throbber
This article was downloaded by: 10.3.98.80
`On: 17 Oct 2022
`Access details: subscription number
`Publisher: CRC Press
`Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place, London SW1P 1WG, UK
`
`Handbook of Magnetic Measurements
`
`S. Tumanski
`
`Magnetic Materials
`
`Publication details
`https://www.routledgehandbooks.com/doi/10.1201/b10979-4
`S. Tumanski
`Published online on: 23 Jun 2011
`
`How to cite :- S. Tumanski. 23 Jun 2011, Magnetic Materials from: Handbook of Magnetic
`Measurements CRC Press
`Accessed on: 17 Oct 2022
`https://www.routledgehandbooks.com/doi/10.1201/b10979-4
`
`PLEASE SCROLL DOWN FOR DOCUMENT
`
`Full terms and conditions of use: https://www.routledgehandbooks.com/legal-notices/terms
`
`This Document PDF may be used for research, teaching and private study purposes. Any substantial or systematic reproductions,
`re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
`
`The publisher does not give any warranty express or implied or make any representation that the contents will be complete or
`accurate or up to date. The publisher shall not be liable for an loss, actions, claims, proceedings, demand or costs or damages
`whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
`
`Ex.1022 / IPR2022-00117 / Page 1 of 43
`APPLE INC. v. SCRAMOGE TECHNOLOGY, LTD.
`
`

`

`3 M
`
`agnetic Materials
`
`3.1 Soft Magnetic Materials:
`General Information
`3.1.1 Properties and Classification
`Commonly,. ferromagnetic. or. ferrimagnetic. materials.
`are. considered. as. magnetic. materials. although. other.
`materials.(diamagnetic.and.paramagnetic).also.exhibit.
`some.magnetic.properties,.as.discussed.earlier..The.mag-
`netic.materials.can.be.further.classified.into.two.clearly.
`separate. categories:. soft. magnetic. materials. and. hard.
`magnetic.materials..Coercivity.is.assumed.as.the.main.
`criterion,.and.IEC.Standard.404-1.recommends.the.coer-
`civity.of.1000.A/m.as.a.value.to.distinguish.both.groups..
`This.border.is.rather.symbolic.because.both.classes.are.
`completely.different..From.soft.magnetic.materials,.we.
`require.the.coercivity.to.be.as.small.as.possible.(usually.
`much.less.than.100.A/m).while.hard.magnetic.materials.
`should. have. coercivity. as. high. as. possible. (commonly.
`above. 100,000.A/m).. There. is. also. a. subclass. of. hard.
`magnetic. materials. called. semi-hard. magnetic. materi-
`als. (with. coercivity. between. 1,000. and. 100,000.A/m)..
`Figure  3.1. presents. magnetic. materials. taking. into.
`account. their. coercivity. available. Vacuumschemlze.
`who.is.one.of.the.main.manufacturers.
`Soft. magnetic. materials. cover. huge. market. of. vari-
`ous. products:. about. 7.×.106. tons. annually. and. about.
`1010. Euro. (Moses. 2003).. We. can. divide. these. products.
`taking.onto.account.their.magnetic.performance,.appli-
`cations,.cost,.and.other.properties..For.example,.grain-
`oriented.silicon.steel.is.mechanically.much.harder.than.
`the. nonoriented,. so. the. same. punching. die. will. wear.
`off.after.producing.smaller.quantity.of.elements..Even.
`in.the.case.of.SiFe.electrical.steel,.the.best.grade.can.be.
`10.times.more.expensive.than.ordinary.grades.of.steel..
`And.between.cheep.ferrites.and.high-quality.soft.mag-
`netic. materials,. these. differences. in. cost. can. be. much.
`larger.
`Therefore,.selection.of.appropriate.kind.and.quality.of.
`material.for.a.given.application.is.an.important.knowl-
`edge.. For. example,. the. best. quality. steel. after. prepa-
`ration. of. the. product. can. be. much. more. deteriorated.
`than. cheaper. material. that. after. the. same. technology.
`can. exhibit. better. performance. (Schneider. et. al.. 1998,.
`Schoppa.et.al..2000,.Wilczynski.et.al..2004)..Figure.3.2.
`
`presents.a.comparison.of.the.main.parameters.of.typical.
`soft.magnetic.materials.including.their.cost.
`It.would.be.nice.to.be.able.to.find.the.soft.magnetic.
`material.with.all.excellent.properties.(high.saturation.
`polarization,.small.losses,.small.coercivity,.small.mag-
`netostriction,.good.mechanical.properties,.etc.).even.at.
`much.higher.price..But.such.material.simply.does.not.
`exist..We.have.to.accept.always.some.compromises—
`high.permeability.at.the.cost.of.saturation.polarization.
`(Figure.3.3),.small.power.loss.at.the.cost.of.saturation.
`polarization,. better. magnetic. parameters. at. the. cost.
`of. mechanical. properties,. etc.. Fortunately,. there. is. a.
`plethora. of. various. magnetic. materials. and. appro-
`priate. technology. often. helps. to. find. desirable. mate-
`rial.(Fish.1990,.Moses.1990,.1992,.2003,.Pfützner.1992,.
`Arai. and. Ishiyama. 1994,. McCurrie. 1994,. Kronmüller.
`1995,.Stodolny.1995,.Fiorillo.1996,.Schneider.et.al..1998,.
`Goldman. 1999,. O’Handley. 2000,. Beckley. 2000,. 2002,.
`Geoffroy. and. Porteseil. 2005,. Peuzin. 2005,. Degauque.
`et. al.. 2006,. De. Wulf. 2006,. Lebourgeois. and. Guyot.
`2006,. Waecklerle. 2006,. Waeckerle. and. Alves. 2006a,b,.
`Kazimierczuk.2009).
`Taking. into. account. the. main. applications. of. soft.
`magnetic.materials,.it.should.be.noted.that.this.situation.
`continues. to. change. and. develop.. For. example,. it. was.
`traditionally.assumed.that.the.main.area.of.application.
`of. silicon. steel. is. electric. power. industry.. But. recently,.
`more. and. more. power. electric. and. power. electronics.
`devices. use. higher. frequency. signals,. up. to. MHz.. In.
`high. frequency. range,. electrical. steel. exhibits. prohibi-
`tively. high. power. loss. and. should. be. substituted. by.
`nanocrystalline.and.even.ferrite.materials.(Figure 3.4)..
`Consequently,. in. such. applications,. other. accompa-
`nying. devices,. for. example,. measuring. transformers,.
`should.be.also.made.from.high-frequency.materials..In.
`turn,.the.progress.in.nanocrystalline/amorphous.mate-
`rials.resulted.in.development.of.new.classical.electrical.
`steel.(e.g.,.thinner.gauge.of.even.0.15.mm).
`Taking.into.account.the.importance.of.various.groups.
`of. soft. magnetic. materials,. it. should. be. noted. that.
`almost.80%.of.the.market.is.occupied.by.SiFe.electrical.
`steel.(Figure.3.5)..With.ferrites.and.permalloys.(NIFe),.it.
`is.more.than.95%.and.we.can.see.that.other.materials,.
`including.amorphous.and.nanocrystalline.are.marginal.
`in.value.
`
`117
`
`Downloaded By: 10.3.98.80 At: 11:32 17 Oct 2022; For: 9781439829523, chapter3, 10.1201/b10979-4
`
`Ex.1022 / IPR2022-00117 / Page 2 of 43
`APPLE INC. v. SCRAMOGE TECHNOLOGY, LTD.
`
`

`

`CoFeV
`
`FeCrCo
`
`CoFeNi
`
`CrCo steel
`
`Soft
`
`CoFe
`
`Fe, SiFe
`
`NiFe
`
`Nanocrystalline
`
`Amorphous
`
`118
`
`2.5
`
`2.0
`
`1.5
`
`1.0
`
`0.5
`
`Saturation polarization (T)
`
`Handbook of Magnetic Measurements
`
`Semi hard
`
`Hard
`
`CoFe
`
`SiFe
`
`Fe-based
`amorphous
`
`Nano
`
`MnZn ferrite
`
`NiFe
`
`Co-based
`amorphous
`
`2
`
`1
`
`Saturation (T)
`
`103
`
`104
`
`Permeability
`
`105
`
`FIGURE 3.3
`Comparison. of. the. permeability. and. coercivity. of. the. typical. soft.
`magnetic.materials..(After.Moses,.A.J.,.Przegl. Elektr.,.79,.457,.2003.)
`
`60% NiFe
`
`MnZn ferrite
`
`Amorphous CoSiB
`
`Nanocrystalline
`
`f (kHz)
`100
`
`50
`
`100
`
`10
`
`1
`
`Hysteresis loss (W/kg)
`
`0.1
`10
`
`20
`
`FIGURE 3.4
`Hysteresis.power.loss.versus.frequency.of.high-frequency.materials..
`(From.Kolano,.R..and.Kolano-Burian,.A.,.Przegl. Elektr.,.78,.241,.2002.)
`
`If. a. material. is. used. for. magnetic. shielding,. then. its.
`losses.are.not.as.important.as.the.permeability,.and.hence.
`amorphous. materials. or. permalloy. is. advisable.. In. the.
`case.of.high-frequency.applications,.apart.from.the.losses,.
`deterioration. of. magnetic. properties. (e.g.,. permeability).
`with.frequency.is.important,.so.from.Table.3.1.we.can.see.
`that,.in.this.case,.the.materials.would.be.ordered.as.fol-
`lows:.SiFe,.NiFe,.amorphous/nanocrystalline,.MnZn.fer-
`rite,.NiZn.ferrite.(and.in.microwave.range,.garnets).
`Especially. important. are. the. CoFe. alloys. because.
`they.exhibit.high.saturation.polarization.with.the.high-
`est.known.value.of.2.46.T..Table.3.2.presents.the.typical.
`applications.of.soft.magnetic.materials.
`Figure.3.6.presents.a.diversity.of.soft.magnetic.mate-
`rials. currently. available. commercially.. The. properties.
`of. such. materials. will. discussed. in. more. detail. in. the.
`.following.sections.
`
`3.1.2 Pure Iron
`Pure. iron. has. excellent. magnetic. properties:. large.
`.saturation. polarization.
`low.
`coercivity.
`JS.=.2.15.T,.
`
`NdFeB
`
`SmCo
`AlNiCo
`
`NiFe 80 Ni
`
`Soft ferrites
`
`PtCo
`
`1
`
`10
`
`100
`1k
`10 k
`Coercivity (A/m)
`
`100 k 1000 k
`
`FIGURE 3.1
`Ranges.of.commercially.available.magnetic.materials.(as.an.example.
`of.products.offered.by.Vacuumschmelze).
`
`SiFe
`
`Iron
`
`Cost
`
`Amorphous
`and nano
`
`NiFe
`
`Soft ferrites
`
`2
`
`1.5
`
`1
`
`0.5
`
`Saturation (T)
`
`1
`
`10
`
`Coercivity (A/m)
`100
`
`FIGURE 3.2
`Comparison.of.the.coercivity,.saturation,.and.cost.of.typical.soft.mag-
`netic.materials.
`
`Depending. on. application,. various. properties. are.
`required.. In. the. case. of. electric. power. devices. (power.
`and. distribution. transformers,. electric. machines),. the.
`most. important. factors. are. low. power. loss. and. high.
`saturation. polarization.. If. we. would. like. to. choose.
`only. between. silicon. steel. and. amorphous. materials.
`(neglecting.other.factors),.we.arrive.at.a.contradiction—.
`amorphous. materials. exhibit. smaller. power. loss. but.
`also. significantly. smaller. saturation. polarization. and.
`vice.versa..Table.3.1.presents.the.comparison.of.param-
`eters.for.the.main.soft.magnetic.materials.
`
`Downloaded By: 10.3.98.80 At: 11:32 17 Oct 2022; For: 9781439829523, chapter3, 10.1201/b10979-4
`
`Ex.1022 / IPR2022-00117 / Page 3 of 43
`APPLE INC. v. SCRAMOGE TECHNOLOGY, LTD.
`
`

`

`Magnetic Materials
`
`119
`
`NO SiFe
`53%
`
`GO SiFe
`30%
`
`Rest
`17%
`
`Ferrites
`7.5%
`
`NiFe
`5%
`
`Other
`0.5%
`
`Amorph
`1.5%
`Powder
`2.5%
`
`FIGURE 3.5
`Annual.value.of.world.production.of.soft.magnetic.materials..(After.Schneider,.J..et.al.,.J. Phys.,.8,.Pr2-755,.1998.)
`
`TABLE 3.1
`Comparison.of.Parameters.for.the.Main.Soft.Magnetic.Materials
`
`Parameter
`Bs.(T)
`Hc.(A/m)
`P1.5.T/50.Hz.(W/kg)
`P1.T/1.kHz.(W/kg)
`μmax.×.1000
`Frequency.range.(kHz)
`
`3% SiFe GO
`2.03
`4–15
`0.83
`20
`20–80
`3
`
`FeSiB Metglas
`1.56
`0.5–2
`0.27
`5
`100–500
`250
`
`Ni80Fe20 Permalloy
`0.82
`0.4–2
`
`10
`100–1,000
`20
`
`Co50Fe50 Permendur
`2.46
`160
`1
`20
`2–6
`up.to.1.kHz
`
`MnZn Ferrite
`0.2–0.5
`20–80
`
`3–6
`2,000.NiZn—100,000
`
`TABLE 3.2
`Typical.Applications.of.the.Main.Soft.Magnetic.Materials
`
`Electrical
`Steel
`
`Fe-Based
`Amorphous
`
`Powder
`
`CoFe
`
`Ferrite
`
`Application
`Power.transformers
`Distribution.transformers
`Lamp.ballasts
`Induction.motors
`Generators
`Reactors
`Other.motors
`Special.transformers
`Chokes
`Power.electronics
`Instrumentation
`Pulsed.power
`Shielding
`
`Source:. After.Moses,.A.J.,.Przegl. Elektr.,.80,.1181,.2004..With.permission.
`
`Hc.=.3–12.A/m,. and. high. permeability. μmax.=.280,000.
`.(single. crystal. magnetically. annealed. even. up. to.
`1,400,000).. But. the. main. problem. is. that. such. per-
`formance. is. displayed. only. by. pure. iron:. even. small.
`quantities. of. impurities. cause. significant. deterioration.
`of. magnetic. properties. (Figure. 3.7).. In. practice,. such.
`extremely. pure. material. is. expensive. and. possible. to.
`use.only.in.laboratory.
`Commercially. available. pure. iron. has. much. smaller.
`permeability. μmax.=.10,000–20,000. and. larger. coercivity.
`
`Hc.=.20–100.A/m.because.impurities.such.as.C,.Mn,.P,.S,.
`N,.and.O.impede.the.domain.wall.motion..By.annealing.
`such.material.in.hydrogen.at.1200°C–1500°C,.it.is.possi-
`ble.to.remove.most.of.these.impurities.but.such.process.
`is.also.quite.expensive.
`Pure.iron.has.low.resistivity.ρ.=.10.μΩ.cm.(in.compari-
`son.with.45.μΩ.cm.of.GO.SiFe.and.140.μΩ.cm.of.amor-
`phous. material).. Such. good. conductivity. causes. large.
`eddy. current. loss. and. practically. precludes. pure. iron.
`from.AC.application.
`
`Downloaded By: 10.3.98.80 At: 11:32 17 Oct 2022; For: 9781439829523, chapter3, 10.1201/b10979-4
`
`Ex.1022 / IPR2022-00117 / Page 4 of 43
`APPLE INC. v. SCRAMOGE TECHNOLOGY, LTD.
`
`

`

`120
`
`Handbook of Magnetic Measurements
`
`Price (Euro/kg)
`
`Amorphous (Co)
`
`Nano
`
`FeNiMo
`
`Amorphous (Fe)
`
`FeNi
`
`FeSi-HiB
`FeSi-GO
`
`FeNiCr
`
`Co90Fe
`
`Co50Fe
`
`Fe-Co
`Fe, FeSi6
`FeCr
`
`FeSi-NO
`
`Fe-C
`
`1
`
`10
`
`100
`
`Hc (A/m)
`
`1000
`
`100
`
`10
`
`1
`
`0.1
`0.1
`
`FIGURE 3.6
`Diversity.of.soft.magnetic.materials..(After.Waecklerle,.T.,.Materiaux.magnetiques.doux.speciaux.et.applications,.in.Materiaux magnetiques en
`genie electrique I,.Kedous-Lebouc,.A..(Ed.),.Lavoisier,.Chapter.3,.pp..153–223,.2006.)
`
`B (T)
`
`1.5
`
`1
`
`0.5
`
`Fe 99.99%
`
`Fe 99.9%
`
`Fe (0.1% C)
`
`100
`
`200
`
`300
`
`400
`
`H (A/m)
`
`FIGURE 3.7
`Magnetization. curves. of. iron.. (After. McCurrie,. R.A.,. Ferromagnetic
`Materials,.Academic.Press,.London,.U.K.,.1994.)
`
`Both. problems—expensive. manufacturing. and. lim-
`ited. frequency. application—can. be. solved. if. we. use.
`the.same.material.in.form.of.a.powder.iron..This.mate-
`rial.is.manufactured.by.grinding.iron.(or.iron.alloys*).
`into.powder.with.dimension.of.particles.5–200.μm.and.
`next.by.pressing.this.powder.with.insulating.material..
`Resistivity.of.such.material.is.of.the.order.of.ρ.=.104.μΩ.
`cm.and.therefore.it.can.be.used.in.high-frequency.range.
`to.100.kHz.(specially.prepared.NiFe.powder.to.100.MHz).
`(Kazimierczuk.2009).
`Instead. of. cheap. pressing,. most. often. sintering.
`.technology. is. used,. which. results. in. better. magnetic.
`performances.of.the.powder.materials.(Table.3.3).
`As.a.material.for.powder.iron.cores,.most.commonly,.
`carbonyl. iron. is. used.. Technology. of. obtaining. extra.
`pure. iron. powder. from. iron. pentacarbonyl,. Fe(CO)5,.
`was.developed.in.1925.by.BASF.Company..By.thermal.
`
`decomposition. of. iron. pentacarbonyl,. it. is. possible. to.
`produce. 99.8%. pure. iron. powder. with. spherical. parti-
`cles.ranging.from.1.to.8.μm.
`Although. the. presence. of. carbon. significantly. dete-
`riorate. magnetic. properties. of. iron. (Figures. 3.6. and.
`3.7),.low-carbon.steel.is.widely.used.as.magnetic.mate-
`rial. mainly. due. to. its. low. price. (Figure. 3.6). and. good.
`mechanical. properties.. As. “low-carbon”. steel. it. is.
`assumed. the. material. with. following:. C,. 0.04%–0.06%;.
`P,.0.05%–0.15%;.Mn,.0.35%–0.8%;.S,.0.006%–0.025%;.and.
`Si,. 0.05%–0.25%.. Although. the. magnetic. properties.
`of. low-carbon. electrical. steel. are. rather. poor,. they. are.
`acceptable. for. many. cheap. devices,. like. small. motors,.
`relays,. or. electromechanical. mechanisms.. Figure. 3.9.
`presents.the.part.of.phase.diagram.of.Fe-C.alloys.
`Iron.exists.in.two.allotropic.forms:.α-Fe.(ferrite.Fe-C).
`ferromagnetic. body-centered. cubic. and. γ-Fe. (austenite.
`Fe-C). paramagnetic. face-centered. cubic.. Above. 0.008%.
`of. C. in. ferrite. appears. as. impurity. cementite. (iron. car-
`bide,.Fe3C).that.above.210°C.is.nonmagnetic..Transition.
`between.α-Fe.and.γ-Fe.is.at.910°C,†.but.also.ferrite.is.para-
`magnetic.above.Curie.temperature.768°C.
`
`TABLE 3.3
`DC.Magnetic.Properties.of.Powder.
`Material
`
`B.at.8000.A/m
`Br.from.8000.A/m
`Hc.from.8000.A/m
`μmax
`Source:. Bularzik,.J.H..et.al.,.J. Phys.,.8,.Pr2-747,.
`1998.
`
`Sintered
`1.75.T
`0.93.T
`80.A/m
`7000
`
`Pressed
`1.65.T
`0.34.T
`192.A/m
`800
`
`*. In.powder.materials.also.other.substances,.like.NiFe.or.Sendust.are.
`used.
`
`†. Above.1538°C.iron.again.is.ferromagnetic.in.body-centered.cubic.
`structure.known.as.δ-Fe.
`
`Downloaded By: 10.3.98.80 At: 11:32 17 Oct 2022; For: 9781439829523, chapter3, 10.1201/b10979-4
`
`Ex.1022 / IPR2022-00117 / Page 5 of 43
`APPLE INC. v. SCRAMOGE TECHNOLOGY, LTD.
`
`

`

`Magnetic Materials
`
`121
`
`addition.of.Si.and.Goss.texture..The.first.invention.was.
`proposed.by.Robert.Hadfield.in.1902.(Barret.et.al..1902).
`and.patented.in.1903.(Hadfield.1903)..The.second.inven-
`tion.was.patented.by.Norman.Goss.in.1934.(Goss.1934).
`and.described.in.1935.(Goss.1935).
`As.discussed.earlier,.one.of.the.most.important.draw-
`backs. of. pure. iron. is. its. relatively. low. resistivity. and.
`hence.large.eddy.current.loss..Figure.3.10.presents.the.
`resistivity.of.different.iron.alloys..We.can.see.that.good.
`candidates. for. resistivity. improvement. are. silicon. and.
`aluminum.. Addition. of. silicon. influences. also. satura-
`tion.polarization.and.Curie.temperature.(both.of.which.
`decrease.with.silicon.content;.see.Figure.3.11).
`From.Figure.3.11,.the.best.would.be.6.5%.content.of.Si.
`because. resistivity. increases. almost. sevenfold. and. the.
`material. is. non-magnetostrictive.. Unfortunately,. this.
`material. is. very. hard. and. brittle,. what. is. disadvanta-
`geous.in.rolling.process.as.well.as.in.punching.the.final.
`product..In.practice,.punching.can.be.carried.out.only.
`for. the. steel. with. up. to. 3%–4%. silicon. content.. Large.
`content.of.Si.causes.also.decrease.of.saturation.polariza-
`tion.as.well.as.the.permeability..Therefore,.the.GO.sili-
`con.steel.is.manufactured.mostly.often.with.2.7%–3.3%.
`of.silicon.although.also.6.5%.SiFe.is.offered.in.the.mar-
`ket.(in.small.volume.and.for.higher.price).
`Figure.3.12.presents.part.of.a.phase.diagram.of.iron–
`silicon..The.transition.between.α-Fe.and.γ-Fe.is.at.911°C..
`For.silicon.content.higher.than.1.86%,.this.transition.no.
`longer.takes.place.and.it.is.possible.to.anneal.the.mate-
`rial.to.high.temperatures.for.removal.of.parasitic.impu-
`rities..The.most.unwanted.components.in.SiFe.steel.are.
`carbon,.oxide,.sulfur,.and.nitrogen.because.even.small.
`amounts. of. this. element. cause. increase. of. hysteresis.
`loss..Therefore,.the.starting.material.should.be.as.pure.
`as. possible. and. after. manufacturing,. the. content. of.
`these.elements.can.be.smaller.than.10.ppm.
`Figure.3.13.presents.typical.route.of.production.of.GO.
`SiFe..The.Goss.invention.is.a.method.of.developing.of.a.
`grain.texture..By.suitable.combination.of.annealing.and.
`
`Low-carbon steel
`
`FeSi NO
`
`Pressed iron
`
`0.4
`
`0.2
`
`Power loss per cycle (W/kg/Hz)
`
`200
`
`400
`
`f (Hz)
`
`FIGURE 3.8
`Losses. of. various. iron-based. materials.. (After. Bularzik,. J.H.. et. al.,.
`J. Phys.,.8,.Pr2-747,.1998.)
`
`alloys.
`are. Fe-Co-based.
`important.
`Especially.
`Fe50Co50 (known.as.Permendur).that.exhibit.the.larg-
`est. possible. saturation. polarization. JS.=.2.46.T. and.
`very. high. Curie. temperature. (Tc.=.930°C).. To. improve.
`mechanical.properties.of.FeCo.alloy.(and.increase.resis-
`tivity.ρ.=.40.μΩ.cm),.a.small.part.of.vanadium.is.added:.
`Fe49Co49V2.. The. alloy. Fe6Co94. has. very. high. Curie.
`temperature. (Tc.=.950°C). (pure. cobalt. has. Tc.=.1130°C)..
`Table.3.4..collects.magnetic.properties.of.iron.and.some.
`of.its.alloys.
`
`3.2 Silicon Iron Electrical Steel
`3.2.1 Conventional Grain-Oriented SiFe Steel
`As.presented.in.Figure.2.25,.two.inventions.were.ground.
`breaking.in.history.of.improvement.of.electrical.steels:.
`
`Temperature
`
`α + γ
`
`α – Fe
`α + Fe3C
`
`910
`Tc =768
`723
`
`Tc= 210
`
`0.008
`0.025
`
`FIGURE 3.9
`Iron–carbon.phase.diagram.
`
`γ – Fe
`
`γ + Fe3C
`
`α + Fe3C + Pearlite
`
`0.83
`
`Fe3C + Pearlite
`
`%C
`
`Downloaded By: 10.3.98.80 At: 11:32 17 Oct 2022; For: 9781439829523, chapter3, 10.1201/b10979-4
`
`Ex.1022 / IPR2022-00117 / Page 6 of 43
`APPLE INC. v. SCRAMOGE TECHNOLOGY, LTD.
`
`

`

`122
`
`Handbook of Magnetic Measurements
`
`1392
`
`γ – Fe, FCC
`
`1.56
`
`1.86
`
`α + γ
`
`911
`768
`
`α – Fe, BCC
`
`Tc
`
`1.0
`
`2.0
`
`%Si
`
`1400
`
`1200
`
`1000
`
`800
`
`Temperature (°C)
`
`FIGURE 3.12
`Iron–silicon.phase.diagram.
`
`direction. (Figure. 2.14).. Therefore,. the. main. effort. is.
`made. to. obtain. the. best. Goss. texture. with. relatively.
`large.grains.ordered.in.one.direction..Figure.3.15.pres-
`ents. dependence. of. flux. density. and. loss. on. the. tilt.
`angle.. Surprisingly,. the. minimum. of. the. loss. occurs.
`when.the.grain.are.slightly.misoriented.from.the.per-
`fect. .direction.. The. best. results. are. obtained. for. the.
`grain.orientation.of.about.2°.
`The.data.from.Figure.3.15.can.be.partially.explained.
`by.results.of.domain.investigations.presented.in.Figures.
`3.16. and. 3.17.. Perfectly. oriented. grains. (0°). have. wider.
`spacing.of.the.180°.domain.walls.than.for.a.tilt.angle.2°..
`This.domain.width.strongly.influences.excess.loss.(see.
`Figure. 2.118).. The. domain. wall. spacing. can. be. signifi-
`cantly.decreased.by.applying.a.stress,.which.is.one.of.
`the.methods.known.as.a.domain.refinement.
`After.the.first.annealing.in.production.process.(Figure.
`3.13),. the. grain. dimensions. are. only. around. 0.02.mm..
`After. second. annealing. (secondary. recrystallization),.
`the.Goss-oriented.grains.grow.through.the.thickness.of.
`the.sheet.to.diameter.3–7.mm.with.average.misorienta-
`tion.of.around.6°.
`Theoretically,.as.larger.grains.as.better,.but.measure-
`ments.of.loss.versus.grain.dimensions.did.not.confirm.
`such. a. simple. relationship.. Indeed. domain. observa-
`tions. confirm. that. large. grains. have. a. wide. domain.
`spacing. (Beckley. 2000).. This. is. why. usually. grain.
`diameter. in. conventional. GO. steel. does. not. exceed.
`about.8.mm.
`Excellent.properties.along.rolling.direction.are.advan-
`tageous.when.we.can.guarantee.that.magnetization.is.
`applied. only. in. this. direction.. But. this. advantage. can.
`be.a.problem.when.a.part.is.magnetized.not.exactly.in.
`the. rolling. direction. (e.g.,. corners. of. a. square. core).. In.
`such.a.case,.we.have.to.expect.significant.deterioration.
`of. the. material. performance.. Figure. 3.18. presents. the.
`
`TABLE 3.4
`Performances.of.Iron.and.Iron-Alloy.Materials
`μmax ×1000
`J1 (T)
`Hc (A/m)
`2.15
`230
`4
`2.15
`4–20
`20–100
`2.15
`20
`6
`2.4
`3
`200
`Power.loss.5.5–10.W/kg.at.1.5.T,.
`50.Hz
`
`99.95.Iron
`Iron.(commercially)
`Carbonyl.(powder)
`CoFe2%V.(Permendur)
`Low-carbon.steel.C,.
`0.04%–0.06%
`
`Silicon
`
`Aluminum
`
`M anganese
`
`C o p per
`N i
`
`l
`
`e
`
`k
`
`c
`
`Cobalt
`
`0.5
`
`1.0
`Percent of element in iron
`
`1.5
`
`20
`
`15
`
`10
`
`Resistivity (mW cm)
`
`FIGURE 3.10
`Resistivity.of.different.iron.alloys.
`
`Js (T)
`
`Resistivity (µΩ cm)
`
`2.2
`
`2.0
`
`1.8
`
`60
`
`40
`
`20
`
`Saturation polarization
`Curie temperature
`R esistivity
`
`Magnetostriction
`
`2
`
`4
`
`6
`
`% Si
`
`800
`
`750
`
`700
`
`Tc (°C)
`
`20×10–8
`
`λs
`
`0
`
`FIGURE 3.11
`Magnetic.and.electrical.parameters.as.a.function.of.silicon.content.
`
`cold.rolling,.the.grains.having.[001].direction.in.the.roll-
`ing.direction.and.(110).plane.close.to.the.sheet.plane.are.
`privileged.to.grow..In.the.meantime,.the.inhibitor.man-
`ganese. sulfide. (MnS). suppresses. the. growth. of. other.
`grains..Figure.3.14.presents.the.example.of.grain.struc-
`ture.of.GO.electrical.steel.
`In. a. grain-oriented. steel,. we. profit. from. its. aniso-
`tropic. properties. of. the. fact. that. the. iron. crystal.
`have. the. best. magnetic. properties. in. “easy”. [100].
`
`Downloaded By: 10.3.98.80 At: 11:32 17 Oct 2022; For: 9781439829523, chapter3, 10.1201/b10979-4
`
`Ex.1022 / IPR2022-00117 / Page 7 of 43
`APPLE INC. v. SCRAMOGE TECHNOLOGY, LTD.
`
`

`

`Magnetic Materials
`
`123
`
`Hot rolled 3.2% SiFe, 2–2.5 mm thick, small amount of MnS
`
`Pickled to remove surface oxides, side trim
`
`Cold roll to thickness around 0.6 mm
`
`Annealing at about 950°C to recrystalize and soften material
`
`Cold roll to final thickness around 0.23–0.3 mm
`
`Anneal/decarburize at about 840°C in wet hydrogen, coat with magnesium oxide
`
`24 h box annealing at about 1200°C in dry hydrogen for secondary
`recrystallization and remove sulfur, nitrogen, and oxygen
`
`Annealing at 800°C for flattening, remove excess MgO, and final coating
`
`Domain rafinement, coil up, and side trim
`
`FIGURE 3.13
`Production.route.of.grain-oriented.silicon.iron..(From.Moses,.A.J.,.IEE Proc.,.137,.233,.1990.)
`
`power. loss. at. 1.5.T. notexceeding. 0.97.W/kg.*. Table  3.5.
`presents.examples.of.GO.electrical.steel.according.to.EN.
`Standard.10107.
`Figure.3.19.presents.parameters.of.a.typical.GO.SiFe.
`steel.grade.M089–27N.and.Table.3.6.presents.an.exam-
`ple.of.the.measured.results.for.a.similar.steel.sample.(as.
`measured.by.Epstein.method).
`
`3.2.2 HiB Grain-Oriented Electrical Steel
`The. conventional. GO. SiFe. steel. has. Goss. texture. [001].
`(110). with. grain. orientation. dispersion. (tilt. angle). of.
`about.6°..In.1965,.Nippon.Steel.Corporation.developed.
`new. technology. for. production. of. improved. GO. SiFe.
`steel. (Taguchi. and. Sakakura. 1964,. 1969,. Yamamoto. et.
`al.. 1972).. After. addition. of. around. 0.025%. aluminum.
`to. the. starting. melt,. the. recrystallization. process. was.
`
`*. Unfortunately. different. countries. often. use. different. standards:.
`ASTM. A876M. (American. Society. for. Testing. and. Materials),.
`JIS. C2553. (Japanese. Industrial. Standard),. AISI. classification.
`(American. Iron. and. Steel. Institute),. IEC. 60404-8-7. (International.
`Electrotechnical. Commission).. But. all. standards. of. classifica-
`tion. use. the. same. parameters:. power. loss,. thickness,. and. type.
`of. material.. For. example,. Japanese Standard. classify. GO. steel. as:.
`Z,. normal;. ZH,. HiB. steel;. ZDKH,. with. laser. domain. refinement..
`For. example,. 30ZH100. means. HiB. steel. of. thickness. 0.3.mm. and.
`power. loss. at. 1.7.T/50.Hz. not. exceeding. 1.W/kg.. According. to.
`American. Standard. 30P154M. means. steel. of. thickness. 0.3.mm.
`and.power.loss.at.1.7.T./60.Hz.not.exceeding.1.54.W/kg.(or.accord-
`ing.to.Standard.ASTM.A876.it.is.equivalent.to.30P070.what.means.
`thickness.0.3.mm.and.power.loss.1.7.T/60.Hz.not.exceeding.0.7.W/
`lb)..Moreover,.there.are.many.different.Company.names,.as.ORSI.
`(Thyssen),.ORIENTCORE.(Nippon.Steel),.etc..which.can.use.their.
`own.classification.
`
`FIGURE 3.14
`The.example.of.typical.grain.structure.of.GO.steel:.in.the.left.part,.an.
`incompletely.recrystallized.line.is.visible.
`
`magnetization.curve.and.losses.determined.for.various.
`directions.of.magnetization.(Tumanski.2002).
`Electrical.GO.steel.is.classified.according.to.interna-
`tional. standards. based. on. the. power. loss.. European.
`standard.EN.10107.uses.the.following.nomenclature.for.
`the.steel.grades:
`
`a..First.letter.M.for.electrical.steel.
`.
`. b..Three.digits.after.the.first.letter.denote.value.of.
`specific.loss.measured.at.1.5.or.1.7.T.
`c..Two.further.digits.represent.the.thickness.
`.
`. d..Last.letter.describes.type.of.material:.N,.normal.
`(loss.measured.at.1.5.T),.S,.reduced.loss.(loss.at.
`1.7.T);.P,.high.permeability.(loss.at.1.7.T).
`
`For.example,.M097-30N.means.electrical.steel.(M).of.nor-
`mal.grade.(N).with.material.thickness.0.3.mm.(30).and.
`
`Downloaded By: 10.3.98.80 At: 11:32 17 Oct 2022; For: 9781439829523, chapter3, 10.1201/b10979-4
`
`Ex.1022 / IPR2022-00117 / Page 8 of 43
`APPLE INC. v. SCRAMOGE TECHNOLOGY, LTD.
`
`

`

`124
`
`Handbook of Magnetic Measurements
`
`2.0
`
`1.8
`
`1.6
`
`B800 (T)
`
`P(1.7/50) (W/kg)
`
`1.4
`
`1.2
`
`1.0
`
`Tilt angle
`
`5
`
`10
`
`15
`
`2
`
`4
`
`Tilt angle
`6
`
`FIGURE 3.15
`Flux.density.and.core.loss.versus.the.tilt.angle..(After.Littmann,.M.F.,.J. Appl. Phys.,.38,.1104,.1967;.Littmann,.M.F.,.IEEE Trans. Magn.,.7,.48,.1971;.
`Littman,.M.F.,.J. Magn. Magn. Mater.,.26,.1,.1982;.Nozawa,.T..et.al.,.IEEE Trans. Magn.,.14,.252,.1978.)
`
`enhanced.due.to.aluminum.nitride.AlN.acting.as.inhib-
`itor.. The. production. route. was. simplified;. hot. rolled.
`material.was.initially.annealed.at.1100°C.in.N2.and.in.
`one.cycle.cold.rolled.to.final.thickness..After.that.con-
`ventional. procedure. was. performed,. decarburization,.
`batch.annealing.for.recrystallization.at.1200°C,.and.final.
`annealing.at.800°C.are.carried.out.
`As.a.result,.a.new.class.of.material.with.more.perfect.
`texture.was.obtained:.a.tilt.angle.was.on.average.2°–3°.
`and.grain.dimensions.exceeding.10.mm..This.material.
`
`Bmax (T)
`
`0°
`
`5°15°
`
`30°
`
`45°
`
`55°
`
`90°
`
`200
`
`400
`
`600
`
`M089-27 N
`800
`Hmax (A/m)
`
`P (W/kg)
`
`90°
`
`55°
`
`30°
`
`15°
`
`0°
`
`1.5
`
`1.0
`
`0.5
`
`1.5
`
`1.0
`
`0.5
`
`σ = 1.5 kg/mm2
`
`0.8
`
`0.6
`
`0.4
`
`0.2
`
`Average domain wall spacing (mm)
`
`2
`
`4
`Tilt angle
`
`FIGURE 3.16
`Dependence.of.average.domain.wall.spacing.on.the.tilt.angle..(After.
`Nozawa,.T..et.al.,.IEEE Trans. Magn.,.14,.252,.1978.)
`
`θ = 0°, 2L/d = 5.7
`
`θ = 0°, σ = 13.8 MPa, 2L/d = 3.1
`
`θ = 2°, 2L/d = 1.6
`
`θ = 2°, σ = 13.8 MPa, 2L/d = 0.6
`
`FIGURE 3.17
`Domain.structure.of.3%.FeSi.crystals.(θ,.tilt.angle;.2 L,.domain.wall.
`spacing;.d,.thickness)..(After.Shilling,.J.W..et.al.,.IEEE Trans. Magn.,.14,.
`104,.1978;.1978a.)
`
`0.5
`
`1.0
`
`M089-27 N
`Bmax (T)
`
`1.5
`
`FIGURE 3.18
`Properties.of.the.GO.SiFe.steel.in.different.directions.of.magnetiza-
`tion.(with.respect.to.the.rolling.direction)..(From.Tumanski,.S.,.2002.)
`
`Downloaded By: 10.3.98.80 At: 11:32 17 Oct 2022; For: 9781439829523, chapter3, 10.1201/b10979-4
`
`Ex.1022 / IPR2022-00117 / Page 9 of 43
`APPLE INC. v. SCRAMOGE TECHNOLOGY, LTD.
`
`

`

`Magnetic Materials
`
`125
`
`TABLE 3.5
`Classification.of.Electrical.Steel.according.to.Standard.EN.
`10107
`
`TABLE 3.6
`Example.of.the.Measured.Results.for.a.Typical.GO.SiFe.
`Steel—Grade:.M089-27N
`
`Thickness
`(mm)
`
`Loss at
`1.5 T, 50 Hz
`(W/kg)
`
`Loss at
`1.7 T, 50 Hz
`(W/kg)
`
`Polarization
`for 800 A/m
`(T)
`
`Name
`
`Normal material
`M080-23N
`M089-27N
`M097-30N
`M111-35N
`
`0.23
`0.27
`0.30
`0.35
`
`Material with reduced loss
`M120-23S
`0.23
`M130-27S
`0.27
`M140-30S
`0.30
`M150-35S
`0.35
`
`0.80
`0.89
`0.97
`1.11
`
`0.77
`0.85
`0.92
`1.05
`
`Material with high permeability (HiB)
`M100-23P
`0.23
`M103-27P
`0.27
`M105-30P
`0.30
`M111-30P
`0.30
`M117-30P
`0.30
`
`1.27
`1.40
`1.50
`1.65
`
`1.20
`1.30
`1.40
`1.50
`
`1.00
`1.03
`1.05
`1.11
`1.17
`
`1.75
`1.75
`1.75
`1.75
`
`1.78
`1.78
`1.78
`1.78
`
`1.85
`1.88
`1.88
`1.88
`1.85
`
`Jmax (T)
`0.1
`0.2
`0.3
`0.4
`0.5
`0.6
`0.7
`0.8
`0.9
`1.0
`1.1
`1.2
`1.3
`1.4
`1.5
`1.6
`1.7
`1.8
`1.9
`
`Br (T)
`0.048
`0.136
`0.189
`0.262
`0.343
`0.433
`0.530
`0.629
`0.735
`0.846
`0.959
`1.076
`1.180
`1.302
`1.407
`1.511
`1.620
`1.685
`1.726
`
`Hmax (A/m)
`4.2
`6.7
`8.9
`10.7
`12.4
`14.1
`15.6
`17.0
`18.4
`19.6
`21.3
`23.0
`25.8
`31.1
`40.4
`62.0
`132.8
`455.8
`1767.3
`
`Hc (A/m)
`2
`4
`6
`8
`9
`11
`12
`13
`15
`16
`17
`18
`19
`20
`21
`22
`24
`27
`33
`
`1.0
`
`10
`
`P (W/kg)
`
`10°
`

`18,800
`23,600
`26,700
`29,500
`31,900
`33,700
`35,700
`37,400
`38,900
`40,500
`41,000
`41,400
`40,000
`35,800
`29,500
`20,500
`10,200
`3,100
`900
`
`P (W/kg)
`
`0.016
`0.034
`0.060
`0.091
`0.129
`0.174
`0.224
`0.281
`0.345
`0.417
`0.495
`0.582
`0.684
`0.802
`0.952
`1.189
`1.590
`2.026
`
`10°
`
`0.1
`J (T)
`
`M089-27 N
`
`P
`
`1.5
`
`1.0
`
`0.5
`1.0
`

`
`50,000
`
`25,000
`
`J
`

`
`10
`
`100
`
`H (A/m)
`
`Conventional SiFe steel
`
`HiB SiFe steel
`
`FIGURE 3.20
`Pole.figures.for.the.(100).plane..(From.Yamamoto,.T..et.al.,.IEEE Trans.
`Magn.,.8,.677,.1972.)
`
`FIGURE 3.19
`Parameters.of.the.typical.GO.SiFe.steel-grade:.M089-27N.
`
`exhibits. significantly. lower. losses. at. higher. polariza-
`tion. (above. 1.7.T),. which. in. turn. could. be. achieved. at.
`significantly.lower.magnetic.field.strength..This.steel.is.
`known.as.high-permeability.material.(HiB)..Figure.3.20.
`presents.comparison.of.pole.figures.determined.for.HiB.
`and.conventional.steel.
`Similar. new. technology. was. introduced. in. 1973. by.
`Kawasaki. Steel. with. inhibitor. MnSe.+.Sb. and. in. 1975.
`by.Allogheny.Ludlum.Steel.Corporation.used.boron.as.
`inhibitor.. The. Kawasaki. technology. has. two. cycles. of.
`cold.rolling.(Goto.et.al..1975,.Fiedler.1977).
`It.should.be.noted.that.the.better.performance.of.the.
`HiB. steel. is. especially. evident. for. high. polarization.
`
`(as the.name.suggests)..For.small.polarization,.the.HiB.
`steel. does. not. really. offer. any. advantages;. sometimes.
`this. material. can. be. comparable. or. even. worse. than. a.
`conventional.steel..Table.3.7.presents.an.example.of.the.
`measurement. results. for. HiB. steel. sample. (by. Epstein.
`method)..Figure.3.21.presents.the.typical.parameters.of.
`HiB.steel.
`As. discussed. above. in. the. previous. section. (see.
`Figures.3.15.through.3.17),.the.effect.of.perfect.grain.ori-
`entation. can. be. weakened. by. wide. domain. wall. spac-
`ing..Therefore,.the.HiB.steel.is.often.produced.with.the.
`support. of. the. domain. refinement. tools:. laser. scratch-
`ing,.plasma.jest.irradiation,.spark.ablation,.groove.mak-
`ing,. chemical. treatment,. or. coating. stress. (Nozawa. et.
`al..1978,.1979,.1996,.Fukuda.et.al..1981,.Iuchi.et.al..1982,.
`
`Downloaded By: 10.3.98.80 At: 11:32 17 Oct 2022; For: 9781439829523, chapter3, 10.1201/b10979-4
`
`Ex.1022 / IPR2022-00117 / Page 10 of 43
`APPLE INC. v. SCRAMOGE TECHNOLOGY, LTD.
`
`

`

`126
`
`Handbook of Magnetic Measurements
`
`TABLE 3.7
`Example.of.the.Results.of.Measurements.for.a.Typical.HiB.
`GO.SiFe.Steel—Grade:.M100-23P
`
`Jmax (T)
`0.1
`0.2
`0.3
`0.4
`0.5
`0.6
`0.7
`0.8
`0.9
`1.0
`1.1
`1.2
`1.3
`1.4
`1.5
`1.6
`1.7
`1.8
`1.9
`
`0.1
`J (T)
`
`1.5
`
`1.0
`
`0.5
`1.0
`
`Br (T)
`0.054
`0.142
`0.210
`0.287
`0.378
`0.479
`0.572
`0.676
`0.774
`0.885
`0.999
`1.069
`1.205
`1.302
`1.418
`1.527
`1.622
`1.732
`1.783
`
`Hmax (A/m)
`2.9
`5.3
`7.2
`8.9
`10.6
`11.7
`13.2
`14.5
`15.5
`17.0
`18.4
`18.5
`20.8
`23.4
`28.1
`38.4
`64.6
`185.5
`1155.0
`
`Hc (A/m)
`1.9
`3.7
`5.1
`6.6
`8.0
`9.4
`10.9
`12.3
`13.6
`14.9
`15.9
`18.0
`18.2
`18.80
`19.8
`20.6
`21.8
`24.2
`30.3
`
`P (W/kg)
`
`0.014
`0.031
`0.054
`0.083
`0.117
`0.157
`0.203
`0.256
`0.314
`0.379
`0.467
`0.534
`0.622
`0.720
`0.839
`0.999
`1.301
`1.827
`

`27,300
`29,800
`33.200
`35,600
`37,500
`40,700
`42,200
`43,900
`46,000
`46,800
`47,700
`51,700
`49,800
`47,700
`42,500
`33,200
`20,900
`7,700
`1,300
`
`1.0
`
`M100 - 23P
`
`10
`
`J
`
`P (W/kg)
`

`
`P
`
`50,000
`
`25,000
`

`
`10
`
`100
`
`H (A/m)
`
`FIGURE 3.21
`Parameters. of. the. HiB. GO. SiFe. steel-grade:. M100-23P. (thin. cur

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket