.1
`HSDPA throughput vs. SINR (for 10% BLER) . . . . . . . . . . . . . . . . . .
`Table 5.2
`Expected HSDPA throughputs at the cell edge for different power
`allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Example HSDPA link budgets for different bitrate
`requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Bitrate achieved at different pathloss values for isolated cells
`(geometry factor, G, between 5 dB and 25 dB) . . . . . . . . . . . . . . . . . .
`
`Table 5.3
`
`Table 5.4
`
`225
`
`226
`226
`227
`
`227
`227
`233
`234
`235
`235
`237
`
`241
`241
`242
`243
`244
`244
`246
`250
`
`18
`19
`22
`22
`23
`24
`31
`42
`63
`65
`78
`
`79
`
`80
`
`80
`
`14
`
`

`

`Figures and Tables
`
`Table 5.5
`
`Bitrate achieved at different pathloss values, for locations
`where two cells are received with the same signal strength
`(geometry factor, G, factor around 0 dB) . . . . . . . . . . . . . . . . . . . . . .
`Table 5.6 Bitrate achieved at different pathloss values, for locations
`where three cells are received with the same signal strength
`(geometry factor, G, factor around –3 dB) . . . . . . . . . . . . . . . . . . . . . .
`Table 5.7 Eb/No vs. Throughput for a Category 5 HSUPA device
`(10 ms TTI, 1.92 Mbps Max Bitrate) [4] . . . . . . . . . . . . . . . . . . . . . . .
`Table 5.8 Example link budget calculations for different uplink bitrates . . . . . . . . .
`Table 5.9 Expected HSDPA sector capacity for different data code usage
`and voice call scenarios based on simulations (from [8–10]) . . . . . . . . . .
`Table 5.10 Expected HSUPA sector capacity with different parameter
`
`configurations for retransmissions and TTI times (Rtx ¼ number
`
`of retransmissions) (from [11–13]) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 5.11 Overview of principal HSPA parameters . . . . . . . . . . . . . . . . . . . . . . . .
`Table 6.1 HSDPA scheduler relative performance under different
`channel conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 6.2 Field clusters for HSPA feature evaluation . . . . . . . . . . . . . . . . . . . . .
`Table 7.1 Key factors for carrier planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 7.2 Examples of quality criteria defined per application . . . . . . . . . . . . . . .
`Table 7.3 Key parameters for traffic model generator . . . . . . . . . . . . . . . . . . . . .
`Table 7.4 Parameters for HTTP traffic generator . . . . . . . . . . . . . . . . . . . . . . . .
`Table 7.5 Parameters for WAP traffic model . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 7.6 Configuration of the HTTP traffic model in the example . . . . . . . . . . .
`Table 8.1 Type-3i receiver average gain over Type-3 under different geometries . .
`Table 8.2 Simulation assumptions for uplink gating . . . . . . . . . . . . . . . . . . . . . .
`Table 8.3 HS-SCCH information which are not needed
`in HS-SCCH-less operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 8.4 Example of 3GPP traffic class mapping with DiffServ . . . . . . . . . . . . .
`Table 8.5 Resource utilization comparison of popular voice codecs . . . . . . . . . . .
`Table 8.6 VoIP primary service requirements . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 8.7 Comparison between CS Voice and VoIP . . . . . . . . . . . . . . . . . . . . . .
`Table 9.1 Summary of LTE performance goals . . . . . . . . . . . . . . . . . . . . . . . . .
`Table 9.2 Typical test scenarios for LTE performance bechmarking . . . . . . . . . . .
`Table 9.3 HSPA+ performance objectives proposed by Cingular . . . . . . . . . . . . .
`Table 9.4 Comparison of enhancement features (LTE vs. HSPA+) . . . . . . . . . . . .
`Table 9.5 Comparison of peak performance (HSPA+ vs. LTE). . . . . . . . . . . . . . .
`
`xvii
`
`81
`
`81
`
`81
`83
`
`85
`
`86
`98
`
`129
`135
`161
`174
`175
`176
`178
`178
`191
`195
`
`197
`211
`215
`220
`221
`238
`239
`239
`240
`240
`
`15
`
`

`

`About the Authors
`
`Pablo Tapia Pablo is a Principal Engineer in the Network Strategy
`team of T-Mobile USA, where he has worked in several projects
`including new technology evaluation, support
`to regulatory and
`business teams and technology strategy planning. He has over nine
`years of experience in the wireless industry, mostly focused on RAN
`technology efficiency and application performance. He began his
`career in Nokia Networks R&D, developing advanced fe

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket