throbber
Samsung Electronics Co., Ltd. v. Demaray LLC
`Samsung Electronic's Exhibit 1042 (Vol 2 of 3)
`
`APPLIED MATERIALS EXHIBIT 1042 (Part 2 of 3)
`
`Page 7 of 8
`Appendix 1029-A
`
`Page 153 of 304
`
`Ex. 1042, Page 153
`
`

`

`Doghecheetal.
`
`1211
`
`method showeda linear electro-optic coefficient r)3 of about
`0.98 pm/V. These results demonstrate the interest of AIN
`thin films to be used in integrated optics applications.
`
`'H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, and S. Na-
`kano, Appl. Phys. Lett. 64, 166 (1994).
`2M. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, and M.Blasin-
`game, Appl. Phys. Lett. 60, 2917 (1992).
`3§ Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Mata-
`sushita, H. Kiyoku, and Y. Sugimoto,Jpn. J. Appl. Phys., Part 2 35, L74
`(1996).
`+E. Calleja, M. A. Sanchez-Garcia, E. Monroy, F. J. Sanchez, and E. Mu-
`noz, J. Appl. Phys. 82, 4681 (1997).
`5K. Dovidenko, S. Oktyabrsky, J. Narayan, and M. Razeghi, Appl. Phys.
`Lett. 79, 2439 (1996).
`©X. Tang, Y. Yuan, K. Wongchotigul, and M. Spencer, Appl. Phys. Lett.
`70, 3206 (1997).
`7p. K.Tien, R. Ulrich, and J. R. Martin, Appl. Phys. Lett. 14, 291 (1969).
`SF. Flory, G. Albrand, D. Endelma, N. Maythaveekulchai, E. Pelletier, and
`H.Rigneault, Opt. Eng. (Bellingham) 33, 1669 (1994).
`°E. Dogheche, B. Jaber, and D. Rémiens, Appl. Opt. 37, 4245 (1998).
`'g Strike and H. Morkog, J. Vac. Sci. Technol. B 10, 1237 (1992).
`\'L. Roskoveova, J. Pastnak, and R. Babuskova, Phys. Solid State 20, k29
`(1967).
`'2F, Horowitz and S. B. Mendes, Appl. Opt. 33, 2659 (1994).
`13K. §. Chiang, J. Lightwave Technol. LT3, 85 (1985).
`\4,. Boudrioua, E. Dogheche, D. Rémiens, and J. C. Loulergue, J. Appl.
`Phys.85, 1 (1999).
`
`
`
`Ex. 1042, Page 154
`
` Appl. Phys. Lett., Vol. 74, No. 9, 1 March 1999
`
`‘ected inten-
`
`Using TE guided modes, we have investigated the elec-
`trooptic (EO) coefficient using the angular shift technique as
`described by Boudriouaet al.'* The topelectrode consists of
`a semitransparent gold film with a thickness of 10 nm. By
`applying a transverse electric field through the AIN layer, a
`change of the resonant coupling angle (A@) in the guided-
`modes spectrum has been observed. This effect is directly
`correlated to the variation ofthe refractive index (An) due to
`the EO effect. Finally, the linear EO coefficient r)3 obtained
`is evaluated to be 0.98 pm/V.
`In summary, AINthin films have been grown on Si/SiO,
`substrates by radio-frequency magnetron sputtering from an
`aluminum nitride target. The deposition parameters and an-
`nealing process were optimized for the elaboration of highly
`textured AIN thin films. We have investigated the optical
`performances of the films using the prism-coupling tech-
`nique. Refractive indices were therefore determined to be
`no= 2.0058 and n,= 2.0374 at 632.8 nm. From the effective
`guided-modeindices, the analysis of the optical anisotropy
`confirmed the uniaxial nature of the AIN thin film with the
`optical axis likely oriented normalto the surface of the sub-
`strate. The optical
`losses were evaluated to be around 7
`dBcm~!. The EO measurements using the angular shift
`
`tal to the
`‘ected by
`lines the
`g within
`ovides a
`ormal to
`e of our
`: optical
`rate sur-
`
`1 there-
`‘ffective
`inverse
`method
`thin the
`ven by
`\easured
`profiles
`Fig. 4,
`ariation
`y along
`ns con-
`near the
`ot show
`ocess.
`
`|
`
`|j
`|
`
`=1
`
`16
`
`files ob-
`»sited on
`
`~
`
`
`
`Page 8 of 8
`Appendix 1029-A
`
`Page 154 of 304
`
`Page 8 of 8
`Appendix 1029-A
`
`Page 154 of 304
`
`Ex. 1042, Page 154
`
`

`

`Appendix 1029-B
`Appendix 1029-B
`
`Page 155 of 304
`
`Ex. 1042, Page 155
`
`Page 155 of 304
`
`Ex. 1042, Page 155
`
`

`

`JOURNAL
`Applied physicsletters.
`AmericanInstitute of Physics.
`1962
`
`al
`
`®) Available at Linda Hall Library Closed Stacks- Serials (Applied physics letters.)
`
`>
`
`#
`
`Send to
`
`1
`*
`Send to
`
`Getit
`
`Details
`
`&
`Print
`
`D
`Permalink
`
`”
`Citation
`
`8
`Email
`
`5]
`EasyBib
`
`6
`Export RIS
`
`Virtual Browse
`
`GetIt
`
`Links
`
`< Back to locations
`
`LOCATION ITEMS
`
`Linda Hall Library
`Available , Closed Stacks - Serials Applied physicsletters.
`Holdings: v.1:no.1(1962:Sep.)-v.107:n0.26(2015:0ec.28)-
`Indexes: v.72(1998:Jan.)-v.104:n0.3(2014:Jan.20.)-
`Note: Index received separately.
`
`Y
`
`-a
`=v
`
`Page 1 of 4
`Appendix 1029-B
`
`Page 156 of 304
`
`Ex. 1042, Page 156
`
`Ex. 1042, Page 156
`
`

`

`Jetails
`
`Title
`
`Creator/Contributor
`
`Subjects
`identifier
`
`Other title
`
`Related title
`Publisher
`
`Creation date
`Format
`
`Frequency
`
`Applied physics letters.
`AmericanInstitute of Physics.
`Periodicals
`Physics
`LC : 64006603 //r82
`ISSN : 0003-6951
`OCLC : (OCoLC)1580952
`
`Appl. phys. lett.
`Applied physics letters
`Related to : Journal of applied physics
`NewYork etc. AmericanInstitute of Physics.
`v.
`1- Sept. 1962
`962
`
`v. ill. 27. cm.
`
`Selected volumes/issues gift of Aerospace Corporation.
`
`Weekly, 1986
`Issued as companionto: Journal of applied physics, ISSN 0021-8979.
`General notes
`Citation/References note Electronics and communications abstracts journal (Riverdale) 0361-3313
`ISMEC bulletin 0306-0039
`Pollution abstracts with indexes 0032-3624
`
`Safetyscience abstracts journal 0160-1342
`International aerospace abstracts 0020-5842
`GeoRef 0197-7482
`Metals abstracts 0026-0924
`World aluminumabstracts 0002-6697
`SPIN 1970
`
`Current physics index 0098-9819
`Chemical abstracts 0009-2258
`
`Energyresearch abstracts 0160-3604
`Computer & control abstracts 0036-8113 1968
`Electrical & electronics abstracts 0036-8105 1968
`
`Local notes
`
`Physics abstracts. Science abstracts. Series A 0036-8091 1968
`
`Page 2 of 4
`Appendix 1029-B
`
`Page 157 of 304
`
`Ex. 1042, Page 157
`
`

`

`@2287cas a22006011
`
`4500
`
`750829c19629999nyuwrip
`##$a 64006603 //r82
`##$a3 $b3 Sen $18811 $kl $m1
`
`@
`
`aQeng
`
`##$a028520 SbUSPS
`##$a(OCOLC) 1580952
`
`$a(MOKL)278573-Lhalldb
`$a( Lhalldb)278573-Lhalldb
`$z(OCOLC) 1481730
`$aDLC $cUDI $dCOO $dHUL $dCOO $dDLC SdNSD $dOCL $dYUS $dDLC $dSER $dAIP $dOCL $dNYG $dNST $dOCL $dNST
`
`lett.
`#O0$aApplied physics letters
`@@$aApplied physics letters.
`##$aNew York [etc.] $bAmerican Institute of Physics.
`##$av. Sbill. $c27 cm.
`##$awWeekly, $b1986-
`##$aSemimonthly, $b1963-1985
`##$aMonthly, $b1962
`O#$av. 1- Sept. 1962-
`2#$aElectronics and communications abstracts journal (Riverdale) $x@361-3313
`#$aISMEC bulletin $x0306-0039
`2#$aPollution abstracts with indexes $x0032-3624
`2#$aSafety science abstracts journal $x0160-1342
`2#$aInternational aerospace abstracts $x0020-5842
`2#$aGeoRef $x0197-7482
`2#$aMetals abstracts $x@026-0924
`
`
`
`Page 3 of 4
`Appendix 1029-B
`
`Page 158 of 304
`
`Ex. 1042, Page 158
`
`

`

`APPLIED MATERIALS EXHIBIT 1042 (Part 2 of 3)
`
`Page 4 of 4
`Appendix 1029-B
`
`Page 159 of 304
`
`Ex. 1042, Page 159
`
`

`

`Appendix 1029-C
`Appendix 1029-C
`
`Page 160 of 304
`
`Ex. 1042, Page 160
`
`Page 160 of 304
`
`Ex. 1042, Page 160
`
`

`

`B
`
`s b a y em de a s MARC ags
`
`9/28/20 12 52 PM
`
`
`
`
`
`
`
`los thiClose this window to return to the catalogue indow to r to t c l
`
`
`
`
`
`
`
`
`
`
`
` Item Detailsls
`
`
`
`FMTFMT SE
`LDRLDR nas a22002417a 4500
`00001
`014532647
`00003
`Uk
`00005
`20200701010345.0
`00007
`ta
`00008
`840320c19629999xxuer p 0 a0eng
`
`02 00220 |a 0003-6951
`04040
`|a Uk |c Uk |d Uk
`
`08 0408204 |a 621 |2 21
`08084
`|a PQ 00 |2 blsrissc
`
`24 0024500 |a Applied physics letters.
`26260
`|a New York : |b American Institute of Physics, |c 1962-
`30300
`|a v. ; |c 27 cm.
`31310
`|a Fortnightly
`33336
`|a text |2 rdacontent
`33337
`|a unmediated |2 rdamedia
`33338
`|a volume |2 rdacarrier
`59595
`|a SEE ALSO SERIAL RECORDS KCS SE.
`55555
`|a Cumulative index.
`
`71 27102 |a American Institute of Physics.
`94945
`|a APPLIED PHYSICS LETTERS
`
`85 7185271 |a British Library |b STI |k (P) |h PQ 00 |m -E(12) |2 blsrissc
`
`86 0866 0 |a Volume 1(1962)- ; Deficient: v. 62, no.27, 1993
`
`85 4985249 |a British Library |b DSC |j 1576.400000
`
`86 0866 0 |a Volume 1 (1962)- |z UKRR Retained Title
`SYSYS 014532647
`
`Accessibility Terms of use © The British Library Board
`
`P2
`
`p //p moca b uk/ /?fu c=d ec & oca _base=PR MO&doc_ umbe =014532647&fo ma =001&co _ g=e g
`
`Page 1 of 1
`
`Page 1 of 1
`Appendix 1029-C
`
`Page 161 of 304
`
`Ex. 1042, Page 161
`
`

`

`Appendix 1029-D
`
`Early Citations to Dogheche
`
`Page 162 of 304
`
`Ex. 1042, Page 162
`
`

`

`
`y
`,
`,
`c!2000 The Japan Society of Applied Physics
`
`Deposition of AlN Thin Films with Cubic Crystal Structures on Silicon Substrates
`at Room Temperature
`Zhong-Min REN, Yong-Feng LU, Yeow-Whatt GOH, Tow-Chong CHONG, Mei-Ling NG1, Jian-Ping WANG1,
`Boon-Aik CHEONG1 and Yun-Fook LIEW1
`Laser Microprocessing Laboratory, Department of Electrical Engineering and Data Storage Institute, National University of Singapore,
`10 Kent Ridge Crescent, Singapore 119260
`1Data Storage Institute, 5 Engineering Drive 1, Singapore 117608
`(Received September 20, 1999 accepted for publication March 6, 2000)
`Cubic AlN thin films were deposited at room temperature by nitrogen-ion-assisted pulsed laser ablation of a hexagonal
`AlN target. The full-width at half maximum (FWHM) of the X-ray diffraction peak in the θ ∼ 2θ scan can reach a value of
`0.27 degrees. In the Raman spectroscopy measurement, a new peak at 2333 cm−1 originating from cubic AlN polycrystalline
`was observed. Nitrogen ions not only effectively promote the formation of stable Al–N bonds but also improve the crystal
`properties of the deposited thin films. A nitrogen ion energy of 400 eV is proposed for the thin-film deposition.
`KEYWORDS: AlN pulsed laser deposition thin films cubic crystalline Raman spectroscopy XRD XPS
`
`produced by a 1-cm Kaufman-type ion source irradiated the
`substrate surface to assist the deposition. The ion flux was
`set at 1 mA/cm2. The deposition rate was 0.1 nm/s as mea-
`sured by a microbalance mounted on the substrate. Si(100)
`wafers were used as substrates. The deposited thin films have
`thicknesses of around 200 ∼ 300 nm. After deposition, X-ray
`diffraction (XRD), Raman spectroscopy and X-ray photoelec-
`tron spectroscopy (XPS) measurements were carried out to
`characterize the crystal, chemical binding and compositional
`properties of the deposited thin films.
`Figure 1 shows the XRD θ ∼ 2θ spectrum of an AlN
`thin film deposited by 400 eV nitrogen ion bombardment.
`The measurements were performed on a Philips X’Pert-MRD
`system. Cu Kα irradiation with an average wavelength of
`1.5418 Å was used as an X-ray source in the diffraction mea-
`surements. In the spectrum, besides the Si(200) and Si(400)
`diffraction peaks, there are four distinct peaks at 2θ = 38.5,
`44.7, 65.3 and 78.3, corresponding respectively to orienta-
`tions of (111), (200), (220) and (311) of the cubic AlN crys-
`tal22) although the crystal structure of the target is hexagonal.
`Hexagonal structures are not detected from Fig. 1 when the
`resolution of the MRD system is taken into account. The
`FWHM of the AlN(200) peak is about 0.27 degrees, lower
`than that of films deposited by plasma source molecular beam
`epitaxy.6) The formation of AlN cubic structures on Si(100)
`
`Si(400)
`
`AlN(311)
`
`AlN(220)
`
`AlN(111)
`
`AlN(200)
`
`Si(200)
`
`20
`
`Intensity(arb.unit)
`
`40
`
`60
`
`80
`
`2
`Fig. 1. XRD θ ∼ 2θ spectrum of a AlN thin film deposited by KrF laser
`l
`400 V
`T
`
`
`
`Recently there has been tremendous interest in the synthe-
`sis of AlN thin film due to its wide band gap and other desir-
`able properties of thermal conductivity, electrical resistivity
`(dielectric constant) and acoustic properties.1–3) Many exper-
`imental methods have been used to deposit AlN thin films, in-
`cluding metalorganic chemical vapor deposition (MOCVD),4)
`plasma-assisted molecular beam epitaxy (PAMBE),5–7) RF re-
`active magnetron sputtering,8–11) ion-assisted chemical vapor
`deposition12) and pulsed laser deposition (PLD).13–19) A num-
`ber of new theoretical works have also been published re-
`cently.20 21) Almost all the deposition methods require high
`substrate temperatures (normally above 600◦C) although the
`defects both inside the thin films and at the interface between
`the substrate and the thin film cannot be avoided.6) To date, all
`the deposited AlN thin films have hexagonal structures with a
`highly textured orientation of (0001) on sapphire, silicon and
`glass substrates.3 6 7 9 10 18 19)
`In our study, we attempted to use pulsed laser ablation to
`deposit AlN thin films on silicon substrates at room tempera-
`ture. PLD has been proven to be suitable to fabricate AlN thin
`films on silicon and sapphire substrates. Compared with other
`methods, PLD has two main aspects of advantages. First, it
`can faithfully transfer the target material to the substrate sur-
`face without an obvious change in the compositional ratios of
`compound materials. Second, the energetic radicals in the ab-
`lated plume are beneficial to the formation of ideal crystalline
`structures in the deposited thin films. In our experiments, the
`ion-assisted PLD combines the advantages of ion bombard-
`ment and laser ablation. With this approach, we can indepen-
`dently control the energies of the AlN radicals in the ablated
`plasma and the nitrogen ions in the ion beam to improve the
`quality of the deposited thin films. Moreover, the nitrogen
`ions can also compensate for the loss of nitrogen species in
`the ablation process.
`In the experiment, we used a KrF excimer laser at a wave-
`length of 248 nm to ablate an AlN target. The deposition was
`carried out in a PLD system with a background vacuum of
`1×10−6 Torr. An AlN target with a standard hexagonal crys-
`tal structure and a purity of 99.995% was mounted on a target
`holder that was rotated by an external motor. The target was
`placed 2 cm away from the substrate surface. The laser pulse
`duration was 30 ns The laser fluence was set at 2 J cm−2 with
`
`Page 163 of 304
`
`Ex. 1042, Page 163
`
`

`

`L 424
`
`Jpn. J. Appl. Phys. Vol. 39 (2000) Pt. 2, No. 5A
`
`Z.-M. REN et al.
`
`For the thin films deposited without nitrogen ions, no obvi-
`ous Raman peak can be observed, implying that the nitrogen
`ions can effectively improve the crystal property of the thin
`film. Although it induces defects, ion implantation can possi-
`bly benefit the growth of the crystal grains. The energetic ni-
`trogen ions can enhance the chemical combinations between
`Al and N atoms and thus lead to more and larger AlN crystal
`grains.
`The chemical binding and compositional properties of
`the AlN thin films were analyzed by XPS measurements.
`Figure 3 shows the XPS Al 2p spectra for three AlN thin films
`deposited with different ion energies. The binding energy of
`the Al 2p electron increases slightly with increasing nitrogen
`ion energy from 100 to 400 eV, due to the fact that the ener-
`getic nitrogen ions can effectively react with Al atoms to form
`AlN compounds. The binding energy of the Al 2p electron in
`the AlN compound is higher than that in atomic Al due to the
`weak shielding effect. Higher ion energy can lead to the for-
`
`Al 2p
`100 eV
`
`200 eV
`
`400 eV
`
`Intensity(arb.unit)
`
`Intensity(arb.unit)
`
`Intensity(arb.unit)
`
`70
`
`82
`
`80
`78
`76
`74
`72
`Binding Energy (eV)
`Fig. 3. XPS Al 2p spectra for AlN thin films deposited under different ni-
`trogen ion energies of 100, 200, and 400 eV. The laser fluence is 2 J/cm2.
`The ion flux is 1 mA/cm2.
`
`(a)
`
`400 eV N+
`
`N-Al
`
`N 1s
`
`N-N
`
`398
`
`(b)
`
`398
`
`406
`404
`402
`400
`Binding Energy (eV)
`N2 atmosphere
`N-N
`
`408
`
`N 1s
`
`N-Al
`
`406
`404
`402
`400
`Binding Energy (eV)
`f AlN
`fil
`
`408
`
`400 V N+
`
`F
`
`4 XPS N
`
`
`
`substrates is different from most other research results in
`which hexagonal AlN structures are formed.15 18 19) In the
`detailed studies6 7) of the microstructures and initial stages
`of thin-film deposition, AlN films have an initial amorphous
`region at the interface between the substrate and the thin
`film, followed by c-axis-oriented columnar grains. Substrate
`temperatures higher than 600◦C can significantly reduce the
`amorphous regions at the interface and promote to grow AlN
`with hexagonal (0001) orientation. However, in our deposi-
`tion, since substrate temperature is low, the c-axis-orientated
`growth of hexagonal AlN is not preferred. Instead, another
`metastable state of the crystal AlN with a cubic structure was
`obtained from our deposition, although the hexagonal AlN is
`possibly in a much stable state. The PLD at room temperature
`with the assistance of ion-beam coprocessing leads to mainly
`(111)-oriented c-AlN thin films.
`We also deposited AlN thin films without nitrogen ion
`bombardment. These deposited thin films exhibit no XRD
`peaks, indicating only amorphous structures. The result re-
`veals the important role of nitrogen ions in the synthesis of
`AlN thin films with cubic crystal structures. Moreover, ni-
`trogen ion energy lower than 400 eV leads to weaker and
`broader XRD peaks. Therefore, nitrogen ions with an en-
`ergy of 400 eV can effectively assist in the formation of cu-
`bic crystalline structures in the deposited thin films. When
`the nitrogen ion energy exceeds 400 eV, the deposition will
`be impeded due to the resputtering effect caused by the ion
`bombardment.
`Figure 2 shows the Raman spectra of the AlN thin films de-
`posited under the different nitrogen ion energies of 100, 200,
`and 400 eV. Similar to most other research findings,19 23 24)
`the Raman peaks of the AlN thin films are weak. The peaks at
`618, 670 and 826 cm−1 reflect the phonon modes of E1(TO),
`A1(LO) and E1(LO), respectively,23 24) indicating the crystal
`structures of the deposited thin films. The intensities of these
`Raman peaks increase with increasing nitrogen ion energy
`from 100 to 400 eV, implying that the nitrogen ion energy of
`400 eV is optimal for the deposition of crystal AlN thin films,
`in agreement with the XRD analysis result. Besides these
`peaks, there is a sharp and strong peak at 2333 cm−1 which is
`observed for the first time. The intensity of this peak also in-
`creases with the nitrogen ion energy and reaches a maximum
`when the ion energy increases to 400 eV. Therefore, this peak
`must originate from the cubic structure of AlN.
`
`Intensity(arb.unit)
`
`400 eV
`
`200 eV
`
`2333
`
`826
`670
`618
`
`Si
`
`100 eV
`2700
`
`Si
`1800
`900
`Raman Shift (cm-1)
`Fig. 2. Raman spectra of AlN thin films deposited under different nitrogen
`f 00 200
`400 V T l
`fl
`2 J/
`2 T
`
`Page 164 of 304
`
`Ex. 1042, Page 164
`
`

`

`Jpn. J. Appl. Phys. Vol. 39 (2000) Pt. 2, No. 5A
`
`Z-M.RENetal.
`
`L425
`
`mation of more Al—N bonds and therefore an increase in the
`bic AIN crystal. An ion energy of 400 eV was determined to
`Al 2p binding energy.
`be appropriate for the deposition process.
`Figure 4 shows two XPSNIs spectra for AIN thin films
`Acknowledgements
`deposited with and without the assistance of nitrogen ions,
`The authors would like to thank Miss. H. L. Koh for her
`respectively. It is evident that, in the thin films, there are two
`technical assistance in this research.
`nitrogen statuses related to N-N and N—AI bonds. Thediffer-
`ence between these two spectra in Fig. 4 is quite obvious. The
`thin film deposited in the N> atmosphere has a very strong N—
`N peak whereas that deposited with 400 eV N* implantation
`has a strong N—Al peak. The nitrogen ions in the deposition
`promote the formation of Al-N bondsand reducethe density
`of N-N bonds. Therefore, nitrogen ions with an energy of
`about 400 eV are beneficial to the synthesis of AIN thin films,
`in agreement with the above XRD and Raman results.
`The N/AI atomicratio of the deposited thin films is in the
`range of 0.90 to 1.12. The N/Al atomic ratio is evaluated us-
`ing N : Al = An/Sy : Aai/Sai. where Ay and Ag) are the
`areas under the Nls and Al2p peaks, and the constants Sy
`and Sq) are the sensitivity factors of nitrogen and aluminum,
`respectively. The ratio is slightly lower than 1.0 when the
`ion energy is 400 eV, due to the resputtering effect. Depo-
`sition with ion-beam bombardmentis a nonequilibrium pro-
`cess. The low substrate temperature does not provide any en-
`ergy for the equilibrium growth of an AIN crystal. The de-
`position is accomplished by energetic ions with energies of
`about 400eV. Therefore, the crystalline growth mechanism
`is quite different from other deposition methods where high
`substrate temperatures and low ion energies are employed.
`Hexagonal AIN thin films were deposited by PLD at substrate
`temperatures above 675°C)>-!®) and by RF magnetic sputter-
`ing and molecular beam epitaxy with substrate temperatures
`higher than 400°C,°-9:!0!9even onsilicon®?:!®) and glass!
`substrates. However, in our deposition, the c-axis-oriented
`growth which leads to the hexagonal structure is not possible
`due to the low substrate temperature. In contrast, the ener-
`getic ions promote the formation of another metastable state
`of crystal AIN with a cubic structure. Therefore, the use of
`nitrogen ions with the energy of about 400 eV plays an im-
`portantrole in the formation of a cubic AIN crystal.
`In summary, AIN thin films were deposited at room tem-
`perature on Si(100) substrates by nitrogen-ion-assisted pulsed
`laser ablation of a hexagonal AIN target. The thin films
`have cubic crystal structures with orientations of (111), (200),
`(220) and (311), different from most other research results in
`which hexagonal AIN was obtained. Energetic nitrogen ion
`implantation plays an importantrole in the formation of a cu-
`
`1) W.R.L. Lambrecht: Mater. Res. Symp. Proc. 339 (1994) 565.
`2) F. A. Ponce, S. P. DenBaars, B. K. Meyer, S. Nakamura and S.Strite:
`Nitride Semiconductors (Materials Research Society, Boston, 1998).
`3) K. A. Jones, K. Xie, D. W. Eckart, M. C. Wood, V. Talyansky, R. D.
`Vispute, T. Venkatesan, K. Wongchotigul and M. Spencer: J. Appl.
`Phys. 83 (1998) 8010.
`4) P. Kung,A. Saxler, X. Zhang, D. Walker, T. C. Wang, I. Furguson and
`M.Razeghi: Appl. Phys. Lett. 66 (1995) 2958.
`5) K.S. Stevens, A. Ohtani, M. Kinniburgh and R. Beresford: Appl. Phys.
`Lett. 65 (1994) 321.
`6) G. W. Auner,F. Jin, V. M. Naik and R. Naik: J. Appl. Phys. 85 (1999)
`7879.
`7) J.R. Heffelfinger, D. L. Medlin and K. F. Mccarty: J. Appl. Phys. 85
`(1999) 466.
`8) W.J. Meng, J. Heremans and Y. T. Chang: Appl. Phys. Lett. 59 (1991)
`2097.
`9) E. Dogheche, D. Remiens, A. Boudrioua and J. C. Loulergue: Appl.
`Phys. Lett. 74 (1999) 1209.
`10) A. Rodriguez-Navarro, W. Otano-Rivera, L. J. Pilione, R. Messier and
`J. M.Garcia-Ruiz: J. Vac. Sci. & Technol. A 16 (1998) 1244.
`11) H. Y. Joo, H. J. Kim, S.J. Kim and S. Y. Kim: J. Vac. Sci. & Technol.
`A 17 (1999) 862.
`12) J.C.Sanchez-Lopez, L. Contreas, A. Femandez, A. R. Gonzalez-Elipe,
`J.M.Martin and B. Vacher: Thin Solid Films 317 (1998) 100.
`13) T.F. Huang and J. S. Harris, Jr: Appl. Phys. Lett. 72 (1998) 1158.
`14) V. Talyansky, R. D. Vispute, R. Ramesh, R. P. Sharma, T. Venkatesan,
`Y. X. Li, L. G. Salamanca-Riba, M. C. Wood, R. T. Lareau, K. A. Jones
`and A. A. Iliadis: Thin Solid Films 323 (1998) 37.
`15) G. S. Sudhir, H. Fujii, W. S. Wong, C. Kisielowski, N. Newman, C.
`Dieker, Z. Liliental-Weber, M. D. Rubin and E. R. Weber: Appl. Surf.
`Sci. 127 (1998) 471.
`16) R.D.-Vispute, J. Narayan and J. D. Budai: Thin Solid Films 299 (1997)
`94.
`17) M. He, N. Cheng, P. Zhou, H. Okabe and J. B. Halpern: J. Vac. Sci. &
`Technol. A 16 (1998) 2372.
`18) A. Kumar, H.L.Chan,J.J. Weimer and L. Sanderson: Thin Solid Films
`308/309 (1997) 406.
`19) K. Jagannadham, A. K. Sharma, Q. Wei, R. Kalyanraman and J.
`Narayan: J. Vac. Sci. & Technol. A 16 (1998) 2804.
`20) R. Di Felice and J. E. Northrup: Appl. Phys. Lett. 73 (1998) 936.
`21) R.DiFelice,C.M.Bertoni and A. Catellani: Appl. Phys. Lett.74 (1999)
`2137.
`22) H.Volistadt: Proc. Jpn. Acad. B 66 (1990) 7.
`23) C.Carlone, K. M. Lakin and H. R. Shanks: J. Appl. Phys. 55 (1984)
`4010.
`24) L.E. McNeil, M. Grimsditch and R. H. French: J. Am. Ceram. Soc. 76
`(1993) 1132.
`
`Page 165 of 304
`
`Ex. 1042, Page 165
`
`Ex. 1042, Page 165
`
`

`

`(cid:8)(cid:17)(cid:18)(cid:16)
`(cid:5)(cid:6)(cid:6)(cid:7) (cid:8)(cid:9)(cid:7)(cid:10)(cid:9)(cid:11)(cid:12)(cid:8)(cid:13)(cid:11)(cid:9) (cid:14)(cid:15)(cid:16)(cid:8)(cid:17)(cid:9)(cid:14)(cid:18)(cid:14) (cid:6)(cid:19)
`(cid:19)(cid:18)(cid:20)(cid:7)(cid:14) (cid:21)(cid:15) (cid:16)(cid:18)(cid:8)(cid:11)(cid:6)(cid:22)(cid:9)(cid:16)(cid:4)(cid:18)(cid:6)(cid:16)(cid:4)(cid:12)(cid:14)(cid:14)(cid:18)(cid:14)(cid:8)(cid:9)(cid:23) (cid:10)(cid:13)(cid:20)(cid:14)(cid:9)(cid:23) (cid:20)(cid:12)(cid:14)(cid:9)(cid:11)
`(cid:23)(cid:9)(cid:10)(cid:6)(cid:14)(cid:18)(cid:8)(cid:18)(cid:6)(cid:16)
`
`(cid:5)(cid:6)(cid:7)(cid:8) (cid:9)(cid:10)(cid:11) (cid:12)(cid:13)(cid:14)(cid:15)(cid:16)(cid:9)(cid:17) (cid:13)(cid:18) (cid:19)(cid:20)(cid:20) (cid:6)(cid:8)(cid:21) (cid:22)(cid:23)(cid:24)(cid:10)(cid:6)(cid:25)(cid:10) (cid:24)(cid:24)(cid:26) (cid:27)(cid:28)(cid:29)(cid:30) (cid:31)(cid:32)(cid:33)(cid:33)(cid:33)(cid:34)(cid:35) (cid:23)(cid:7)(cid:7)(cid:20)(cid:10)(cid:11)(cid:36)(cid:36)(cid:21)(cid:13)(cid:6)(cid:37)(cid:13)(cid:15)(cid:38)(cid:36)(cid:39)(cid:33)(cid:37)(cid:39)(cid:33)(cid:30)(cid:28)(cid:36)(cid:39)(cid:37)(cid:39)(cid:28)(cid:32)(cid:33)(cid:33)(cid:39)(cid:33)
`(cid:40)(cid:14)(cid:41)(cid:42)(cid:6)(cid:7)(cid:7)(cid:8)(cid:21)(cid:11) (cid:39)(cid:33) (cid:19)(cid:20)(cid:15)(cid:6)(cid:17) (cid:32)(cid:33)(cid:33)(cid:33) (cid:37) (cid:19)(cid:25)(cid:25)(cid:8)(cid:20)(cid:7)(cid:8)(cid:21)(cid:11) (cid:32)(cid:43) (cid:19)(cid:14)(cid:38)(cid:14)(cid:10)(cid:7) (cid:32)(cid:33)(cid:33)(cid:33) (cid:37) (cid:22)(cid:14)(cid:41)(cid:17)(cid:6)(cid:10)(cid:23)(cid:8)(cid:21) (cid:44)(cid:16)(cid:17)(cid:6)(cid:16)(cid:8)(cid:11) (cid:32)(cid:43) (cid:45)(cid:13)(cid:46)(cid:8)(cid:42)(cid:41)(cid:8)(cid:15) (cid:32)(cid:33)(cid:33)(cid:33)
`
`(cid:47)(cid:37) (cid:48)(cid:37) (cid:49)(cid:8)(cid:16)(cid:26) (cid:50)(cid:37) (cid:51)(cid:37) (cid:52)(cid:14)(cid:26) (cid:53)(cid:37) (cid:54)(cid:37) (cid:45)(cid:6)(cid:26) (cid:55)(cid:37) (cid:50)(cid:37) (cid:51)(cid:37) (cid:52)(cid:6)(cid:8)(cid:56)(cid:26) (cid:57)(cid:37) (cid:19)(cid:37) (cid:5)(cid:23)(cid:8)(cid:13)(cid:16)(cid:38)(cid:26) (cid:40)(cid:37) (cid:58)(cid:37) (cid:5)(cid:23)(cid:13)(cid:56)(cid:26) (cid:48)(cid:37) (cid:52)(cid:37) (cid:45)(cid:38)(cid:26) (cid:9)(cid:16)(cid:21) (cid:12)(cid:37) (cid:22)(cid:37) (cid:59)(cid:9)(cid:16)(cid:38)
`
`(cid:25)(cid:5)(cid:26)(cid:27)(cid:28)(cid:29)(cid:30)(cid:31) (cid:32)(cid:33)(cid:34) (cid:35)(cid:25)(cid:32) (cid:36)(cid:30) (cid:27)(cid:37)(cid:26)(cid:30)(cid:5)(cid:30)(cid:31)(cid:26)(cid:30)(cid:38) (cid:27)(cid:37)
`
`(cid:40)(cid:7)(cid:15)(cid:14)(cid:25)(cid:7)(cid:14)(cid:15)(cid:9)(cid:17) (cid:25)(cid:23)(cid:9)(cid:15)(cid:9)(cid:25)(cid:7)(cid:8)(cid:15)(cid:6)(cid:10)(cid:7)(cid:6)(cid:25)(cid:10) (cid:13)(cid:18) (cid:19)(cid:17)(cid:45) (cid:18)(cid:6)(cid:17)(cid:42)(cid:10) (cid:21)(cid:8)(cid:20)(cid:13)(cid:10)(cid:6)(cid:7)(cid:8)(cid:21) (cid:41)(cid:24) (cid:20)(cid:14)(cid:17)(cid:10)(cid:8)(cid:21) (cid:17)(cid:9)(cid:10)(cid:8)(cid:15) (cid:21)(cid:8)(cid:20)(cid:13)(cid:10)(cid:6)(cid:7)(cid:6)(cid:13)(cid:16) (cid:9)(cid:16)(cid:21) (cid:15)(cid:8)(cid:9)(cid:25)(cid:7)(cid:6)(cid:46)(cid:8)
`(cid:42)(cid:9)(cid:38)(cid:16)(cid:8)(cid:7)(cid:15)(cid:13)(cid:16) (cid:10)(cid:20)(cid:14)(cid:7)(cid:7)(cid:8)(cid:15)(cid:6)(cid:16)(cid:38)(cid:11) (cid:19) (cid:25)(cid:13)(cid:42)(cid:20)(cid:9)(cid:15)(cid:9)(cid:7)(cid:6)(cid:46)(cid:8) (cid:10)(cid:7)(cid:14)(cid:21)(cid:24)
`(cid:12)(cid:13)(cid:14)(cid:15)(cid:16)(cid:9)(cid:17) (cid:13)(cid:18) (cid:60)(cid:9)(cid:25)(cid:14)(cid:14)(cid:42) (cid:40)(cid:25)(cid:6)(cid:8)(cid:16)(cid:25)(cid:8) (cid:61) (cid:55)(cid:8)(cid:25)(cid:23)(cid:16)(cid:13)(cid:17)(cid:13)(cid:38)(cid:24) (cid:19) (cid:39)(cid:40)(cid:26) (cid:32)(cid:43)(cid:33)(cid:29) (cid:31)(cid:39)(cid:62)(cid:62)(cid:43)(cid:34)(cid:35) (cid:23)(cid:7)(cid:7)(cid:20)(cid:10)(cid:11)(cid:36)(cid:36)(cid:21)(cid:13)(cid:6)(cid:37)(cid:13)(cid:15)(cid:38)(cid:36)(cid:39)(cid:33)(cid:37)(cid:39)(cid:39)(cid:39)(cid:30)(cid:36)(cid:39)(cid:37)(cid:63)(cid:43)(cid:39)(cid:29)(cid:32)(cid:63)
`
`(cid:64)(cid:13)(cid:16)(cid:4)(cid:9)(cid:10)(cid:10)(cid:6)(cid:10)(cid:7)(cid:8)(cid:21) (cid:20)(cid:14)(cid:17)(cid:10)(cid:8)(cid:21) (cid:17)(cid:9)(cid:10)(cid:8)(cid:15) (cid:21)(cid:8)(cid:20)(cid:13)(cid:10)(cid:6)(cid:7)(cid:6)(cid:13)(cid:16) (cid:13)(cid:18) (cid:9)(cid:17)(cid:14)(cid:42)(cid:6)(cid:16)(cid:14)(cid:42) (cid:16)(cid:6)(cid:7)(cid:15)(cid:6)(cid:21)(cid:8) (cid:7)(cid:23)(cid:6)(cid:16) (cid:18)(cid:6)(cid:17)(cid:42)(cid:10)
`(cid:12)(cid:13)(cid:14)(cid:15)(cid:16)(cid:9)(cid:17) (cid:13)(cid:18) (cid:19)(cid:20)(cid:20)(cid:17)(cid:6)(cid:8)(cid:21) (cid:22)(cid:23)(cid:24)(cid:10)(cid:6)(cid:25)(cid:10) (cid:24)(cid:41)(cid:26) (cid:39)(cid:63)(cid:29)(cid:33) (cid:31)(cid:32)(cid:33)(cid:33)(cid:33)(cid:34)(cid:35) (cid:23)(cid:7)(cid:7)(cid:20)(cid:10)(cid:11)(cid:36)(cid:36)(cid:21)(cid:13)(cid:6)(cid:37)(cid:13)(cid:15)(cid:38)(cid:36)(cid:39)(cid:33)(cid:37)(cid:39)(cid:33)(cid:30)(cid:28)(cid:36)(cid:39)(cid:37)(cid:28)(cid:27)(cid:32)(cid:33)(cid:29)(cid:30)
`
`(cid:65)(cid:20)(cid:6)(cid:7)(cid:9)(cid:66)(cid:6)(cid:9)(cid:17) (cid:38)(cid:15)(cid:13)(cid:56)(cid:7)(cid:23) (cid:13)(cid:18) (cid:19)(cid:17)(cid:45) (cid:7)(cid:23)(cid:6)(cid:16) (cid:18)(cid:6)(cid:17)(cid:42)(cid:10) (cid:13)(cid:16) (cid:10)(cid:6)(cid:17)(cid:6)(cid:25)(cid:13)(cid:16) (cid:31)(cid:39)(cid:39)(cid:39)(cid:34) (cid:10)(cid:14)(cid:41)(cid:10)(cid:7)(cid:15)(cid:9)(cid:7)(cid:8)(cid:10) (cid:41)(cid:24) (cid:20)(cid:14)(cid:17)(cid:10)(cid:8)(cid:21) (cid:17)(cid:9)(cid:10)(cid:8)(cid:15) (cid:21)(cid:8)(cid:20)(cid:13)(cid:10)(cid:6)(cid:7)(cid:6)(cid:13)(cid:16)
`(cid:12)(cid:13)(cid:14)(cid:15)(cid:16)(cid:9)(cid:17) (cid:13)(cid:18) (cid:19)(cid:20)(cid:20)(cid:17)(cid:6)(cid:8)(cid:21) (cid:22)(cid:23)(cid:24)(cid:10)(cid:6)(cid:25)(cid:10) (cid:41)(cid:41)(cid:26) (cid:29)(cid:27)(cid:32)(cid:29) (cid:31)(cid:39)(cid:62)(cid:62)(cid:63)(cid:34)(cid:35) (cid:23)(cid:7)(cid:7)(cid:20)(cid:10)(cid:11)(cid:36)(cid:36)(cid:21)(cid:13)(cid:6)(cid:37)(cid:13)(cid:15)(cid:38)(cid:36)(cid:39)(cid:33)(cid:37)(cid:39)(cid:33)(cid:30)(cid:28)(cid:36)(cid:39)(cid:37)(cid:28)(cid:63)(cid:62)(cid:29)(cid:29)(cid:39)
`
`(cid:12)(cid:13)(cid:14)(cid:15)(cid:16)(cid:9)(cid:17) (cid:13)(cid:18) (cid:19)(cid:20)(cid:20)(cid:17)(cid:6)(cid:8)(cid:21) (cid:22)(cid:23)(cid:24)(cid:10)(cid:6)(cid:25)(cid:10) (cid:24)(cid:24)(cid:26) (cid:27)(cid:28)(cid:29)(cid:30) (cid:31)(cid:32)(cid:33)(cid:33)(cid:33)(cid:34)(cid:35) (cid:23)(cid:7)(cid:7)(cid:20)(cid:10)(cid:11)(cid:36)(cid:36)(cid:21)(cid:13)(cid:6)(cid:37)(cid:13)(cid:15)(cid:38)(cid:36)(cid:39)(cid:33)(cid:37)(cid:39)(cid:33)(cid:30)(cid:28)(cid:36)(cid:39)(cid:37)(cid:39)(cid:28)(cid:32)(cid:33)(cid:33)(cid:39)(cid:33)
`
`(cid:24)(cid:24)(cid:26) (cid:27)(cid:28)(cid:29)(cid:30)
`
`(cid:67) (cid:32)(cid:33)(cid:33)(cid:33) (cid:19)(cid:42)(cid:8)(cid:15)(cid:6)(cid:25)(cid:9)(cid:16) (cid:64)(cid:16)(cid:10)(cid:7)(cid:6)(cid:7)(cid:14)(cid:7)(cid:8) (cid:13)(cid:18) (cid:22)(cid:23)(cid:24)(cid:10)(cid:6)(cid:25)(cid:10)(cid:37)
`
`Page 166 of 304
`
`Ex. 1042, Page 166
`
`

`

`JOURNAL OF APPLIED PHYSICS
`VOLUME 88, NUMBER 12
`15 DECEMBER 2000
`Room temperature synthesis of c-AlN thin films by nitrogen-ion-assisted
`pulsed laser deposition
`Z. M. Ren, Y. F. Lu,a) and H. Q. Ni
`Laser Microprocessing Laboratory, Department of Electrical Engineering and Data Storage Institute,
`National University of Singapore, 10 Kent Ridge Crescent, 119260 Singapore
`T. Y. F. Liew, B. A. Cheong, S. K. Chow, M. L. Ng, and J. P. Wang
`Data Storage Institute, 5 Engineering Drive 1, 117608 Singapore
`共Received 10 April 2000; accepted for publication 28 August 2000兲
`Cubic aluminum nitride (c-AlN) thin films have been deposited at room temperature on silicon
`substrates by nitrogen-ion-assisted pulsed laser ablation of a hexagonal AlN target. The deposited
`thin films exhibit good crystal properties with sharp x-ray diffraction peaks. The influences of the
`nitrogen ion energy on the morphological, compositional, and electronic properties of the AlN thin
`films have been studied. The nitrogen ions can effectively promote the formation of Al–N bonds
`and improve the crystal properties of the deposited thin films. A nitrogen ion energy of 400 eV is
`proposed to deposit high quality c-AlN thin films. © 2000 American Institute of Physics.
`关S0021-8979共00兲03623-9兴
`
`I. INTRODUCTION
`Aluminum nitride is increasingly receiving high interest
`from the material research community due to its wide band
`gap, high thermal conductivity, high electrical resistivity 共di-
`electric constant兲, and good acoustic properties.1–3 Many re-
`search groups are exploring the synthesis of high quality
`AlN. Some experimental methods have been used to deposit
`AlN thin films,
`including metalorganic chemical vapor
`deposition,4 plasma-assisted molecular beam epitaxy,5–7 rf
`reactive magnetron sputtering,8–11 ion-assisted chemical va-
`por deposition12 and pulsed laser deposition 共PLD兲.13–19
`Most of the deposition methods require high substrate tem-
`peratures 共normally above 800 C兲 although the defects, both
`in the thin films and at the interface between the substrate
`and the thin film, cannot be avoided.6 Such a high substrate
`temperature is undesira

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket