throbber
Part 1: Fundamentals of
`Projected-Capacitive
`Touch Technology
`
`Geoff Walker
`Senior Touch Technologist
`Intel Corporation
`
`June 1, 2014
`
`Must use exact
`capitalization!
`
`File Download: www.walkermobile.com/Touch_Technologies_Tutorial_Latest_Version.pdf
`
`DISPLAY WEEK ‘14
`
`v1.2
`
`1
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Agenda
`
` Introduction
` Basic Principles
` Controllers
` Sensors
` ITO-Replacement Materials
` Modules
` Embedded
` Large-Format
` Stylus
` Software
` Conclusions
` Appendix A: Historical Embedded Touch
`
`DISPLAY WEEK ‘14
`
`2
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Introduction
` P-Cap History
` P-Cap Penetration
` P-Cap by Application
` Touch User-Experience
`
`File Download: www.walkermobile.com/Touch_Technologies_Tutorial_Latest_Version.pdf
`
`DISPLAY WEEK ‘14
`
`3
`
`Must use exact
`capitalization!
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`P-Cap History
`
`Company
`UK Royal Radar
`Establishment
`(E.A. Johnson)
`CERN (Bent Stumpe)
`
`Dynapro Thin Films
`(acquired by 3M Touch
`Systems in 2000)
`Zytronic (first license from
`Ronald Binstead, an
`inventor in the UK)
`
`Visual Planet (second
`license from Ronald
`Binstead)
`Apple
`
`Significance
`First published application of transparent
`touchscreen (mutual-capacitance p-cap on
`CRT air-traffic control terminals)
`Second published application of mutual-
`capacitance p-cap (in the control room of
`the CERN proton synchrotron)
`First commercialization of mutual-
`capacitive p-cap (renamed as Near-Field
`Imaging by 3M)
`First commercialization of large-format
`self-capacitive p-cap;
`first commercialization of large-format
`mutual-capacitive p-cap
`Second commercialization of large-format
`self-capacitive p-cap
`
`Year
`1965
`
`1977
`
`1995
`
`1998
`
`2012
`
`2003
`
`First use of mutual-capacitive p-cap in a
`consumer electronics product (the iPhone)
`
`2007
`
`
`
`DISPLAY WEEK ‘14
`
`4
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`P-Cap Penetration
`
`% of Units Shipped
`
`Embedded
`= P-Cap
`
`Source: DisplaySearch Touch-Panel Market Analysis Reports 2008-2014
`
`DISPLAY WEEK ‘14
`
`5
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`P-Cap Forecast by Application…1
`(Consumer)
`
`Million Units
`120
`
`100
`
`80
`
`60
`
`40
`
`20
`
`0
`
`PDA
`Desktop Monitor
`Video Camera
`All‐in‐one PC
`Portable Game
`Still Camera
`EPD eReader
`Media Player
`Smart Watch
`Navigation Device
`Notebook PC
`
`2018
`2017
`2016
`2015
`2014
`2013
`2012
`2018: Phones = 1.8 Billion Units; Tablets = 447 Million Units
`Source: DisplaySearch Touch-Panel Market Analysis Report 1Q-2014
`
`DISPLAY WEEK ‘14
`
`6
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`P-Cap Forecast by Application…2
`(Commercial)
`
`Million Units
`8.0
`
`7.0
`
`6.0
`
`5.0
`
`4.0
`
`3.0
`
`2.0
`
`1.0
`
`0.0
`
`2012
`2013
`2014
`2015
`2016
`2017
`2018: Automobile Monitor = 42 Million Units
`Source: DisplaySearch Touch-Panel Market Analysis Report 1Q-2014
`
`2018
`
`DISPLAY WEEK ‘14
`
`7
`
`Education/Training
`Point of Interest
`Ticketing/Check‐in
`Casino Game
`Medical Equipment
`ATM Machine
`Office Equipment
`Retail and POS/ECR
`Factory Equipment
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`P-Cap Defines the Standard
`for Touch User-Experience
` Smartphones and tablets have set the standard
`for touch in SEVERAL BILLION consumers’ minds
` Multiple simultaneous touches
`(robust multi-touch)
` Extremely light touch (zero force)
` Flush surface (“zero-bezel”
`or “edge-to-edge”)
`
` Excellent optical performance
` Very smooth & fast scrolling
` Reliable and durable
` An integral part of the
`device user experience
`
`DISPLAY WEEK ‘14
`
`8
`
`Source: AP / NBC News
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Basic Principles
` Self Capacitive
` Mutual Capacitive
` Mutual Capacitive Electrode Patterns
`
`DISPLAY WEEK ‘14
`
`9
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Self-Capacitance
`
` Capacitance of a single electrode to ground
` Human body capacitance increases the capacitance
`of the electrode to ground
` In a self-capacitance sensor, each electrode is measured
`individually
`
`Source: The author
`
`DISPLAY WEEK ‘14
`
`10
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`The Problem with Self-Capacitance
`
` Touches that are diagonally separated produce
`two maximums on each axis (real points & ghost points)
` Ghost points = False touches positionally related to real touches
`
`Self Capacitance
`
`Mutual Capacitance
`
`Source: Atmel
`
`DISPLAY WEEK ‘14
`
`11
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Self-Capacitance and
`Pinch/Zoom Gestures
` Use the direction of movement of the points rather
`than the ambiguous locations
`
`Y3
`
`Y2
`
`Y1
`
`X1
`
`X2
`
`X3
`
`X4
`
`Source: The author
`
`DISPLAY WEEK ‘14
`
`12
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Self-Capacitance Electrode Variations
`
`20 measurements
`
`Source: 3M
`
`20 measurements
`
` Multiple separate pads
`in a single layer
` Each pad is scanned
`individually
`
` Rows and columns of electrodes
`in two layers
` Row & column electrodes are
`scanned in sequence
`
`DISPLAY WEEK ‘14
`
`13
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Self-Capacitance
`Advantages & Disadvantages
`

`
`


`
`Self-Capacitive Advantages Self-Capacitive Disadvantages
`Simpler, lower-cost sensor
`Limited to 1 or 2 touches with ghosting
`Can be a single layer
`Lower immunity to LCD noise
`Long-distance field projection
`Lower touch accuracy
`Can be used with active guard Harder to maximize SNR
`Fast measurement
`
`
` Where it’s used
` Lower-end smartphones and feature-phones with touch
`● Becoming much less common due to single-layer p-cap
` In combination with mutual capacitance to increase capability
`
`DISPLAY WEEK ‘14
`
`14
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Self-Capacitance for Hover
`
` Self-capacitance is used to produce “hover”
`behavior in some smartphones (in addition to
`mutual-capacitance for contact-touch location)
` Also used for automatically detecting glove vs. fingernail vs. skin,
`and for dealing with water on the screen
`
`Source: Panasonic
`
`Source: Cypress
`
`DISPLAY WEEK ‘14
`
`15
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Multi-Touch Self-Capacitance
`Using Active Guard Concept…1
` Guarding is a well-known technique for reducing the
`effects of electrical current leakage
`
`Source: Fogale
`
`DISPLAY WEEK ‘14
`
`16
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Multi-Touch Self-Capacitance
`Using Active Guard Concept…2
` Another contender: zRRo
`
`3D single-touch
`for smartphones
`
`3D multi-touch
`for smartphones
`and tablets
`
`DISPLAY WEEK ‘14
`
`Source: zRRo
`
`17
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Mutual Capacitance
`
` Capacitance between two electrodes
` Human body capacitance “steals charge” which decreases
`the capacitance between the electrodes
` In a mutual-capacitance sensor, each electrode intersection
`is measured individually
`
`Source: The author
`
`DISPLAY WEEK ‘14
`
`18
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Mutual Capacitance
`Electrode Patterns…1
` Rows and columns of
`electrodes in two layers
`
` In the real world…
` “Bar and stripe”, also called
`“Manhattan” or “Flooded-X”
`(LCD noise self-shielding)
`
`11 x 9 = 99 measurements
`
`Source: 3M
`
`DISPLAY WEEK ‘14
`
`19
`
`4 x 10 = 40 measurements
`
`Source: Cypress
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Mutual Capacitance
`Electrode Patterns…2
` Interlocking diamond pattern
`with ITO in “one layer” with bridges
`4.5 mm typical
`
`Source: 3M
`
`Source: The author
`
`DISPLAY WEEK ‘14
`
`20
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`More On Mutual Capacitance…1
`
` BTW, there isn’t just one mutual capacitance…
`
`Source: Cypress
`
`DISPLAY WEEK ‘14
`
`21
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`More On Mutual Capacitance…2
`
` And there are more capacitors than just the Cm’s…
`
`Source: Cypress
`Source: ELAN, modified by the author
`
`DISPLAY WEEK ‘14
`
`22
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`More On Mutual Capacitance…3
`

`
`


`
`Mutual-Capacitive Advantages Mutual-Capacitive Disadvantages
`2 or more unambiguous touches More complex, higher-cost controller
`Higher immunity to LCD noise
`2 layers (or 1 with bridges) for >3 pts
`Higher touch accuracy
`
`More flexibility in pattern design
`
`Easier to maximize SNR
`
`
` Where it’s used
` Mid & high-end smartphones, tablets,
`Ultrabooks, AiOs, commercial products
`● Standalone self-capacitive is becoming increasingly rare
`in consumer electronics (except for buttons)
` With “true single-layer” sensors in low-end smartphones
`
`DISPLAY WEEK ‘14
`
`23
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Mutual Capacitance
`Electrode Patterns…3
` Bars & stripes require bridges too…
`
`DISPLAY WEEK ‘14
`
`Source: Synaptics
`
`24
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Mutual Capacitance
`Electrode Patterns…4
` And so does this unusual diamond pattern…
` 102, 106, 108, 210
`● Drive (X) electrodes
` 114 & 202
`● Sense (Y) electrodes
` 110
`● Bridges
` 120 & 230
`● Dummy (floating) ITO
` 200 & 206
`● Optional dummy ITO
` 212
`● Blank (no ITO)
`
`Source: STMicro
`
`DISPLAY WEEK ‘14
`
`25
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Mutual Capacitance
`Electrode Patterns…5
` Claimed advantages of this particular
`pattern over traditional interlocking diamond
` Reduction in sense electrode area reduces LCD noise pickup
` “Finger projections” (0.1 – 0.2 mm) increase the perimeter of
`interaction between drive and sense electrodes, which
`increases sensitivity
` Linearity is improved due to more uniform coupling across channels
` Floating separators aid in increasing the fringing fields, which
`increases sensitivity
`
`DISPLAY WEEK ‘14
`
`26
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Mutual Capacitance
`Electrode Patterns…6
` Holy Grail: True single-layer mutual capacitance sensor
` “Caterpillar” pattern
` Everybody’s single-
`layer patterns are
`proprietary
` Requires fine
`patterning, low sheet
`resistance & low
`visibility
` Benefits: Narrow
`borders, thin stack-
`ups, lower cost, can
`reliably handle 2-3
`touches
`
`Source: Synaptics
`
`DISPLAY WEEK ‘14
`
`27
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Mutual Capacitance
`Electrode Patterns…7
` ELAN’s caterpillar pattern
`
`DISPLAY WEEK ‘14
`
`Source: ELAN
`
`28
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Mutual Capacitance
`Electrode Patterns…8
` An alternative true single-layer pattern from ELAN
` This is a very small portion
`of a much larger sensor
`
`DISPLAY WEEK ‘14
`
`29
`
`Source: ELAN
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Controllers
` Architecture
` Touch Image Processing
` Key Characteristics
` Signal-to-Noise Ratio
` Noise Management
` Innovation Areas
` Suppliers
`
`DISPLAY WEEK ‘14
`
`30
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Mutual Capacitance
`Touch System Architecture
`
`Source: The author
`
` Making X*Y measurements is OK, but it’s better
`to measure the columns simultaneously
` Controllers can be ganged (operate in a
`master-slave relationship) for larger screens
`
`DISPLAY WEEK ‘14
`
`31
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Touch Image Processing
`
`Raw data including noise
`
`Filtered data
`
`Gradient data
`
`Touch region coordinates
`and gradient data
`
`Touch regions
`
`“10 fingers,
`2 palms
`and
`3 others”
`
`Source: Apple Patent Application #2006/0097991
`
`DISPLAY WEEK ‘14
`
`32
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Key Controller Characteristics…1
`
` Node count (x channels + y channels)
` Given typical electrode spacing of 4.5 to 5 mm, this determines
`how large a touchscreen the controller can support (w/o ganging)
` Scan rate
` Frames per second (fps) – faster reduces latency for a better UX
` Windows logo requires 100 fps; Android is unspecified
` Signal-to-noise ratio (SNR)
` More info on upcoming slides
` Operating voltage & current
` OEMs continue to request lower-power touchscreen systems
` Win8 “Connected Standby” is a significant influence
` Internal core (micro/DSP)
` Varies from small 8-bit micro to ARM-7 or higher
`
`DISPLAY WEEK ‘14
`
`33
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Key Controller Characteristics…2
`
` Number of simultaneous touches
` Windows Logo requires 5 (except AiO = 2); Android is unspecified
` Market trend is 10 for tablets and notebooks
` Support for unintended touches
` “Palm rejection”, “grip suppression”, etc.
` Rarely specified, but critically important
` For a 22” screen, even 50 touches isn’t too many in this regard
` Amount of “tuning” required
` Never specified – more info on upcoming slide
`
`DISPLAY WEEK ‘14
`
`34
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Signal-to-Noise Ratio (SNR)…1
`
` SNR = Industry-standard performance metric
`for p-cap touchscreen systems
` However, no standard methodologies exist for measuring,
`calculating, and reporting SNR
` The two components (signal & noise) depend heavily on
`the device under test
` Noise from displays (LCDs & OLEDs) and from
`USB chargers is spiky – it doesn’t have a normal
`(Gaussian) distribution – and spikes create jitter
` Yet marketers typically specify SNR in the absence of noise,
`using the RMS noise (standard deviation) of analog-to-digital
`convertors (ADCs)
` With Gaussian noise, you can multiply the RMS noise by 6 to
`calculate the peak-to-peak noise with 99.7% confidence
`
`DISPLAY WEEK ‘14
`
`35
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Signal-to-Noise Ratio (SNR)…2
`
` Typical system (raw ADC data, no digital filters applied)
`
`Noise (CNS)
`
`Source: Cypress
`(modified by the author)
`
`DISPLAY WEEK ‘14
`
`36
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Signal-to-Noise Ratio (SNR)…3
`
` SNR of system in previous slide
` CFinger = Mean (Finger) - Mean (NoFinger)
` CFinger = 1850 - 813 = 1037
`
` CNS (Standard Deviation) = 20.6 counts
` CNS (Peak-to-Peak) = Max (NoFinger) - Min (NoFinger) +1
` CNS = 900 - 746 +1 = 155 counts
`
` SNR (Peak-to-Peak) = 1037/155 = 6.7
` SNR (Standard Deviation) = 1037/20.6 = 49.9
` Highest SNR currently reported by marketer = 70 dB (3,162*)
`
`* Signal amplitude ratio in dB = 20log10 (A1 / A0)
`
`DISPLAY WEEK ‘14
`
`37
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Noise Management…1
`
` Charger noise is common-mode
` A smartphone on a desk (not handheld) isn’t grounded, so the
`entire phone moves relative to earth ground as it follows the noise
` A touching finger provides an alternative path to ground, which
`is equivalent to injecting the noise at the finger location
` The noise signal can be 10X to 100X that of the signal
`generated by the touching finger
`
`Can be
`as high
`as 60 V
`p-p for
`non-EN
`chargers
`
`Source: Cypress
`
`DISPLAY WEEK ‘14
`
`38
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Noise Management…2
`
` Examples of charger noise spectra
` Effect of noise is false or no touches, or excessive jitter
`
`DISPLAY WEEK ‘14
`
`39
`
`Source: Cypress
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Noise Management…3
`
` Variation in common-mode noise spectra in 2
`different chargers at 3 different loads
`
`DISPLAY WEEK ‘14
`
`40
`
`Source: Cypress
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Noise Management…4
`
` Techniques to combat charger noise
` Multiple linear and non-linear filters
` Adaptive selection of the best operating frequency (hopping)
` Increased drive-electrode voltage
`● Going from 2.7 V to 10 V increases SNR by 4X
` Many proprietary methods
`
` Display noise
` LCD noise is similar across the display; the high correlation of noise
`signals across all sensor signals allows relatively easy removal
` Very high noise in embedded touch can require synchronization
`of the touch controller with the LCD driver (TCON)
`
`DISPLAY WEEK ‘14
`
`41
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Controller Innovation Areas
`
` More information in upcoming slides
` Finger-hover
` Glove-touch
` Pressure sensing
` Other touch-objects
` Faster response (reduced latency)
` Adaptive behavior
` Water resistance
` Software integration
` Automated tuning
`
` More information later in this course
` Passive and active stylus support
`
`DISPLAY WEEK ‘14
`
`42
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Finger-Hover…1
`
` There are two ways of emulating “mouseover” on
`a p-cap touchscreen
` Hover over something to see it change, then touch to select
` Press lightly on something to see it change, then press harder
`to select
` The industry is moving towards hover because nobody
`has been able to implement pressure-sensing in a way
`that works well and that OEMs are willing to implement
` Startup: NextInput
`● Force-sensing using an array of organic transistors where pressure
`changes the gate current
` Startup: zRRo
`● Multi-finger hover detection
`
`DISPLAY WEEK ‘14
`
`43
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Finger-Hover…2
`
` What can you do with hover?
` Enlarge small links when you hover over them
` Make a passive stylus seem to hover like an active stylus
` Magnify an onscreen-keyboard key as you approach
`rather than after you’ve touched it, or even use a “Swipe”
`keyboard without touching it
` Preview interactive objects such as an array of thumbnails
` Use as an alternative to standard proximity detection
` Use multi-finger gestures for more complex operations
` And more…
`
`DISPLAY WEEK ‘14
`
`44
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Glove-Touch
`
` Can be accomplished by
`adding self-capacitive to
`existing mutual-capacitive
` Mutual-capacitive provides
`touch location
` Self-capacitive provides
`proximity sensing
` Glove-touch causes the finger
`to remain a constant distance
`above the screen; proximity
`sensing can detect that without
`the user manually switching
`modes
`
`DISPLAY WEEK ‘14
`
`45
`
`Source: ELAN
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Pressure Sensing
`
` Pressure-sensing is an alternative selection method
` True absolute pressure-sensing in p-cap doesn’t exist today
` Some (including Microsoft) believe that “touch lightly to view
`choices then press to select” is more intuitive than hover
`● It has never been implemented successfully in a mobile device
` Blackberry Storm (2 models!) failed due to terrible implementation
` Nissha/Peratech (QTC) collaboration never made it into mass-production
` Multiple startups are working on smartphone pressure-sensing
`● NextInput
` Uses an array of pressure-sensitive organic transistors under the LCD
`● FloatingTouch
` Mounts the LCD on pressure-sensing capacitors made using a 3M material
`
`DISPLAY WEEK ‘14
`
`46
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Other Touch Objects
`
` You will soon be able to touch with a fine-tipped (2 mm)
`passive stylus, long fingernails, a ballpoint pen, a #2
`pencil, and maybe other objects
` This is being accomplished through higher signal-to-noise
`(SNR) ratios
`● Much of this improvement may come from enhancing the controller
`analog front-end in addition to focusing on the digital algorithms
` This enhancement to the UX will be the end of “finger-only” p-cap
`
`DISPLAY WEEK ‘14
`
`47
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`
`
`JDI/PLD - EX. 2009
`TIANMA MICROELECTRONICS
`CO. LTD. v. JDI/PLD
`IPR2021-01028
`
`

`

`Faster Response
`
` Make touch more natural by reducing latency
` The shorter the time is between a touch and the response,
`the better the user feels about the touch system
`● If an object lags behind your finger when you drag it, or ink lags
`behind a stylus when you’re drawing, it doesn’t feel real
` Latency today is typically 75-10

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket