`
`
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`Technical Specification
`
`3rd Generation Partnership Project;
`Technical Specification Group Radio Access Network;
`Multiplexing and channel coding (FDD)
`(Release 1999)
`
`
`
`
`
`The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
`
`
`
`The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.
`This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
`Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.
`
`
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`
`
`
`
`
`
`
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 1 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`
`
`
`Release 1999
`
`2
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`
`
`
`
`
`
`
`
`Keywords
`UMTS, radio, mux
`
`3GPP
`
`Postal address
`
`
`3GPP support office address
`650 Route des Lucioles - Sophia Antipolis
`Valbonne - FRANCE
`Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
`
`Internet
`http://www.3gpp.org
`
`Copyright Notification
`
`No part may be reproduced except as authorized by written permission.
`The copyright and the foregoing restriction extend to reproduction in all media.
`
`© 2000, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).
`All rights reserved.
`
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 2 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`
`
`
`Release 1999
`
`3
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`Contents
`Foreword............................................................................................................................................................. 5
`1
`Scope ........................................................................................................................................................ 6
`2
`References ................................................................................................................................................ 6
`3
`Definitions, symbols and abbreviations ................................................................................................... 6
`3.1 Definitions ............................................................................................................................................................... 6
`3.2
`Symbols ................................................................................................................................................................... 7
`3.3 Abbreviations .......................................................................................................................................................... 7
`4
`Multiplexing, channel coding and interleaving ........................................................................................ 8
`4.1 General .................................................................................................................................................................... 8
`4.2
`Transport-channel coding/multiplexing ................................................................................................................... 8
`4.2.1
`CRC attachment ............................................................................................................................................... 12
`4.2.1.1 CRC Calculation .............................................................................................................................................. 12
`4.2.1.2 Relation between input and output of the CRC attachment block ................................................................... 12
`4.2.2
`Transport block concatenation and code block segmentation .......................................................................... 13
`4.2.2.1 Concatenation of transport blocks ................................................................................................................... 13
`4.2.2.2 Code block segmentation ................................................................................................................................. 13
`4.2.3
`Channel coding ................................................................................................................................................ 14
`4.2.3.1 Convolutional coding ....................................................................................................................................... 15
`4.2.3.2 Turbo coding .................................................................................................................................................... 15
`4.2.3.2.1
`Turbo coder ................................................................................................................................................ 15
`4.2.3.2.2
`Trellis termination for Turbo coder ............................................................................................................ 16
`4.2.3.2.3
`Turbo code internal interleaver .................................................................................................................. 16
`4.2.3.3 Concatenation of encoded blocks .................................................................................................................... 20
`4.2.4
`Radio frame size equalisation .......................................................................................................................... 20
`4.2.5
`1st interleaving ................................................................................................................................................. 20
`4.2.5.1
`Insertion of marked bits in the sequence to be input in first interleaver .......................................................... 20
`4.2.5.2
`1st interleaver operation.................................................................................................................................... 21
`4.2.5.3 Relation between input and output of 1st interleaving in uplink ...................................................................... 22
`4.2.5.4 Relation between input and output of 1st interleaving in downlink.................................................................. 22
`4.2.6
`Radio frame segmentation ............................................................................................................................... 23
`4.2.6.1 Relation between input and output of the radio frame segmentation block in uplink ...................................... 23
`4.2.6.2 Relation between input and output of the radio frame segmentation block in downlink ................................. 23
`4.2.7
`Rate matching .................................................................................................................................................. 23
`4.2.7.1 Determination of rate matching parameters in uplink ...................................................................................... 25
`4.2.7.1.1
`Determination of SF and number of PhCHs needed .................................................................................. 25
`4.2.7.2 Determination of rate matching parameters in downlink ................................................................................. 28
`4.2.7.2.1
`Determination of rate matching parameters for fixed positions of TrCHs ................................................. 29
`4.2.7.2.2
`Determination of rate matching parameters for flexible positions of TrCHs ............................................. 33
`4.2.7.3 Bit separation and collection in uplink ............................................................................................................ 35
`4.2.7.3.1
`Bit separation ............................................................................................................................................. 36
`4.2.7.3.2
`Bit collection .............................................................................................................................................. 37
`4.2.7.4 Bit separation and collection in downlink ........................................................................................................ 37
`4.2.7.4.1
`Bit separation ............................................................................................................................................. 38
`4.2.7.4.2
`Bit collection .............................................................................................................................................. 39
`4.2.7.5 Rate matching pattern determination ............................................................................................................... 39
`4.2.8
`TrCH multiplexing ........................................................................................................................................... 40
`4.2.9
`Insertion of discontinuous transmission (DTX) indication bits ....................................................................... 41
`4.2.9.1
`1st insertion of DTX indication bits.................................................................................................................. 41
`4.2.9.2
`2nd insertion of DTX indication bits ................................................................................................................. 41
`4.2.10
`Physical channel segmentation ........................................................................................................................ 42
`4.2.10.1
`Relation between input and output of the physical segmentation block in uplink ..................................... 43
`4.2.10.2
`Relation between input and output of the physical segmentation block in downlink................................. 43
`4.2.11
`2nd interleaving ................................................................................................................................................. 43
`4.2.12
`Physical channel mapping ............................................................................................................................... 44
`4.2.12.1
`Uplink......................................................................................................................................................... 44
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 3 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`
`
`
`Release 1999
`
`4
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`Downlink .................................................................................................................................................... 44
`4.2.12.2
`Restrictions on different types of CCTrCHs .................................................................................................... 45
`4.2.13
`Uplink Dedicated channel (DCH) .............................................................................................................. 45
`4.2.13.1
`Random Access Channel (RACH) ............................................................................................................. 45
`4.2.13.2
`Common Packet Channel (CPCH) ............................................................................................................. 45
`4.2.13.3
`Downlink Dedicated Channel (DCH) ........................................................................................................ 46
`4.2.13.4
`Downlink Shared Channel (DSCH) associated with a DCH ...................................................................... 46
`4.2.13.5
`Broadcast channel (BCH) ........................................................................................................................... 46
`4.2.13.6
`Forward access and paging channels (FACH and PCH) ............................................................................ 46
`4.2.13.7
`4.2.14 Multiplexing of different transport channels into one CCTrCH, and mapping of one CCTrCH onto
`physical channels ....................................................................................................................................... 46
`4.2.14.1
`Allowed CCTrCH combinations for one UE ............................................................................................. 47
`4.2.14.1.1 Allowed CCTrCH combinations on the uplink .......................................................................................... 47
`4.2.14.1.2 Allowed CCTrCH combinations on the downlink ..................................................................................... 47
`4.3
`Transport format detection .................................................................................................................................... 47
`4.3.1
`Blind transport format detection ...................................................................................................................... 48
`4.3.2
`Transport format detection based on TFCI ...................................................................................................... 48
`4.3.3
`Coding of Transport-Format-Combination Indicator (TFCI) .......................................................................... 48
`4.3.4
`Operation of Transport-Format-Combination Indicator (TFCI) in Split Mode ............................................... 49
`4.3.5
`Mapping of TFCI words .................................................................................................................................. 51
`4.3.5.1 Mapping of TFCI word in normal mode .......................................................................................................... 51
`4.3.5.2 Mapping of TFCI word in compressed mode .................................................................................................. 51
`4.3.5.2.1
`Uplink compressed mode ........................................................................................................................... 51
`4.3.5.2.2
`Downlink compressed mode ...................................................................................................................... 51
`4.4 Compressed mode ................................................................................................................................................. 52
`4.4.1
`Frame structure in the uplink ........................................................................................................................... 52
`4.4.2
`Frame structure types in the downlink ............................................................................................................. 53
`4.4.3
`Transmission time reduction method ............................................................................................................... 53
`4.4.3.1 Compressed mode by puncturing ..................................................................................................................... 53
`4.4.3.2 Compressed mode by reducing the spreading factor by 2 ............................................................................... 53
`4.4.3.3 Compressed mode by higher layer scheduling................................................................................................. 53
`4.4.4
`Transmission gap position ............................................................................................................................... 54
`Annex A (informative): Blind transport format detection ......................................................................... 56
`A.1 Blind transport format detection using fixed positions .......................................................................... 56
`A.1.1
`Blind transport format detection using received power ratio ........................................................................... 56
`A.1.2
`Blind transport format detection using CRC .................................................................................................... 56
`Annex B (informative): Compressed mode idle lengths .............................................................................. 59
`B.1
`Idle lengths for DL, UL and DL+UL compressed mode ....................................................................................... 59
`Annex C (informative): Change history ....................................................................................................... 61
`
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 4 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`
`
`
`Release 1999
`
`5
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`Foreword
`This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).
`
`The contents of the present document are subject to continuing work within the TSG and may change following formal
`TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an
`identifying change of release date and an increase in version number as follows:
`
`Version x.y.z
`
`where:
`
`x
`
`the first digit:
`
`1 presented to TSG for information;
`
`2 presented to TSG for approval;
`
`3 or greater indicates TSG approved document under change control.
`
`y
`
`the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,
`updates, etc.
`
`z
`
`the third digit is incremented when editorial only changes have been incorporated in the document.
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 5 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`
`
`
`Release 1999
`
`6
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`Scope
`1
`The present document describes the characteristics of the Layer 1 multiplexing and channel coding in the FDD mode of
`UTRA.
`
`References
`2
`The following documents contain provisions which, through reference in this text, constitute provisions of the present
`document.
`
`• References are either specific (identified by date of publication, edition number, version number, etc.) or
`non-specific.
`
`• For a specific reference, subsequent revisions do not apply.
`
`• For a non-specific reference, the latest version applies.
`
`[1]
`
`[2]
`
`[3]
`
`[4]
`
`[5]
`
`[6]
`
`[7]
`
`[8]
`
`[9]
`
`[10]
`
`[11]
`
`[12]
`
`3GPP TS 25.201: "Physical layer – General Description".
`
`3GPP TS 25.211: "Physical channels and mapping of transport channels onto physical channels
`(FDD)".
`
`3GPP TS 25.213: "Spreading and modulation (FDD)".
`
`3GPP TS 25.214: "Physical layer procedures (FDD)".
`
`3GPP TS 25.215: "Physical layer – Measurements (FDD)".
`
`3GPP TS 25.221: "Physical channels and mapping of transport channels onto physical channels
`(TDD)".
`
`3GPP TS 25.222: "Multiplexing and channel coding (TDD)".
`
`3GPP TS 25.223: "Spreading and modulation (TDD)".
`
`3GPP TS 25.224: "Physical layer procedures (TDD)".
`
`3GPP TS 25.225: "Physical layer – Measurements (TDD)".
`
`3GPP TS 25.302: "Services Provided by the Physical Layer".
`
`3GPP TS 25.402: "Synchronisation in UTRAN, Stage 2".
`
`3
`
`Definitions, symbols and abbreviations
`
`Definitions
`3.1
`For the purposes of the present document, the following terms and definitions apply:
`
`TG: Transmission Gap is consecutive empty slots that have been obtained with a transmission time reduction method.
`The transmission gap can be contained in one or two consecutive radio frames.
`
`TGL: Transmission Gap Length is the number of consecutive empty slots that have been obtained with a transmission
`time reduction method. 0 ≤TGL≤ 14. The CFNs of the radio frames containing the first empty slot of the transmission
`gaps, the CFNs of the radio frames containing the last empty slot, the respective positions Nfirst and Nlast within these
`frames of the first and last empty slots of the transmission gaps, and the transmission gap lengths can be calculated with
`the compressed mode parameters described in [5].
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 6 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`
`
`
`Release 1999
`
`7
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`TrCH number: Transport channel number represents a TrCH ID assigned to L1 by L2. Transport channels are
`multiplexed to the CCTrCH in the ascending order of these IDs.
`
`Symbols
`3.2
`For the purposes of the present document, the following symbols apply:
`
`round towards ∞, i.e. integer such that x ≤ x < x+1
`round towards -∞, i.e. integer such that x-1 < x ≤ x
`absolute value of x
`
`x
`x
`x
`
`sgn(x)
`
`Nfirst
`Nlast
`Ntr
`
`signum function, i.e.
`
`sgn(
`
`x
`
`)
`
`0
`;1
`≥
`0
`;1
`−
`<
`The first slot in the TG, located in the first compressed radio frame if the TG spans two frames.
`The last slot in the TG, located in the second compressed radio frame if the TG spans two frames.
`Number of transmitted slots in a radio frame.
`
`
`
`xx
`
`
`
`=
`
`Unless otherwise is explicitly stated when the symbol is used, the meaning of the following symbols is:
`
`i
`j
`k
`l
`m
`ni
`p
`r
`I
`Ci
`Fi
`Mi
`Ndata,j
`cm
`dataN ,
`P
`PL
`RMi
`
`
`
`j
`
`TrCH number
`TFC number
`Bit number
`TF number
`Transport block number
`Radio frame number of TrCH i.
`PhCH number
`Code block number
`Number of TrCHs in a CCTrCH.
`Number of code blocks in one TTI of TrCH i.
`Number of radio frames in one TTI of TrCH i.
`Number of transport blocks in one TTI of TrCH i.
`Number of data bits that are available for the CCTrCH in a radio frame with TFC j.
`Number of data bits that are available for the CCTrCH in a compressed radio frame with TFC j.
`Number of PhCHs used for one CCTrCH.
`Puncturing Limit for the uplink. Signalled from higher layers
`Rate Matching attribute for TrCH i. Signalled from higher layers.
`
`Temporary variables, i.e. variables used in several (sub)clauses with different meaning.
`
`x, X
`y, Y
`z, Z
`
`Abbreviations
`3.3
`For the purposes of the present document, the following abbreviations apply:
`
`ARQ
`BCH
`BER
`BLER
`BS
`CCPCH
`CCTrCH
`CFN
`CRC
`DCH
`DL
`DPCCH
`DPCH
`
`Automatic Repeat Request
`Broadcast Channel
`Bit Error Rate
`Block Error Rate
`Base Station
`Common Control Physical Channel
`Coded Composite Transport Channel
`Connection Frame Number
`Cyclic Redundancy Check
`Dedicated Channel
`Downlink (Forward link)
`Dedicated Physical Control Channel
`Dedicated Physical Channel
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 7 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`
`
`
`Release 1999
`
`8
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`DPDCH
`DS-CDMA
`DSCH
`DTX
`FACH
`FDD
`FER
`GF
`MAC
`Mcps
`MS
`OVSF
`PCCC
`PCH
`PhCH
`PRACH
`RACH
`RSC
`RX
`SCH
`SF
`SFN
`SIR
`SNR
`TF
`TFC
`TFCI
`TPC
`TrCH
`TTI
`TX
`UL
`
`Dedicated Physical Data Channel
`Direct-Sequence Code Division Multiple Access
`Downlink Shared Channel
`Discontinuous Transmission
`Forward Access Channel
`Frequency Division Duplex
`Frame Error Rate
`Galois Field
`Medium Access Control
`Mega Chip Per Second
`Mobile Station
`Orthogonal Variable Spreading Factor (codes)
`Parallel Concatenated Convolutional Code
`Paging Channel
`Physical Channel
`Physical Random Access Channel
`Random Access Channel
`Recursive Systematic Convolutional Coder
`Receive
`Synchronisation Channel
`Spreading Factor
`System Frame Number
`Signal-to-Interference Ratio
`Signal to Noise Ratio
`Transport Format
`Transport Format Combination
`Transport Format Combination Indicator
`Transmit Power Control
`Transport Channel
`Transmission Time Interval
`Transmit
`Uplink (Reverse link)
`
`4
`
`Multiplexing, channel coding and interleaving
`
`General
`4.1
`Data stream from/to MAC and higher layers (Transport block / Transport block set) is encoded/decoded to offer
`transport services over the radio transmission link. Channel coding scheme is a combination of error detection, error
`correcting, rate matching, interleaving and transport channels mapping onto/splitting from physical channels.
`
`Transport-channel coding/multiplexing
`4.2
`Data arrives to the coding/multiplexing unit in form of transport block sets once every transmission time interval. The
`transmission time interval is transport-channel specific from the set {10 ms, 20 ms, 40 ms, 80 ms}.
`
`The following coding/multiplexing steps can be identified:
`
`- add CRC to each transport block (see subclause 4.2.1);
`
`-
`
`transport block concatenation and code block segmentation (see subclause 4.2.2);
`
`- channel coding (see subclause 4.2.3);
`
`-
`
`-
`
`-
`
`radio frame equalisation (see subclause 4.2.4);
`
`rate matching (see subclause 4.2.7);
`
`insertion of discontinuous transmission (DTX) indication bits (see subclause 4.2.9);
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 8 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`
`
`
`Release 1999
`
`9
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`-
`
`-
`
`interleaving (two steps, see subclauses 4.2.5 and 4.2.11);
`
`radio frame segmentation (see subclause 4.2.6);
`
`- multiplexing of transport channels (see subclause 4.2.8);
`
`- physical channel segmentation (see subclause 4.2.10);
`
`- mapping to physical channels (see subclause 4.2.12).
`
`The coding/multiplexing steps for uplink and downlink are shown in figure 1 and figure 2 respectively.
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 9 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`
`
`
`Release 1999
`
`10
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`a
`1
`im
`
`,
`
`a
`im
`
`2
`
`,
`
`a
`im
`
`3
`
`,
`
`
`
`,
`
`a
`imA
`i
`
`CRC attachment
`
`b
`1
`im
`
`,
`
`b
`im
`
`2
`
`,
`
`b
`im
`
`3
`
`,
`
`o
`ir
`
`1
`
`,
`
`o
`ir
`
`2
`
`,
`
`o
`ir
`
`3
`
`,
`
`
`
`,
`b
`
`imB
`TrBk concatenation /
`Code block segmentation
`,
`o
`irK
`
`i
`
`i
`
`Channel coding
`
`cc ,
`
`
`1
`i
`i
`
`2
`
`,
`
`c
`i
`
`3
`
`,
`
`
`
`,
`
`c
`iE
`
`i
`
`Radio frame equalisation
`
`t
`
`
`
`i1
`
`,
`
`t
`
`i
`
`2
`
`,
`
`t
`
`i
`
`3
`
`,
`
`
`
`,
`
`t
`
`iiT
`
`
`
` ddd ,,
`
`,
`
`
`
`,
`
`d
`
`i
`
`3
`
`1st interleaving
`
`
`1
`2
`i
`i
`
`iiT
`
`Radio frame segmentation
`
`ee ,
`
`
`1
`i
`i
`
`2
`
`,
`
`e
`i
`
`3
`
`,
`
`
`
`,
`
`e
`iN
`
`i
`
`Rate matching
`
`Rate
`matching
`
`f
`
`1
`i
`
`,
`
`f
`
`i
`
`2
`
`,
`
`f
`
`i
`
`3
`
`,
`
`
`
`,
`
`f
`
`iiV
`TrCH Multiplexing
`
`sss , ,
`
`
`1
`3
`2
`
`
`
`,
`
`
`
`,
`
`Ss
`
`u
`
`,
`
`u
`
`
`
`p1
`
`p
`
`2
`
`,
`
`u
`
`p
`
`3
`
`,
`
`
`
`,
`
`u
`
`CCTrCH
`Physical channel
`segmentation
`
`pU
`2nd interleaving
`
`v
`
`
`
`p1
`
`,
`
`v
`
`p
`
`2
`
`,
`
`v
`
`p
`
`3
`
`,
`
`
`
`,
`v
`pU
`Physical channel mapping
`
`
`
`PhCH#2
`PhCH#1
`
`Figure 1: Transport channel multiplexing structure for uplink
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 10 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`
`
`
`Release 1999
`
`11
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`a
`1
`im
`
`,
`
`a
`im
`
`2
`
`,
`
`a
`im
`
`3
`
`,
`
`
`
`,
`
`a
`imA
`i
`
`CRC attachment
`
`b
`1
`im
`
`,
`
`b
`im
`
`2
`
`,
`
`b
`im
`
`3
`
`,
`
`
`
`,
`
`o
`ir
`
`1
`
`,
`
`o
`ir
`
`2
`
`,
`
`o
`ir
`
`3
`
`,
`
`
`
`i
`
`b
`imB
`i
`TrBk concatenation /
`Code block segmentation
`,
`o
`irK
`
`Channel coding
`
`Rate matching
`
`Rate
`matching
`
`cc ,
`
`
`1
`i
`i
`
`2
`
`,
`
`c
`i
`
`3
`
`,
`
`
`
`,
`
`c
`iE
`
`i
`
` gg ,
`
`
`1
`i
`
`i
`
`2
`
`,
`
`g
`
`i
`
`3
`
`,
`
`
`
`,
`
`g
`
`iG
`i
`1st insertion of DTX
`indication
`,
`h
`iD
`
` hhh ,,
`
`
`
`
`1
`2
`i
`i
`i
`
`3
`
`,
`
`
`
`i
`
`1st interleaving
`
`
`
` qqq ,,
`
`,
`
`
`
`
`
`2
`i1
`i
`i
`
`3
`
`,
`
`q
`iQ
`
`i
`
`Radio frame segmentation
`
`f
`
`
`
`i1
`
`,
`
`f
`
`i
`
`2
`
`,
`
`f
`
`i
`
`3
`
`,
`
`
`
`,
`
`f
`
`iV
`i
`
`TrCH Multiplexing
`
`,
`
`
`
`,
`
`Ss
`
` sss ,,
`
`
`
`
`3
`2
`1
`
` www ,,
`
`
`
`
`3
`2
`1
`
`,
`
`
`
`,
`
`Rw
`
`2nd insertion of DTX
`indication
`CCTrCH
`Physical channel
`segmentation
`
`u
`
`,
`
`u
`
`1
`p
`
`p
`
`2
`
`,
`
`u
`
`p
`
`3
`
`,
`
`
`
`,
`
`u
`
`pU
`
`v
`
`1
`p
`
`,
`
`v
`
`p
`
`2
`
`,
`
`v
`
`p
`
`3
`
`,
`
`
`
`,
`
`v
`
`pU
`
`2nd interleaving
`
`Physical channel mapping
`
`
`
`PhCH#2
`PhCH#1
`
`Figure 2: Transport channel multiplexing structure for downlink
`
`The single output data stream from the TrCH multiplexing, including DTX indication bits in downlink, is denoted
`Coded Composite Transport Channel (CCTrCH). A CCTrCH can be mapped to one or several physical channels.
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 11 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`
`
`
`Release 1999
`
`12
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`CRC attachment
`4.2.1
`Error detection is provided on transport blocks through a Cyclic Redundancy Check (CRC). The size of the CRC is 24,
`16, 12, 8 or 0 bits and it is signalled from higher layers what CRC size that should be used for each TrCH.
`
`CRC Calculation
`4.2.1.1
`The entire transport block is used to calculate the CRC parity bits for each transport block. The parity bits are generated
`by one of the following cyclic generator polynomials:
`
`- gCRC24(D) = D24 + D23 + D6 + D5 + D + 1;
`
`- gCRC16(D) = D16 + D12 + D5 + 1;
`
`- gCRC12(D) = D12 + D11 + D3 + D2 + D + 1;
`- gCRC8(D) = D8 + D7 + D4 + D3 + D + 1.
`
`,
`,
`,
`,
`a
`a
`a
`a
`, and the parity bits by
`Denote the bits in a transport block delivered to layer 1 by
`
`2
`3
`1
`im
`im
`im
`imA
`i
`. Ai is the size of a transport block of TrCH i, m is the transport block number, and Li is the
`,
`,
`,
`,
`p
`p
`p
`p
`
`
`im1
`3
`2
`imL
`im
`im
`number of parity bits. Li can take the values 24, 16, 12, 8, or 0 depending on what is signalled from higher layers.
`
`i
`
`The encoding is performed in a systematic form, which means that in GF(2), the polynomial:
`
`Da
`
`1im
`
`A
`i
`
`+
`
`23
`
`+
`
`Da
`2
`im
`
`A
`i
`
`+
`
`22
`
`+
`
`
`
`+
`
`Da
`imA
`i
`
`24
`
`+
`
`Dp
`1
`im
`
`23
`
`+
`
`Dp
`2
`im
`
`22
`
`+
`
`
`
`+
`
`Dp
`23
`im
`
`1
`
`+
`
`p
`
`im
`
`24
`
`
`
`yields a remainder equal to 0 when divided by gCRC24(D), polynomial:
`
`Da
`
`1im
`
`A
`i
`
`15
`+
`
`+
`
`Da
`2
`im
`
`A
`i
`
`+
`
`14
`
`+
`
`
`
`+
`
`16
`Da
`imA
`i
`
`+
`
`15
`Dp
`
`1im
`
`+
`
`14
`Dp
`2
`im
`
`+
`
`
`
`+
`
`1
`pDp
`+
`
`15im
`
`16im
`
`
`
`yields a remainder equal to 0 when divided by gCRC16(D), polynomial:
`
`A
`i
`
`11
`+
`
`A
`i
`
`10
`+
`
`12
`
`11
`
`10
`
`1
`
`Da
`
`1im
`
`+
`
`Da
`2
`im
`
`+
`
`
`
`+
`
`Da
`imA
`i
`
`+
`
`Dp
`1
`im
`
`+
`
`Dp
`2
`im
`
`+
`
`
`
`+
`
`Dp
`11
`im
`
`+
`
`p
`
`
`
`12
`im
`
`yields a remainder equal to 0 when divided by gCRC12(D) and polynomial:
`
`Da
`
`1im
`
`A
`i
`
`+
`
`7
`
`+
`
`Da
`2
`im
`
`A
`i
`
`+
`
`6
`
`+
`
`
`
`+
`
`8
`
`Da
`imA
`i
`
`+
`
`7
`
`Dp
`
`1im
`
`+
`
`Dp
`2
`im
`
`6
`
`+
`
`
`
`+
`
`1
`pDp
`+
`7
`im
`im
`
`8
`
`
`
`yields a remainder equal to 0 when divided by gCRC8(D).
`
`If no transport blocks are input to the CRC calculation (Mi = 0), no CRC attachment shall be done. If transport blocks
`are input to the CRC calculation (Mi ≠ 0) and the size of a transport block is zero (Ai = 0), CRC shall be attached, i.e. all
`parity bits equal to zero.
`
`Relation between input and output of the CRC attachment block
`,
`,
`,
`,
`, where Bi = Ai+ Li. The relation between aimk
`b
`b
`b
`b
`
`imB
`im
`im
`
`im1
`
`2
`
`
`
`3
`
`i
`
`4.2.1.2
`
`The bits after CRC attachment are denoted by
`and bimk is:
`b
`a
`imk
`imk
`
`=
`
`
`
`
`
`k = 1, 2, 3, …, Ai
`
`b
`imk
`
`=
`
`p
`im
`
`(
`
`L
`
`i
`
`(1
`−+
`
`Ak
`−
`i
`
`))
`
` k = Ai + 1, Ai + 2, Ai + 3, …, Ai + Li
`
`C:\Users\haulcomm\Documents\Projects\Litigation\0246566.
`00028 (Sisvel v. Honeywell)\Bishop Declaration (‘718
`
`
`
`3GPP
`
`
`IPR2021-00908 Honeywell Exh. 1014 - Page 12 of 62
`(Honeywell International, Inc., et al. v. 3G Licensing S.A.)
`
`
`
`
`Release 1999
`
`13
`
`3GPP TS 25.212 V3.7.0 (2001-09)
`
`Transport block concatenation and code block segmentation
`4.2.2
`All transport blocks in a TTI are serially concatenated. If the number of bits in a TTI is larger than Z, the maximum size
`of a code block in question, then code block segmentation is performed after the concatenation of the transport blocks.
`The maximum size of the code blocks depends on whether convolutional coding, turbo coding or no coding is used for
`the TrCH.
`
`4.2.2.1
`
`Concatenation of transport blocks
`
`,
`,
`,
`,
`b
`b
`b
`b
` where i is the TrCH
`The bits input to the transport block concatenation are denoted by
`
`2
`3
`1
`im
`im
`im
`imB
`number, m is the transport block number, and Bi is the number of bits in each block (including CRC). The number of