throbber

`
`
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`Technical Specification
`
`3rd Generation Partnership Project;
`Technical Specification Group Radio Access Network;
`Multiplexing and channel coding (FDD)
`(Release 1999)
`
`
`
`
`
`The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
`
`
`
`The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.
`This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
`Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.
`
`
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`
`
`
`
`
`
`
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 1 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`

`

`
`Release 1999
`
`2
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`
`
`
`
`
`
`
`
`Keywords
`UMTS, radio, mux
`
`3GPP
`
`Postal address
`
`
`3GPP support office address
`650 Route des Lucioles - Sophia Antipolis
`Valbonne - FRANCE
`Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
`
`Internet
`http://www.3gpp.org
`
`Copyright Notification
`
`No part may be reproduced except as authorized by written permission.
`The copyright and the foregoing restriction extend to reproduction in all media.
`
`© 2000, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).
`All rights reserved.
`
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 2 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`

`

`
`Release 1999
`
`3
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`Contents
`Foreword............................................................................................................................................................. 5
`1
`Scope ........................................................................................................................................................ 6
`2
`References ................................................................................................................................................ 6
`3
`Definitions, symbols and abbreviations ................................................................................................... 6
`3.1 Definitions ............................................................................................................................................................... 6
`3.2
`Symbols ................................................................................................................................................................... 7
`3.3 Abbreviations .......................................................................................................................................................... 7
`4
`Multiplexing, channel coding and interleaving ........................................................................................ 8
`4.1 General .................................................................................................................................................................... 8
`4.2
`Transport-channel coding/multiplexing ................................................................................................................... 8
`4.2.1
`CRC attachment ............................................................................................................................................... 12
`4.2.1.1 CRC Calculation .............................................................................................................................................. 12
`4.2.1.2 Relation between input and output of the CRC attachment block ................................................................... 12
`4.2.2
`Transport block concatenation and code block segmentation .......................................................................... 13
`4.2.2.1 Concatenation of transport blocks ................................................................................................................... 13
`4.2.2.2 Code block segmentation ................................................................................................................................. 13
`4.2.3
`Channel coding ................................................................................................................................................ 14
`4.2.3.1 Convolutional coding ....................................................................................................................................... 15
`4.2.3.2 Turbo coding .................................................................................................................................................... 15
`4.2.3.2.1
`Turbo coder ................................................................................................................................................ 15
`4.2.3.2.2
`Trellis termination for Turbo coder ............................................................................................................ 16
`4.2.3.2.3
`Turbo code internal interleaver .................................................................................................................. 16
`4.2.3.3 Concatenation of encoded blocks .................................................................................................................... 20
`4.2.4
`Radio frame size equalisation .......................................................................................................................... 20
`4.2.5
`1st interleaving ................................................................................................................................................. 20
`4.2.5.1
`Insertion of marked bits in the sequence to be input in first interleaver .......................................................... 20
`4.2.5.2
`1st interleaver operation.................................................................................................................................... 21
`4.2.5.3 Relation between input and output of 1st interleaving in uplink ...................................................................... 22
`4.2.5.4 Relation between input and output of 1st interleaving in downlink.................................................................. 22
`4.2.6
`Radio frame segmentation ............................................................................................................................... 23
`4.2.6.1 Relation between input and output of the radio frame segmentation block in uplink ...................................... 23
`4.2.6.2 Relation between input and output of the radio frame segmentation block in downlink ................................. 23
`4.2.7
`Rate matching .................................................................................................................................................. 23
`4.2.7.1 Determination of rate matching parameters in uplink ...................................................................................... 25
`4.2.7.1.1
`Determination of SF and number of PhCHs needed .................................................................................. 25
`4.2.7.2 Determination of rate matching parameters in downlink ................................................................................. 28
`4.2.7.2.1
`Determination of rate matching parameters for fixed positions of TrCHs ................................................. 29
`4.2.7.2.2
`Determination of rate matching parameters for flexible positions of TrCHs ............................................. 33
`4.2.7.3 Bit separation and collection in uplink ............................................................................................................ 35
`4.2.7.3.1
`Bit separation ............................................................................................................................................. 36
`4.2.7.3.2
`Bit collection .............................................................................................................................................. 37
`4.2.7.4 Bit separation and collection in downlink ........................................................................................................ 37
`4.2.7.4.1
`Bit separation ............................................................................................................................................. 38
`4.2.7.4.2
`Bit collection .............................................................................................................................................. 39
`4.2.7.5 Rate matching pattern determination ............................................................................................................... 39
`4.2.8
`TrCH multiplexing ........................................................................................................................................... 40
`4.2.9
`Insertion of discontinuous transmission (DTX) indication bits ....................................................................... 41
`4.2.9.1
`1st insertion of DTX indication bits.................................................................................................................. 41
`4.2.9.2
`2nd insertion of DTX indication bits ................................................................................................................. 41
`4.2.10
`Physical channel segmentation ........................................................................................................................ 42
`4.2.10.1
`Relation between input and output of the physical segmentation block in uplink ..................................... 43
`4.2.10.2
`Relation between input and output of the physical segmentation block in downlink................................. 43
`4.2.11
`2nd interleaving ................................................................................................................................................. 43
`4.2.12
`Physical channel mapping ............................................................................................................................... 44
`4.2.12.1
`Uplink......................................................................................................................................................... 44
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 3 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`

`

`
`Release 1999
`
`4
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`Downlink .................................................................................................................................................... 44
`4.2.12.2
`Restrictions on different types of CCTrCHs .................................................................................................... 45
`4.2.13
`Uplink Dedicated channel (DCH) .............................................................................................................. 45
`4.2.13.1
`Random Access Channel (RACH) ............................................................................................................. 45
`4.2.13.2
`Common Packet Channel (CPCH) ............................................................................................................. 45
`4.2.13.3
`Downlink Dedicated Channel (DCH) ........................................................................................................ 46
`4.2.13.4
`Downlink Shared Channel (DSCH) associated with a DCH ...................................................................... 46
`4.2.13.5
`Broadcast channel (BCH) ........................................................................................................................... 46
`4.2.13.6
`Forward access and paging channels (FACH and PCH) ............................................................................ 46
`4.2.13.7
`4.2.14 Multiplexing of different transport channels into one CCTrCH, and mapping of one CCTrCH onto
`physical channels ....................................................................................................................................... 46
`4.2.14.1
`Allowed CCTrCH combinations for one UE ............................................................................................. 47
`4.2.14.1.1 Allowed CCTrCH combinations on the uplink .......................................................................................... 47
`4.2.14.1.2 Allowed CCTrCH combinations on the downlink ..................................................................................... 47
`4.3
`Transport format detection .................................................................................................................................... 47
`4.3.1
`Blind transport format detection ...................................................................................................................... 48
`4.3.2
`Transport format detection based on TFCI ...................................................................................................... 48
`4.3.3
`Coding of Transport-Format-Combination Indicator (TFCI) .......................................................................... 48
`4.3.4
`Operation of Transport-Format-Combination Indicator (TFCI) in Split Mode ............................................... 49
`4.3.5
`Mapping of TFCI words .................................................................................................................................. 51
`4.3.5.1 Mapping of TFCI word in normal mode .......................................................................................................... 51
`4.3.5.2 Mapping of TFCI word in compressed mode .................................................................................................. 51
`4.3.5.2.1
`Uplink compressed mode ........................................................................................................................... 51
`4.3.5.2.2
`Downlink compressed mode ...................................................................................................................... 51
`4.4 Compressed mode ................................................................................................................................................. 52
`4.4.1
`Frame structure in the uplink ........................................................................................................................... 52
`4.4.2
`Frame structure types in the downlink ............................................................................................................. 53
`4.4.3
`Transmission time reduction method ............................................................................................................... 53
`4.4.3.1 Compressed mode by puncturing ..................................................................................................................... 53
`4.4.3.2 Compressed mode by reducing the spreading factor by 2 ............................................................................... 53
`4.4.3.3 Compressed mode by higher layer scheduling................................................................................................. 53
`4.4.4
`Transmission gap position ............................................................................................................................... 54
`Annex A (informative): Blind transport format detection ......................................................................... 56
`A.1 Blind transport format detection using fixed positions .......................................................................... 56
`A.1.1
`Blind transport format detection using received power ratio ........................................................................... 56
`A.1.2
`Blind transport format detection using CRC .................................................................................................... 56
`Annex B (informative): Compressed mode idle lengths .............................................................................. 59
`B.1
`Idle lengths for DL, UL and DL+UL compressed mode ....................................................................................... 59
`Annex C (informative): Change history ....................................................................................................... 61
`
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 4 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`

`

`
`Release 1999
`
`5
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`Foreword
`This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).
`
`The contents of the present document are subject to continuing work within the TSG and may change following formal
`TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
`identifying change of release date and an increase in version number as follows:
`
`Version x.y.z
`
`where:
`
`x
`
`the first digit:
`
`1 presented to TSG for information;
`
`2 presented to TSG for approval;
`
`3 or greater indicates TSG approved document under change control.
`
`y
`
`the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
`updates, etc.
`
`z
`
`the third digit is incremented when editorial only changes have been incorporated in the document.
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 5 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`

`

`
`Release 1999
`
`6
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`Scope
`1
`The present document describes the characteristics of the Layer 1 multiplexing and channel coding in the FDD mode of
`UTRA.
`
`References
`2
`The following documents contain provisions which, through reference in this text, constitute provisions of the present
`document.
`
`• References are either specific (identified by date of publication, edition number, version number, etc.) or
`non-specific.
`
`• For a specific reference, subsequent revisions do not apply.
`
`• For a non-specific reference, the latest version applies.
`
`[1]
`
`[2]
`
`[3]
`
`[4]
`
`[5]
`
`[6]
`
`[7]
`
`[8]
`
`[9]
`
`[10]
`
`[11]
`
`[12]
`
`3GPP TS 25.201: "Physical layer – General Description".
`
`3GPP TS 25.211: "Physical channels and mapping of transport channels onto physical channels
`(FDD)".
`
`3GPP TS 25.213: "Spreading and modulation (FDD)".
`
`3GPP TS 25.214: "Physical layer procedures (FDD)".
`
`3GPP TS 25.215: "Physical layer – Measurements (FDD)".
`
`3GPP TS 25.221: "Physical channels and mapping of transport channels onto physical channels
`(TDD)".
`
`3GPP TS 25.222: "Multiplexing and channel coding (TDD)".
`
`3GPP TS 25.223: "Spreading and modulation (TDD)".
`
`3GPP TS 25.224: "Physical layer procedures (TDD)".
`
`3GPP TS 25.225: "Physical layer – Measurements (TDD)".
`
`3GPP TS 25.302: "Services Provided by the Physical Layer".
`
`3GPP TS 25.402: "Synchronisation in UTRAN, Stage 2".
`
`3
`
`Definitions, symbols and abbreviations
`
`Definitions
`3.1
`For the purposes of the present document, the following terms and definitions apply:
`
`TG: Transmission Gap is consecutive empty slots that have been obtained with a transmission time reduction method.
`The transmission gap can be contained in one or two consecutive radio frames.
`
`TGL: Transmission Gap Length is the number of consecutive empty slots that have been obtained with a transmission
`time reduction method. 0 ≤TGL≤ 14. The CFNs of the radio frames containing the first empty slot of the transmission
`gaps, the CFNs of the radio frames containing the last empty slot, the respective positions Nfirst and Nlast within these
`frames of the first and last empty slots of the transmission gaps, and the transmission gap lengths can be calculated with
`the compressed mode parameters described in [5].
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 6 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`

`

`
`Release 1999
`
`7
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`TrCH number: Transport channel number represents a TrCH ID assigned to L1 by L2. Transport channels are
`multiplexed to the CCTrCH in the ascending order of these IDs.
`
`Symbols
`3.2
`For the purposes of the present document, the following symbols apply:
`
`round towards ∞, i.e. integer such that x ≤ x < x+1
`round towards -∞, i.e. integer such that x-1 < x ≤ x
`absolute value of x
`
`x
`x
`x
`
`sgn(x)
`
`Nfirst
`Nlast
`Ntr
`
`signum function, i.e.
`
`sgn(
`
`x
`
`)
`
`0
`;1
`≥
`0
`;1
`−
`<
`The first slot in the TG, located in the first compressed radio frame if the TG spans two frames.
`The last slot in the TG, located in the second compressed radio frame if the TG spans two frames.
`Number of transmitted slots in a radio frame.
`
`
`
`xx
`
`
`
`=
`
`Unless otherwise is explicitly stated when the symbol is used, the meaning of the following symbols is:
`
`i
`j
`k
`l
`m
`ni
`p
`r
`I
`Ci
`Fi
`Mi
`Ndata,j
`cm
`dataN ,
`P
`PL
`RMi
`
`
`
`j
`
`TrCH number
`TFC number
`Bit number
`TF number
`Transport block number
`Radio frame number of TrCH i.
`PhCH number
`Code block number
`Number of TrCHs in a CCTrCH.
`Number of code blocks in one TTI of TrCH i.
`Number of radio frames in one TTI of TrCH i.
`Number of transport blocks in one TTI of TrCH i.
`Number of data bits that are available for the CCTrCH in a radio frame with TFC j.
`Number of data bits that are available for the CCTrCH in a compressed radio frame with TFC j.
`Number of PhCHs used for one CCTrCH.
`Puncturing Limit for the uplink. Signalled from higher layers
`Rate Matching attribute for TrCH i. Signalled from higher layers.
`
`Temporary variables, i.e. variables used in several (sub)clauses with different meaning.
`
`x, X
`y, Y
`z, Z
`
`Abbreviations
`3.3
`For the purposes of the present document, the following abbreviations apply:
`
`ARQ
`BCH
`BER
`BLER
`BS
`CCPCH
`CCTrCH
`CFN
`CRC
`DCH
`DL
`DPCCH
`DPCH
`
`Automatic Repeat Request
`Broadcast Channel
`Bit Error Rate
`Block Error Rate
`Base Station
`Common Control Physical Channel
`Coded Composite Transport Channel
`Connection Frame Number
`Cyclic Redundancy Check
`Dedicated Channel
`Downlink (Forward link)
`Dedicated Physical Control Channel
`Dedicated Physical Channel
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 7 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`

`

`
`Release 1999
`
`8
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`DPDCH
`DS-CDMA
`DSCH
`DTX
`FACH
`FDD
`FER
`GF
`MAC
`Mcps
`MS
`OVSF
`PCCC
`PCH
`PhCH
`PRACH
`RACH
`RSC
`RX
`SCH
`SF
`SFN
`SIR
`SNR
`TF
`TFC
`TFCI
`TPC
`TrCH
`TTI
`TX
`UL
`
`Dedicated Physical Data Channel
`Direct-Sequence Code Division Multiple Access
`Downlink Shared Channel
`Discontinuous Transmission
`Forward Access Channel
`Frequency Division Duplex
`Frame Error Rate
`Galois Field
`Medium Access Control
`Mega Chip Per Second
`Mobile Station
`Orthogonal Variable Spreading Factor (codes)
`Parallel Concatenated Convolutional Code
`Paging Channel
`Physical Channel
`Physical Random Access Channel
`Random Access Channel
`Recursive Systematic Convolutional Coder
`Receive
`Synchronisation Channel
`Spreading Factor
`System Frame Number
`Signal-to-Interference Ratio
`Signal to Noise Ratio
`Transport Format
`Transport Format Combination
`Transport Format Combination Indicator
`Transmit Power Control
`Transport Channel
`Transmission Time Interval
`Transmit
`Uplink (Reverse link)
`
`4
`
`Multiplexing, channel coding and interleaving
`
`General
`4.1
`Data stream from/to MAC and higher layers (Transport block / Transport block set) is encoded/decoded to offer
`transport services over the radio transmission link. Channel coding scheme is a combination of error detection, error
`correcting, rate matching, interleaving and transport channels mapping onto/splitting from physical channels.
`
`Transport-channel coding/multiplexing
`4.2
`Data arrives to the coding/multiplexing unit in form of transport block sets once every transmission time interval. The
`transmission time interval is transport-channel specific from the set {10 ms, 20 ms, 40 ms, 80 ms}.
`
`The following coding/multiplexing steps can be identified:
`
`- add CRC to each transport block (see subclause 4.2.1);
`
`-
`
`transport block concatenation and code block segmentation (see subclause 4.2.2);
`
`- channel coding (see subclause 4.2.3);
`
`-
`
`-
`
`-
`
`radio frame equalisation (see subclause 4.2.4);
`
`rate matching (see subclause 4.2.7);
`
`insertion of discontinuous transmission (DTX) indication bits (see subclause 4.2.9);
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 8 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`

`

`
`Release 1999
`
`9
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`-
`
`-
`
`interleaving (two steps, see subclauses 4.2.5 and 4.2.11);
`
`radio frame segmentation (see subclause 4.2.6);
`
`- multiplexing of transport channels (see subclause 4.2.8);
`
`- physical channel segmentation (see subclause 4.2.10);
`
`- mapping to physical channels (see subclause 4.2.12).
`
`The coding/multiplexing steps for uplink and downlink are shown in figure 1 and figure 2 respectively.
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 9 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`

`

`
`Release 1999
`
`10
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`a
`1
`im
`
`,
`
`a
`im
`
`2
`
`,
`
`a
`im
`
`3
`
`,
`
`
`
`,
`
`a
`imA
`i
`
`CRC attachment
`
`b
`1
`im
`
`,
`
`b
`im
`
`2
`
`,
`
`b
`im
`
`3
`
`,
`
`o
`ir
`
`1
`
`,
`
`o
`ir
`
`2
`
`,
`
`o
`ir
`
`3
`
`,
`
`
`
`,
`b
`
`imB
`TrBk concatenation /
`Code block segmentation
`,
`o
`irK
`
`i
`
`i
`
`Channel coding
`
`cc ,
`
`
`1
`i
`i
`
`2
`
`,
`
`c
`i
`
`3
`
`,
`
`
`
`,
`
`c
`iE
`
`i
`
`Radio frame equalisation
`
`t
`
`
`
`i1
`
`,
`
`t
`
`i
`
`2
`
`,
`
`t
`
`i
`
`3
`
`,
`
`
`
`,
`
`t
`
`iiT
`
`
`
` ddd ,,
`
`,
`
`
`
`,
`
`d
`
`i
`
`3
`
`1st interleaving
`
`
`1
`2
`i
`i
`
`iiT
`
`Radio frame segmentation
`
`ee ,
`
`
`1
`i
`i
`
`2
`
`,
`
`e
`i
`
`3
`
`,
`
`
`
`,
`
`e
`iN
`
`i
`
`Rate matching
`
`Rate
`matching
`
`f
`
`1
`i
`
`,
`
`f
`
`i
`
`2
`
`,
`
`f
`
`i
`
`3
`
`,
`
`
`
`,
`
`f
`
`iiV
`TrCH Multiplexing
`
`sss , ,
`
`
`1
`3
`2
`
`
`
`,
`
`
`
`,
`
`Ss
`
`u
`
`,
`
`u
`
`
`
`p1
`
`p
`
`2
`
`,
`
`u
`
`p
`
`3
`
`,
`
`
`
`,
`
`u
`
`CCTrCH
`Physical channel
`segmentation
`
`pU
`2nd interleaving
`
`v
`
`
`
`p1
`
`,
`
`v
`
`p
`
`2
`
`,
`
`v
`
`p
`
`3
`
`,
`
`
`
`,
`v
`pU
`Physical channel mapping
`
`
`
`PhCH#2
`PhCH#1
`
`Figure 1: Transport channel multiplexing structure for uplink
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 10 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`

`

`
`Release 1999
`
`11
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`a
`1
`im
`
`,
`
`a
`im
`
`2
`
`,
`
`a
`im
`
`3
`
`,
`
`
`
`,
`
`a
`imA
`i
`
`CRC attachment
`
`b
`1
`im
`
`,
`
`b
`im
`
`2
`
`,
`
`b
`im
`
`3
`
`,
`
`
`
`,
`
`o
`ir
`
`1
`
`,
`
`o
`ir
`
`2
`
`,
`
`o
`ir
`
`3
`
`,
`
`
`
`i
`
`b
`imB
`i
`TrBk concatenation /
`Code block segmentation
`,
`o
`irK
`
`Channel coding
`
`Rate matching
`
`Rate
`matching
`
`cc ,
`
`
`1
`i
`i
`
`2
`
`,
`
`c
`i
`
`3
`
`,
`
`
`
`,
`
`c
`iE
`
`i
`
` gg ,
`
`
`1
`i
`
`i
`
`2
`
`,
`
`g
`
`i
`
`3
`
`,
`
`
`
`,
`
`g
`
`iG
`i
`1st insertion of DTX
`indication
`,
`h
`iD
`
` hhh ,,
`
`
`
`
`1
`2
`i
`i
`i
`
`3
`
`,
`
`
`
`i
`
`1st interleaving
`
`
`
` qqq ,,
`
`,
`
`
`
`
`
`2
`i1
`i
`i
`
`3
`
`,
`
`q
`iQ
`
`i
`
`Radio frame segmentation
`
`f
`
`
`
`i1
`
`,
`
`f
`
`i
`
`2
`
`,
`
`f
`
`i
`
`3
`
`,
`
`
`
`,
`
`f
`
`iV
`i
`
`TrCH Multiplexing
`
`,
`
`
`
`,
`
`Ss
`
` sss ,,
`
`
`
`
`3
`2
`1
`
` www ,,
`
`
`
`
`3
`2
`1
`
`,
`
`
`
`,
`
`Rw
`
`2nd insertion of DTX
`indication
`CCTrCH
`Physical channel
`segmentation
`
`u
`
`,
`
`u
`
`1
`p
`
`p
`
`2
`
`,
`
`u
`
`p
`
`3
`
`,
`
`
`
`,
`
`u
`
`pU
`
`v
`
`1
`p
`
`,
`
`v
`
`p
`
`2
`
`,
`
`v
`
`p
`
`3
`
`,
`
`
`
`,
`
`v
`
`pU
`
`2nd interleaving
`
`Physical channel mapping
`
`
`
`PhCH#2
`PhCH#1
`
`Figure 2: Transport channel multiplexing structure for downlink
`
`The single output data stream from the TrCH multiplexing, including DTX indication bits in downlink, is denoted
`Coded Composite Transport Channel (CCTrCH). A CCTrCH can be mapped to one or several physical channels.
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 11 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`

`

`
`Release 1999
`
`12
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`CRC attachment
`4.2.1
`Error detection is provided on transport blocks through a Cyclic Redundancy Check (CRC). The size of the CRC is 24,
`16, 12, 8 or 0 bits and it is signalled from higher layers what CRC size that should be used for each TrCH.
`
`CRC Calculation
`4.2.1.1
`The entire transport block is used to calculate the CRC parity bits for each transport block. The parity bits are generated
`by one of the following cyclic generator polynomials:
`
`- gCRC24(D) = D24 + D23 + D6 + D5 + D + 1;
`
`- gCRC16(D) = D16 + D12 + D5 + 1;
`
`- gCRC12(D) = D12 + D11 + D3 + D2 + D + 1;
`- gCRC8(D) = D8 + D7 + D4 + D3 + D + 1.
`
`,
`,
`,
`,
`a
`a
`a
`a
`, and the parity bits by
`Denote the bits in a transport block delivered to layer 1 by
`
`2
`3
`1
`im
`im
`im
`imA
`i
`. Ai is the size of a transport block of TrCH i, m is the transport block number, and Li is the
`,
`,
`,
`,
`p
`p
`p
`p
`
`
`im1
`3
`2
`imL
`im
`im
`number of parity bits. Li can take the values 24, 16, 12, 8, or 0 depending on what is signalled from higher layers.
`
`i
`
`The encoding is performed in a systematic form, which means that in GF(2), the polynomial:
`
`Da
`
`1im
`
`A
`i
`
`+
`
`23
`
`+
`
`Da
`2
`im
`
`A
`i
`
`+
`
`22
`
`+
`
`
`
`+
`
`Da
`imA
`i
`
`24
`
`+
`
`Dp
`1
`im
`
`23
`
`+
`
`Dp
`2
`im
`
`22
`
`+
`
`
`
`+
`
`Dp
`23
`im
`
`1
`
`+
`
`p
`
`im
`
`24
`
`
`
`yields a remainder equal to 0 when divided by gCRC24(D), polynomial:
`
`Da
`
`1im
`
`A
`i
`
`15
`+
`
`+
`
`Da
`2
`im
`
`A
`i
`
`+
`
`14
`
`+
`
`
`
`+
`
`16
`Da
`imA
`i
`
`+
`
`15
`Dp
`
`1im
`
`+
`
`14
`Dp
`2
`im
`
`+
`
`
`
`+
`
`1
`pDp
`+
`
`15im
`
`16im
`
`
`
`yields a remainder equal to 0 when divided by gCRC16(D), polynomial:
`
`A
`i
`
`11
`+
`
`A
`i
`
`10
`+
`
`12
`
`11
`
`10
`
`1
`
`Da
`
`1im
`
`+
`
`Da
`2
`im
`
`+
`
`
`
`+
`
`Da
`imA
`i
`
`+
`
`Dp
`1
`im
`
`+
`
`Dp
`2
`im
`
`+
`
`
`
`+
`
`Dp
`11
`im
`
`+
`
`p
`
`
`
`12
`im
`
`yields a remainder equal to 0 when divided by gCRC12(D) and polynomial:
`
`Da
`
`1im
`
`A
`i
`
`+
`
`7
`
`+
`
`Da
`2
`im
`
`A
`i
`
`+
`
`6
`
`+
`
`
`
`+
`
`8
`
`Da
`imA
`i
`
`+
`
`7
`
`Dp
`
`1im
`
`+
`
`Dp
`2
`im
`
`6
`
`+
`
`
`
`+
`
`1
`pDp
`+
`7
`im
`im
`
`8
`
`
`
`yields a remainder equal to 0 when divided by gCRC8(D).
`
`If no transport blocks are input to the CRC calculation (Mi = 0), no CRC attachment shall be done. If transport blocks
`are input to the CRC calculation (Mi ≠ 0) and the size of a transport block is zero (Ai = 0), CRC shall be attached, i.e. all
`parity bits equal to zero.
`
`Relation between input and output of the CRC attachment block
`,
`,
`,
`,
`, where Bi = Ai+ Li. The relation between aimk
`b
`b
`b
`b
`
`imB
`im
`im
`
`im1
`
`2
`
`
`
`3
`
`i
`
`4.2.1.2
`
`The bits after CRC attachment are denoted by
`and bimk is:
`b
`a
`imk
`imk
`
`=
`
`
`
`
`
`k = 1, 2, 3, …, Ai
`
`b
`imk
`
`=
`
`p
`im
`
`(
`
`L
`
`i
`
`(1
`−+
`
`Ak
`−
`i
`
`))
`
` k = Ai + 1, Ai + 2, Ai + 3, …, Ai + Li
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 12 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`

`

`
`Release 1999
`
`13
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`Transport block concatenation and code block segmentation
`4.2.2
`All transport blocks in a TTI are serially concatenated. If the number of bits in a TTI is larger than Z, the maximum size
`of a code block in question, then code block segmentation is performed after the concatenation of the transport blocks.
`The maximum size of the code blocks depends on whether convolutional coding, turbo coding or no coding is used for
`the TrCH.
`
`4.2.2.1
`
`Concatenation of transport blocks
`
`,
`,
`,
`,
`b
`b
`b
`b
` where i is the TrCH
`The bits input to the transport block concatenation are denoted by
`
`2
`3
`1
`im
`im
`im
`imB
`number, m is the transport block number, and Bi is the number of bits in each block (including CRC). The number of

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket