throbber

`
`DESIGN CONSIDERATIONS FOR
`
`
`
`INDUCTIVELY COUPLED POWER
`
`TRANSFER SYSTEMS
`
`By
`
`
`
`Chwei-Sen Wang
`
`"
`
`A thesis submitted in partial fulfillment of the requirements for the
`degree of Doctor of Philosophy in Electrical and Computer
`Engineering, The University of Auckland, 2004
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 001
`
`

`

`� t, t, ::· I
`
`.
`'
`._., .,
`
`
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 002
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 002
`
`

`

`ABSTRACT
`
`Inductively coupled power transfer (ICPT) systems use electromagnetic fields to transfer electric
`power from a primary source (power supply) to one or more secondary loads (pickups). Because there
`is no physical contact between the primary and secondary, ICPT systems are intrinsically safe and
`reliable. This technology has been significantly commercialised for around a decade. Present
`applications include material handling, public transport, and battery charging.
`This thesis focuses on the design of ICPT systems for high power applications where both the
`primary and secondary coils are compensated by capacitors. The main aim is to develop systems with
`smaller size, less weight, lower cost, greater power and better efficiency. Previous work in this field
`has concentrated on either the power supply or the pickup. This thesis instead focuses on the
`interactions between the power supply and the pickup. When power is transferred from the primary to
`the secondary, the primary is affected by the secondary loading. This can result in poor displacement
`power factor (DPF), reduced power transfer capability, and a loss of controllability.
`First, steady state linear mathematical models are developed to represent the load seen by the power
`supply that includes the primary compensation capacitor, the electromagnetic structure, the secondary
`compensation capacitor, and the pickup load. These models quantify the system behaviour in terms of
`the fundamental design parameters, and are used to evaluate a design procedure for ICPT systems.
`This evaluation provides an insight into the system, enabling suitable design decisions as well as
`quantification of frequency bifurcation boundaries in variable-frequency systems.
`Several new primary tuning schemes are also proposed, taking into account the secondary loading
`effects. In loosely coupled systems, the primary and secondary resonant circuits can be tuned
`independently as the secondary loading effect on the primary are negligible. In well-coupled systems,
`the secondary loading affects the primary resonance significantly, and the proposed new tuning
`schemes greatly improve the DPF and power transfer capability. Various sensitivity analyses to
`variations in the primary and secondary compensation capacitances as well as misalignment of the
`electromagnetic structure show that systems designed using the proposed new tuning schemes have
`similar sensitivities compared with the original tuning.
`Throughout the thesis work, an LCL resonant inverter driving a contact-less electric vehicle battery
`charger was used to verify the proposed theory. The operation of this inverter under discontinuous
`-i -
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 003
`
`

`

`current mode is also investigated. A novel design procedure is detailed and verified that enables this
`inverter to deliver maximum power to the load.
`
`-11 -
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 004
`
`

`

`ACKNOWLEDGEMENTS
`
`The author sincerely appreciates the supervision of Dr. Grant A. Covic and Dr. Oskar H. Stielau.
`Because of their wisdom and patience, the research work is always in a natural process going in the
`right direction. Particular thanks go to Prof. John T. Boys. His experience and leadership enabled this
`work to be carried out smoothly within the research group of inductive power transfer technology. The
`author is grateful for the wise advice and encouragement from EmPr. Ray Meyer. Additional thanks go
`to the power electronic research group, in particular Dr. Patrick A. Hu, Mr. Howard Lu and Mr.
`Edward Xu. Finally, it is an honour to have financial support, as a Doctoral Fellow (Top Achiever
`Doctoral Scholarship), from the Foundation of Research, Science and Technology (FRST), New
`Zealand.
`In memory of my father, Lien-Jiin.
`To my loving, Yu (mother), Annie (wife), Ya-Ting and Ya-Wei (daughters).
`Chwei-Sen Wang
`Auckland, New Zealand
`Oct. 21, 2004
`
`- 111 -
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 005
`
`

`

`~AT-
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 006
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 006
`
`

`

`CONTENTS
`
`Abstract
`Acknowledgements
`Contents
`Nomenclature
`xv
`List of Figures
`List of Tables •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
`
`XXV
`
`Chapter 1 Introduction
`
`Chapter 2 Overview of ICPT Systems
`
`1-1 Background ofICPT Systems
`1-2 Fundamental Structure ofICPT Systems
`1-3 Motivations of the Research
`1-4 Contributions of the Thesis
`1-5 Scope of the Thesis
`References
`2-1 2-2 Introduction
`Electromagnetic Structures
`2-2.1 Material
`2-2.1.1 Magnetic Cores
`2-2.1.2
`Conductor Windings
`2-2.2
`Geometry
`2-2.2.1 Primary Electromagnetic Structures
`2-2.2.2
`Secondary Electromagnetic Structures
`Electromagnetic Coupling Model
`2-2.3
`
`i iii V xi
`1 1 4 4 6 8 9
`11 11 11 12 12 13 13 13 14
`
`-v-
`
`15
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 007
`
`

`

`2-3
`
`•••••••••••• i ••••••••••••••••••••••••••••••••••••••
`
`....•..•..............•....................•....
`
`2-2.4 Capability of the Electromagnetic Structure
`2-2.4.1 Load Voltage and Current
`2-2.4.2 Power Transfer Capability
`Compensation
`2-3.1 Secondary Compensation
`2-3.2 Secondary Resonance
`2-3.3 Primary Compensation
`2-3.4 Primary Resonance
`2-3.5 Basic Compensation Topologies
`2-4
`Power Converters
`2-4.1
`2-4.3 Overview of Power Converters .....•.........•.........•........•................. � .
`2-4.2
`Voltage-Sourced Power Converters
`Current-Sourced Power Converters
`2-4.4 Impedance Matching
`2-5
`Controllers
`Power Flow Regulation
`2-5.1
`2-5.2
`Frequency Control
`2-5.3
`2-5.5 Switching Control in Voltage-Sourced Full-Bridge Inverters
`2-5.4
`Switching Control in Current-Sourced Full-Bridge Inverters
`Bifurcation Phenomenon
`2-6 2-7
`Future Trends
`Conclusions
`References
`Chapter 3 Development of a General Load Model
`Introduction
`Overview of the Load Model
`The Pickup Load
`3-3 3-4 3-5 3-6 3-7
`The Secondary Resonant Circuit
`The Secondary Quality Factor
`The Reflected Impedance
`Pickup Behaviour and Influences on the Primary
`3-7.1 Operation at the Secondary Resonant Frequency
`
`3-1
`
`3-2
`
`-VI -
`
`17 17
`
`18 20 20 21 22 23 24 25 25 27
`28 30 31 31 32 32 33 34 36 38 38
`47 49 50 51 52 54 54
`
`47
`47
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 008
`
`

`

`3-9 The Primary Quality Factor
`3-10 The Power Supply Load Model
`
`4-2
`
`4-3
`4-4
`4-5
`
`65
`67
`67
`
`76
`
`86
`88
`92
`92
`
`Normalization of the Impedance Model
`3-7.2
`56 56 59 61
`Influence of Frequency on the Pickup Behaviour
`3-7.3
`3-7.4
`Influence of Frequency on the Reflected Impedance
`3-7.5
`Operating Conditions for Maximum Power Transfer
`3-8 The Primary Coil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
`3-10.1 Modelling of the Power Supply Load Impedance
`3-10.2 The Normalized Load Impedance
`69 71 75
`3-11 Verification of the Load Model
`3-12 Conclusions
`References
`Chapter 4 Evaluation of a Design Methodology for ICPT Systems
`77
`77 77 78 79
`4-1
`Introduction
`4-2.1 Design of Ordinary Transformers
`A Design Procedure
`4-2.2 Design of ICPT Systems
`4-5.1 Sensitivity of the Displacement Power Factor
`4-5.2 System Behaviour using a Fixed-Frequency Controller ....................... .
`4-5.3 System Behaviour using a Variable-Frequency Controller
`98 101
`4-5.4 Design Considerations
`104 105 109 110
`Chapter 5 Tuning to Improve Power Transfer for Variable-Frequency Systems 113
`113
`114
`
`Design Options for the Pickup Regulator
`Design Options for the Power Supply
`Design Evaluations
`
`, r·
`
`, .. ..
`r,
`
`4-6
`A Practical Design Example
`4-7
`Conclusions
`References
`
`5-1 Introduction
`5-2 Primary Tuning for Unity DPF at Rated Load
`
`- vii -
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 009
`
`

`

`5-3 rower Transfer Capability and Bifurcation Phenomenon ........................ 117
`5-4 Bifurcation Criteria
`........................................................................ 130
`5-5 Discussion ....................................................................................... 139
`5-6 Verification
`.................................................................................... 143
`5-7 Conclusions
`.................................................................................... 145
`References ............................................................................................. 146
`Chapter 6 Tuning to Improve DPF for Fixed-Frequency Systems .................. 149
`6-1 Introduction .................................................................................... 149
`6-2 System Behaviour with Primary Tuning for Unity DPF at Rated Load ...... 149
`6-3 Primary Tuning for Load Independent Unity DPF ............................... .'. 154
`6-3.1 Primary Capacitance and Operating Frequency
`......................•.....•. 155
`6-3.2 Power Transfer Capability and Secondary VA Rating ........................ 156
`6-4 Discussion ....................................................................................... 163
`6-5 Design Examples .............................................................................. 164
`6-6 Verification
`.................................................................................... 167
`6-7 Conclusions
`.................................................................................... 170
`Chapter 7 A Sensitivity Analysis of Systems Using the Proposed Primary
`Tuning Schemes ........................................................................ 171
`7-1 Introduction .................................................................................... 171
`7-2 Fundamentals of the Sensitivity Analysis ............................................. 172
`7-3 Compensation Capacitor Selection ...................................................... 173
`7-4 The Influence of Variations in Primary Capacitance .............................. 177
`7-4.1 Fixed-Frequency Systems ............................................................ 177
`7-4.2 Variable-Frequency Systems ......................................................... 182
`7-5 The Influence of Variations in Secondary Capacitance ........................... 184
`7-5.1 Fixed-Frequency Systems ............................................................ 184
`7-5.2 Variable-Frequency Systems .................................................•....... 188
`7-6 The Influence of Misalignment in the Electromagnetic Structure
`............ 190
`7-6.1 Coupling Parameter Variations in an Electric Vehicle Battery Charger ... 191
`7-6.2 Fixed-Frequency Systems ...........................•................................ 192
`-viii -
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 010
`
`

`

`.. , ..
`
`'i\
`
`Chapter 8 Investigating an LCL Resonant Inverter for ICPT Applications
`
`7-6.3 Variable-Frequency Systems
`199
`7-7 7-8
`Discussion
`206
`Conclusions
`209
`209
`References
`211 211
`8-1 8-2
`Introduction
`Overview of the System
`······························ 212 212
`8-2.1 Operating Modes of the LCL Resonant Inverter
`8-2.2 An Analytical Procedure for System Design
`214 214
`8-3
`Capability of the Inverter
`8-3.1 The Inverter Model
`214
`8-3.2 Waveform of the Inverter Current
`215
`8-3.3 Inverter Power Delivery Capability
`218
`8-3.4 Fundamental Component of the Inverter Current
`219
`8-4
`Capability of the Resonant Tank
`221
`8-4.1 The Resonant Tank Model
`221
`8-4.2 Operating Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
`8-4.3 Power Absorption Capability
`223
`8-5
`Steady State Power Flow Analysis
`225
`8-5.1 An Analytical Procedure for Steady State Analysis
`225 225 228
`8-5.2 The Switching Instants and the Series Inductance
`8-5.3 Behaviour at Light Load
`8-6
`Verification
`229
`....•.......................•......•........•......•........................•.......
`, 8-7
`Conclusions
`230
`.•..................................................................................
`References
`............................................................................................. 231
`233
`Chapter 9 Conclusions and Future Work
`9-1 Conclusions
`233
`...•.......•.......•.......................•.......•................................
`9-1.1 Variable Frequency Systems ........................................................ .
`233
`9-1.2 Fixed Frequency Systems
`235 235
`9-2
`Future Work ................................................................................... .
`References
`237
`.............................................................................................
`-ix -
`
`\"
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 011
`
`

`

`Appendices
`................................................................................................ 239
`A. Primary Voltage and Current Gains ................................................... 239
`B. Reactive and Real Powers of the Pickup Coil
`....................................... 241
`C. Quantified Secondary Current ............................................................ 242
`D. Normalized Reflected Impedance of Compensated Pickup
`..................... 243
`.......................................... 244
`E. Quantified Impedance of the Primary Coil
`F. Normalized Reactance of the Primary Capacitance for Systems with
`Compensated Pickup ........................................................................ 244
`G. Normalized Impedance Functions for Systems with Uncompensated Pickup 245
`••••••••••••••••••••••••••••••••••••••••••••••••••• 246
`H. Primary Tuning for Unity DPF at co0
`Primary Tuning for Load Independent Unity DPF ................................. 250
`I.
`J. Maximum Allowable Alternating Voltage and Current in Capacitors
`...... 252
`
`i
`
`-x-
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 012
`
`

`

`NOMENCLATURE
`
`• Iac,rated
`
`Id
`
`Cm
`�p·
`
`Description
`Symbol
`Capacitor-capacitor-inductor.
`CCL Ci, C2
`Capacitors of inverters.
`de capacitance.
`Cd
`Matching capacitance in CCL inverter.
`Primary compensation capacitance.
`Normalized primary compensation capacitance.
`Secondary compensation capacitance.
`Cpn Cs
`D, D1, D2, D3, D4 Diodes of inverters.
`Displacement power factor.
`DPF
`Equivalent series resistance of capacitors
`ESR
`Frequency (Hz).
`f, fo, ft, fi
`RMS current.
`I i
`Instant current.
`Rated ac current of capacitors.
`Inductively coupled power transfer.
`ICPT
`Secondary capacitor current.
`lcs
`de source current.
`de load current.
`Primary current gain.
`Ide loAIN
`Inverter output current.
`ii, Ii
`Inverter output current at roo.
`liO ImZ
`Imaginary component of the impedance (Z).
`Primary current.
`ip, Ip
`Pickup load current.
`iR, IR
`Secondary current.
`is, Is
`Rated secondary current defined at ro0•
`
`Iso,rated
`
`-xi -
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 013
`
`

`

`lsc lsn k kn LCL Ld Lm Lp Ls M Mn Np Ns pp PS p Pi
`
`Pn Prated Q Qp Qpo
`
`Qso,rated
`
`Qs Qso
`Q;O,rated
`R �c
`ReZ
`SP
`ss Ss S, S1, S2, S3, S4
`T
`
`Short circuit current of the pickup.
`Normalized secondary current.
`Magnetic coupling coefficient.
`Equivalent coupling coefficient of n pickups.
`Inductor-capacitor-inductor.
`de inductance.
`Matching inductance in LCL inverter.
`Primary self-inductance.
`Secondary self-inductance.
`Mutual inductance.
`Equivalent mutual inductance of n pickups.
`Turn number of the primary coil.
`Turn number of the secondary coil.
`Parallel-compensated primary and secondary.
`Parallel-compensated primary and series-compensated secondary.
`Power.
`Inverter power delivery.
`Normalized power.
`Rated power defined at mo.
`Quality factor.
`Primary quality factor.
`Primary quality factor at m0•
`Secondary quality factor.
`Secondary quality factor at mo.
`Rated secondary quality factor defined at m0 I .J1 -k2
`Rated secondary quality factor defined at mo.
`Pickup ac load (Equivalent ac resistance).
`Pickup de load.
`Real component of the impedance (Z).
`Series-compensated primary and parallel-compensated secondary.
`Series-compensated primary and secondary.
`Apparent power (complex power) of the secondary coil.
`Switches of inverters.
`Period.
`
`- xii -
`
`., :
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 014
`
`

`

`V
`
`t, t1, t2, h
`tn, tnJ, tn2, tn3
`u
`V
`VAcs
`VAs
`VAsn
`VAso
`VAso,rated
`Vac,rated
`VAR
`VARp
`VARs
`Yes vd
`Vdc
`VaAIN
`Vi, Vi
`viO Voe
`Vp, Vp
`Vpo
`VP
`Vpn
`Vs, Vs
`Vso,rated
`Vsn
`Yt
`Yin Zp
`Zr Zr0
`
`VR, VR
`
`Time.
`Normalized time.
`Normalized operating frequency.
`RMS voltage.
`Instant voltage.
`Required VA rating of the secondary compensation capacitor.
`Required secondary VA rating.
`Normalized required secondary VA rating.
`Required secondary VA rating at roo.
`Rated secondary VA rating defined at roo.
`Rated ac voltage of capacitors.
`Reactive power.
`Primary reactive power.
`Secondary reactive power.
`Secondary capacitor voltage.
`de source voltage.
`de load voltage.
`Primary voltage gain.
`Inverter output voltage.
`Inverter output voltage at roo.
`Open circuit voltage of the pickup.
`Primary voltage (parallel resonant tank voltage).
`Primary voltage at roo.
`Peak primary voltage (parallel resonant tank voltage).
`Normalized primary voltage (parallel resonant tank voltage).
`Secondary pickup load voltage.
`Secondary voltage.
`Rated secondary voltage defined at roo.
`Normalized secondary voltage.
`Load admittance seen by the power supply.
`Normalized load admittance seen by the power supply.
`Impedance of the primary track/coil.
`Reflected impedance.
`Reflected impedance at w0 •
`
`-xiii -
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 015
`
`

`

`Zr0,rated
`
`Zm
`
`Zs
`
`Z1 Zm Zin
`
`0) roo 81 <l>1 <I> tan 8
`
`Rated reflected impedance defined at ro0•
`Normalized reflected impedance.
`Secondary load impedance.
`Load impedance seen by the power supply.
`Load impedance seen by the power supply at cv0
`Normalized load impedance seen by the power supply.
`Frequency (rad/s).
`Nominal frequency (Secondary resonant frequency).
`Phase of the load impedance seen by the power supply.
`Phase between the fundamental inverter current and the parallel primary voltage.
`Phase between the primary and secondary currents.
`Dissipation factor of capacitors
`
`•
`
`::
`
`- xiv-
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 016
`
`

`

`LIST OF FIGURES
`
`2
`Application examples from Daifuku (Japan).
`. • . •• . • . •• . •• .• . . .• . .• ••• . . . . .• • . . . . • . •. • . . . . • . . • . •
`Public transport system (New Zealand).
`2
`3
`Application examples from Wampfler (Germany). .......................................
`. ...............•..........................•....... 4
`The block diagram of an ICPT system.
`................ .......................... 15
`.................................... 15
`•. .•. .. .•••..•.•••••. ....•.•.. .. .•.••..•... •. 14
`Common configurations of the primary coil.
`................................. 16
`Common configurations of the secondary core.
`. • . • . . . . . 17
`Circuit of the mutual inductance transformer model.
`............ 18
`The sinusoidal mutual inductance transformer model.
`Equivalent secondary circuit supplying power to a linear and resistive load.
`The normalized load voltage and current of the uncompensated pickup.
`• . .• . • . • . • . . . . • . • . . • . . . . • • . . . . • . . . • . .• . . . . • • • . • .• • .. . .• . • • • . 20
`Series-compensated secondary-.
`• . • . • . . . • . • . • . . . • . • . . . • . • . . • . • • . . • . . • . • . • . . • . . • . • • . • • . • • . 20
`Parallel-compensated secondary.
`Normalized load voltage and current characteristics of uncompensated as well as
`. • . • • . . • . • . • • • . • • . • . . . . . • . . • . • • • . . • • • • . . • . • . . • • . 22
`series and parallel-compensated pickups.
`. . . . . . . . . . . . . . . . . . . . . . • . . . . . . . • . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . 23
`Series-compensated primacy.
`Fig. 2-10.
`.....•......•............•..................•.........•..... 23
`Fig. 2-11. Parallel-compensated primacy.
`
`Fig. 1-1.
`Fig. 1-2.
`Fig. 1-3.
`Fig.1-4.
`Fig. 2-1.
`Fig. 2-2.
`Fig. 2-3.
`Fig. 2-4.
`Fig. 2-5.
`Fig. 2-6.
`Fig. 2-7.
`Fig. 2-8.
`Fig. 2-9.
`.. .. .. .. .. .. .. .. . .. .. .. .. . .. . .. . .. .. .. . 24
`Fig. 2-12. Basic compensation topologies ofICPT systems.
`Fig. 2-13. The block diagram of a power converter in an ICPT system. .. .. .. .. .. .. .. .. .. .. .. .. .. . 25
`••..•.•..•.•.•.••.•..•.........•....... 27
`Fig. 2-16. The voltage-sourced full-bridge power converter.
`.. . .. .. .. .. .. .. .. . .. .. .. .. . .. .. . .. .. .. . 28
`Fig. 2-17. The voltage-sourced half-bridge power converter.
`Fig. 2-18. Voltage-sourced single-switch power converters.
`.. .. • .. .. .. ... . .. .. .. .. . .. . .. .. .... .. .. 28
`.. .. .. .... . .. .. .. .. .. .. .. .. .. .. .. .. .. .. 29
`Fig. 2-19. The current-sourced full-bridge power converter.
`Fig. 2-20. The current-sourced half-bridge power converter.
`. . . . . • . . . . . . • • • . . . . . . . . . . • . • • . . . . • . . . • . 29
`Fig. 2-21. Current-sourced single-switch power converters.
`.....•.•..•.. .... .....•.•... ... . ... . . .. 29
`-xv-
`
`Fig. 2-14.
`Fig. 2-15.
`
`...•................................................•. 26
`Fundamental types of power source.
`. . . . . . .•................ .. ... . . . . • . . . . . . . .. •..........•. .. .. . . .•. .. . . 27
`Switch configurations.
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 017
`
`

`

`Fig. 2-22. The LCL resonant inverter. . ... .-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
`Fig. 2-23. The CCL resonant inverter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
`Fig. 2-24. The rectangular inverter voltage being in-phase with the current.
`• . . • • . . • . • . • • • . . . . . . . 33
`Fig. 2-25. The rectangular inverter voltage leading the current.
`.. . .. .. .. .. .. .. .. .. . .. .. .. .. .. .. .. .. 33
`Fig. 2-26. The rectangular inverter voltage lagging the current.
`•... ..•..•..•..•..••....•.•••..•. .. . 33
`Fig. 2-27. Pulse-width of the rectangular inverter voltage is less than a full half cycle.
`......... 33
`Fig. 2-28. The rectangularinverter current being in-phase with the voltage.
`... • .. .. .. .... .. . .. .. 34
`Fig. 2-29. The rectangular inverter current leading the voltage.
`.. .. .. . .. .. .. .. .. • .. .. . .. .. .. .. . .. .. 34
`Fig. 2-30. The rectangular inverter current lagging the voltage. • . . . • . . • . • . . . • . • • . • • . . • . • • • • . . . • . • . • 34
`.. . • . . . • • 34
`Fig. 2-31. Pulse-width of the rectangular inverter current is less than a full half cycle.
`. 37
`Fig. 2-32. Futuristic ICPT applications.
`Fig. 3-1.
`Fig. 3-2.
`.. .. .. ..... • . .. . .. .. .. .. .. .. . .. .. 50
`Fig. �-3.
`.. ...... .. .. .. . • . .. • .. . .. . . ...... 50
`Fig. 3-4.
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
`Fig. 3-5.
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
`Fig. 3-6.
`syste:r:ris.
`Fig. �-7.
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
`systems.
`.. .. .. • . • .. .. .. .. .. • .. .. .. • .. . .. . .. • .. .. .. .. • . . .. .. • 62
`Fig. 3-8.
`Fig. 3-9.
`.................. 64
`Fig. 3-10. . The ratio Zp/GcooLp) with k=0.2.
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
`Fig. 3-11.
`-65
`Fig. 3-12.
`• . • • . . . • . . • • . . . • • • • • • • • • . • . • • . • . . . . • 67
`Fig. 3-13.
`........................ 72
`Fig. 3-14.
`••.•..•..••••.• 73
`............... 74
`Fig. 3-15. Measured and calculated load admittance (Y1) of the battery charger.
`Fig. 4-1.
`. ..................................... : .. . 79
`Fig. 4-2.
`...................... ........ ...•.. .•....... ......... 80
`Fig. 4-3.
`A block diagram of a pickup regulator. . • . . .. • • .. . . .. . . • . . . . • . .. . . . .. . . . . . . . . . . . . . .. .. .. . . . . • 87
`Fig. 4-4.
`. • . . . . . . . • • . . . . . . . • . • • . . . . . 89
`
`. ..............................................................
`Diagram of the load seen by the power supply.
`Full-bridge diode rectifier with inductor output filter.
`_Full-bridge diode rectifier with capacitor output filter.
`. Equivalent circuits of the secondary systems.
`Quantified secondary current.
`Normalized reflected resistance for series and parallel-compensated secondary
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . 60
`Normalized reflected reactance for series and parallel-compensated secondary
`Equivalent circuit of the primary coil.
`The ratio Zp/Gro0Lp) at the secondary resonant frequency ro0 (u=l).
`The ratio Zp/GrooLp) with k=0.6.
`Primary resonant circuits with reflected impedance.
`Electromagnetic structure of the contact-less battery charger.
`The measured coupling parameters (Lp, Ls, M) of the battery charger.
`
`AS
`
`A design procedure of the ordinary transformer.
`A design procedure ofICPT systems.
`Examples of current-sourced power supply configurations.
`- xvi -
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 018
`
`

`

`Examples of voltage-sourced power supply configurations.
`• • . • . . • . . . . . . . . . . • . . . . . . • . . 90
`Fig. 4-5.
`Sensitivity of DPF to u and kin systems having both the primary and secondary
`Fig. 4-6.
`uncompensated.
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
`Sensitivity of DPF to u and k in systems having a compensated primary and an
`Fig. 4-7.
`uncompensated secondary.
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
`Sensitivity of DPF to u, k and Qso in systems having an uncompensated primary and a
`Fig. 4-8.
`compensated secondary.
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
`Sensitivity ofDPF to u, k and Qso in systems having both the primary and secondary
`Fig. 4-9.
`. ................................ ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
`compensated.
`Fig. 4-10. DPF operating with fixed frequency at ro0•
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .' . . . . . 99
`Fig. 4-11. Required relationship between k and Qso to achieve unity DPF at ro0 for the PP
`topology.
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
`Selection ofQso to improve DPF when operating at ro0 over a wider range ofk for the
`Fig. 4-12.
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
`PP topology.
`Operating frequency with unity DPF.
`. ..................................................... 102
`Fig. 4-13.
`Frequency shifts for bifurcation-free operations.
`.. ............... � ..................... 104
`Fig. 4-14.
`DPF and power transfer capability of the contact-less electric vehicle battery charger
`Fig. 4-15.
`using a fixed-frequency controller operating at ro0•
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
`Fig. 4.;16. Measured waveforms of the inverter current and the resonant tank voltage for the
`=19.7kHz).
`• ........... 107
`contact-less electric vehicle battery charger (operating at ro0
`Fig. 4-17. Operating frequency and power transfer capability of the contact-less electric vehicle
`battery charger using a variable-frequency controller operating with unity DPF.
`• .. 108
`Fig. 5-1. Primary tuning for unity DPF at rated load.
`. ............................................ 116
`SS topology - Operating frequency and power transfer capability under variable-
`'i ;�
`Fig. 5-2.
`frequency operation.
`. .......... � ............................................................ 122
`SP topology - Operating frequency and power transfer capability under variable-
`Fig. 5-3.
`frequency operation.
`. ....................................................................... 123
`Fig. 5-4. PP topology with loose coupling (k=0.05) -Operating frequency and power transfer
`capability under variable-frequency operation.
`• •..•..•.•....•.•..•...•.•.....•.....••... 124
`Fig. 5-5. PP topology with middle coupling (k=0.2) -Operating frequency and power transfer
`capability under variable-frequency operation.
`.. ........................................ 125
`Fig. 5-6. PP topology with good coupling (k=0.4) -Operating frequency and power transfer
`capability under variable-frequency operation.
`• ......•..........•.•............•..•..... 126
`
`-xvii -
`
`Momentum Dynamics Corporation
`Exhibit 1025
`Page 019
`
`

`

`PS topology with loose coupling (k=0.05) -Operating frequency and power transfer
`Fig. 5-7.
`capability under variable-frequency operation.
`. ......................................... 127
`PS topology with middle coupling (k=0.2) -Operating frequency and power transfer
`Fig. 5-8.
`capability under variable-frequency operation.
`• ......................................... 128
`PS topology with good coupling (k=0.4) -Operating frequency and power transfer
`Fig. 5-9.
`capability under variable-frequency operation.
`.. ........................................ 129
`Fig. 5-10. Normalized load reactance.
`. .............................................................. 132
`Fig. 5-11. Normalized load susceptance.
`. ........................................................... 133
`• •••••.•••••••.•••••••••••.••.•••••••••••••••••.•••.•.•.• 135
`Fig. 5-12. Normalized function G(u,Qpo,Qso).
`Fig. 5-13. Analytical bifurcation boundary for the SS and SP topologies.
`. •...••.....••....•.•••• 137
`Fig. 5-14. Numerical algorithm for finding bifurcation boundary.
`. •.••.•..•..••..•.••.••.•..•..•.. 13 7
`Fig. 5-15. Numerical bifurcation boundary for the PP and PS topologies.
`.. ...................... 138
`Fig. 5-16. Bifurcation boundary defined by k and Qso for the four basic topologies .
`............... 139
`Fig. 5-17. A contact-less electric vehicle battery charger with PP topology -Operating
`frequency and power transfer capability under variable-frequency operation (a
`comparison of the original and modified tuning schemes).
`.. ............................ 144
`Fig. 6-1. SP topology-DPF under fixed-frequency operation at mo assuming modified primary
`tuning to achieve unity DPF at rated load. . .................................................. 151
`Fig. 6-2. PP topology-DPF under fixed-frequency operation at mo assuming modified primary
`tuning to achieve unity DPF at rated load. . ............................. .-.................... 152
`Fig. 6-3. PS topology-DPF under fixed-frequency operation at mo assuming modified primary
`.. ................................................. 153
`tuning to achieve unity DPF at rated load.
`Influences of k to the required change in Cp to achieve load independent unity DPF .••. 156
`Fig. 6-4.
`Fig. 6-5.
`Influence of k to the required change in m to achieve load independent unity DPF (the · · :
`. ...................................................................... ·. 156
`Fig. 6-6. PP topology-System behaviour under fixed-frequen�y operation (Qso,rated=5).
`• ••••• 159
`Fig. 6-7. PS topology-System behaviour under fixed-frequency operation (Qso,rated=5).
`.. .... 160
`Fig. 6-8. Limit of k and Qso,

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket