throbber
(cid:56)(cid:74)(cid:74)(cid:5)(cid:73)(cid:78)(cid:88)(cid:72)(cid:90)(cid:88)(cid:88)(cid:78)(cid:84)(cid:83)(cid:88)(cid:17)(cid:5)(cid:88)(cid:89)(cid:70)(cid:89)(cid:88)(cid:17)(cid:5)(cid:70)(cid:83)(cid:73)(cid:5)(cid:70)(cid:90)(cid:89)(cid:77)(cid:84)(cid:87)(cid:5)(cid:85)(cid:87)(cid:84)(cid:75)(cid:78)(cid:81)(cid:74)(cid:88)(cid:5)(cid:75)(cid:84)(cid:87)(cid:5)(cid:89)(cid:77)(cid:78)(cid:88)(cid:5)(cid:85)(cid:90)(cid:71)(cid:81)(cid:78)(cid:72)(cid:70)(cid:89)(cid:78)(cid:84)(cid:83)(cid:5)(cid:70)(cid:89)(cid:31)(cid:5)(cid:77)(cid:89)(cid:89)(cid:85)(cid:88)(cid:31)(cid:20)(cid:20)(cid:92)(cid:92)(cid:92)(cid:19)(cid:87)(cid:74)(cid:88)(cid:74)(cid:70)(cid:87)(cid:72)(cid:77)(cid:76)(cid:70)(cid:89)(cid:74)(cid:19)(cid:83)(cid:74)(cid:89)(cid:20)(cid:85)(cid:90)(cid:71)(cid:81)(cid:78)(cid:72)(cid:70)(cid:89)(cid:78)(cid:84)(cid:83)(cid:20)(cid:23)(cid:27)(cid:28)(cid:28)(cid:21)(cid:24)(cid:29)(cid:27)(cid:22)
`
`(cid:61)(cid:76)(cid:81)(cid:70)(cid:3)(cid:40)(cid:79)(cid:72)(cid:70)(cid:87)(cid:85)(cid:82)(cid:90)(cid:76)(cid:81)(cid:81)(cid:76)(cid:81)(cid:74)(cid:3)(cid:58)(cid:76)(cid:87)(cid:75)(cid:3)(cid:42)(cid:68)(cid:86)(cid:3)(cid:39)(cid:76)(cid:73)(cid:73)(cid:88)(cid:86)(cid:76)(cid:82)(cid:81)(cid:3)(cid:36)(cid:81)(cid:82)(cid:71)(cid:72)(cid:86)(cid:29)(cid:3)(cid:54)(cid:87)(cid:68)(cid:87)(cid:72)(cid:3)(cid:82)(cid:73)(cid:3)(cid:87)(cid:75)(cid:72)(cid:3)(cid:36)(cid:85)(cid:87)(cid:3)(cid:68)(cid:81)(cid:71)(cid:3)(cid:41)(cid:88)(cid:87)(cid:88)(cid:85)(cid:72)
`(cid:39)(cid:72)(cid:89)(cid:72)(cid:79)(cid:82)(cid:83)(cid:80)(cid:72)(cid:81)(cid:87)(cid:86)
`
`(cid:38)(cid:87)(cid:89)(cid:78)(cid:72)(cid:81)(cid:74)(cid:100)(cid:100)(cid:78)(cid:83)(cid:100)(cid:100)(cid:40)(cid:70)(cid:83)(cid:70)(cid:73)(cid:78)(cid:70)(cid:83)(cid:5)(cid:50)(cid:74)(cid:89)(cid:70)(cid:81)(cid:81)(cid:90)(cid:87)(cid:76)(cid:78)(cid:72)(cid:70)(cid:81)(cid:5)(cid:54)(cid:90)(cid:70)(cid:87)(cid:89)(cid:74)(cid:87)(cid:81)(cid:94)(cid:5)(cid:123)(cid:5)(cid:52)(cid:72)(cid:89)(cid:84)(cid:71)(cid:74)(cid:87)(cid:5)(cid:23)(cid:21)(cid:21)(cid:22)
`
`(cid:41)(cid:52)(cid:46)(cid:31)(cid:5)(cid:22)(cid:21)(cid:19)(cid:22)(cid:22)(cid:28)(cid:30)(cid:20)(cid:72)(cid:82)(cid:86)(cid:19)(cid:23)(cid:21)(cid:21)(cid:22)(cid:19)(cid:25)(cid:21)(cid:19)(cid:25)(cid:19)(cid:25)(cid:26)(cid:30)
`
`(cid:40)(cid:46)(cid:57)(cid:38)(cid:57)(cid:46)(cid:52)(cid:51)(cid:56)
`(cid:28)
`
`(cid:27)(cid:5)(cid:70)(cid:90)(cid:89)(cid:77)(cid:84)(cid:87)(cid:88)(cid:17)(cid:5)(cid:78)(cid:83)(cid:72)(cid:81)(cid:90)(cid:73)(cid:78)(cid:83)(cid:76)(cid:31)
`
`(cid:50)(cid:70)(cid:88)(cid:88)(cid:78)(cid:82)(cid:78)(cid:81)(cid:78)(cid:70)(cid:83)(cid:84)(cid:5)(cid:39)(cid:74)(cid:88)(cid:89)(cid:74)(cid:89)(cid:89)(cid:78)
`(cid:53)(cid:84)(cid:81)(cid:78)(cid:89)(cid:74)(cid:72)(cid:83)(cid:78)(cid:72)(cid:84)(cid:5)(cid:73)(cid:78)(cid:5)(cid:50)(cid:78)(cid:81)(cid:70)(cid:83)(cid:84)
`
`(cid:22)(cid:23)(cid:29)(cid:5)(cid:53)(cid:58)(cid:39)(cid:49)(cid:46)(cid:40)(cid:38)(cid:57)(cid:46)(cid:52)(cid:51)(cid:56)(cid:100)(cid:100)(cid:100)(cid:22)(cid:17)(cid:22)(cid:26)(cid:23)(cid:5)(cid:40)(cid:46)(cid:57)(cid:38)(cid:57)(cid:46)(cid:52)(cid:51)(cid:56)(cid:100)(cid:100)(cid:100)
`
`(cid:56)(cid:42)(cid:42)(cid:5)(cid:53)(cid:55)(cid:52)(cid:43)(cid:46)(cid:49)(cid:42)
`
`(cid:55)(cid:42)(cid:38)(cid:41)(cid:56)
`(cid:22)(cid:28)(cid:30)
`
`(cid:44)(cid:74)(cid:84)(cid:75)(cid:75)(cid:5)(cid:45)(cid:19)(cid:5)(cid:48)(cid:74)(cid:81)(cid:88)(cid:70)(cid:81)(cid:81)
`(cid:46)(cid:82)(cid:85)(cid:74)(cid:87)(cid:78)(cid:70)(cid:81)(cid:5)(cid:40)(cid:84)(cid:81)(cid:81)(cid:74)(cid:76)(cid:74)(cid:5)(cid:49)(cid:84)(cid:83)(cid:73)(cid:84)(cid:83)
`
`(cid:22)(cid:26)(cid:25)(cid:5)(cid:53)(cid:58)(cid:39)(cid:49)(cid:46)(cid:40)(cid:38)(cid:57)(cid:46)(cid:52)(cid:51)(cid:56)(cid:100)(cid:100)(cid:100)(cid:24)(cid:17)(cid:25)(cid:22)(cid:23)(cid:5)(cid:40)(cid:46)(cid:57)(cid:38)(cid:57)(cid:46)(cid:52)(cid:51)(cid:56)(cid:100)(cid:100)(cid:100)
`
`(cid:56)(cid:42)(cid:42)(cid:5)(cid:53)(cid:55)(cid:52)(cid:43)(cid:46)(cid:49)(cid:42)
`
`(cid:56)(cid:84)(cid:82)(cid:74)(cid:5)(cid:84)(cid:75)(cid:5)(cid:89)(cid:77)(cid:74)(cid:5)(cid:70)(cid:90)(cid:89)(cid:77)(cid:84)(cid:87)(cid:88)(cid:5)(cid:84)(cid:75)(cid:5)(cid:89)(cid:77)(cid:78)(cid:88)(cid:5)(cid:85)(cid:90)(cid:71)(cid:81)(cid:78)(cid:72)(cid:70)(cid:89)(cid:78)(cid:84)(cid:83)(cid:5)(cid:70)(cid:87)(cid:74)(cid:5)(cid:70)(cid:81)(cid:88)(cid:84)(cid:5)(cid:92)(cid:84)(cid:87)(cid:80)(cid:78)(cid:83)(cid:76)(cid:5)(cid:84)(cid:83)(cid:5)(cid:89)(cid:77)(cid:74)(cid:88)(cid:74)(cid:5)(cid:87)(cid:74)(cid:81)(cid:70)(cid:89)(cid:74)(cid:73)(cid:5)(cid:85)(cid:87)(cid:84)(cid:79)(cid:74)(cid:72)(cid:89)(cid:88)(cid:31)
`
`(cid:42)(cid:83)(cid:77)(cid:70)(cid:83)(cid:72)(cid:78)(cid:83)(cid:76)(cid:5)(cid:89)(cid:77)(cid:74)(cid:5)(cid:70)(cid:73)(cid:77)(cid:74)(cid:88)(cid:78)(cid:84)(cid:83)(cid:5)(cid:84)(cid:75)(cid:5)(cid:73)(cid:78)(cid:70)(cid:82)(cid:84)(cid:83)(cid:73)(cid:18)(cid:81)(cid:78)(cid:80)(cid:74)(cid:5)(cid:72)(cid:70)(cid:87)(cid:71)(cid:84)(cid:83)(cid:5)(cid:75)(cid:78)(cid:81)(cid:82)(cid:88)(cid:5)(cid:89)(cid:84)(cid:5)(cid:88)(cid:89)(cid:74)(cid:74)(cid:81)(cid:5)(cid:88)(cid:90)(cid:71)(cid:88)(cid:89)(cid:87)(cid:70)(cid:89)(cid:74)(cid:88)(cid:5)(cid:90)(cid:88)(cid:78)(cid:83)(cid:76)(cid:5)(cid:88)(cid:78)(cid:81)(cid:78)(cid:72)(cid:84)(cid:83)(cid:18)(cid:72)(cid:84)(cid:83)(cid:89)(cid:70)(cid:78)(cid:83)(cid:78)(cid:83)(cid:76)(cid:5)(cid:78)(cid:83)(cid:89)(cid:74)(cid:87)(cid:81)(cid:70)(cid:94)(cid:74)(cid:87)(cid:88)(cid:5)(cid:59)(cid:78)(cid:74)(cid:92)(cid:5)(cid:85)(cid:87)(cid:84)(cid:79)(cid:74)(cid:72)(cid:89)
`
`(cid:50)(cid:84)(cid:81)(cid:89)(cid:74)(cid:83)(cid:5)(cid:57)(cid:78)(cid:83)(cid:5)(cid:38)(cid:83)(cid:84)(cid:73)(cid:74)(cid:88)(cid:5)(cid:75)(cid:84)(cid:87)(cid:5)(cid:40)(cid:70)(cid:87)(cid:71)(cid:84)(cid:83)(cid:18)(cid:38)(cid:78)(cid:87)(cid:5)(cid:56)(cid:52)(cid:43)(cid:40)(cid:88)(cid:5)(cid:59)(cid:78)(cid:74)(cid:92)(cid:5)(cid:85)(cid:87)(cid:84)(cid:79)(cid:74)(cid:72)(cid:89)
`
`(cid:38)(cid:81)(cid:81)(cid:5)(cid:72)(cid:84)(cid:83)(cid:89)(cid:74)(cid:83)(cid:89)(cid:5)(cid:75)(cid:84)(cid:81)(cid:81)(cid:84)(cid:92)(cid:78)(cid:83)(cid:76)(cid:5)(cid:89)(cid:77)(cid:78)(cid:88)(cid:5)(cid:85)(cid:70)(cid:76)(cid:74)(cid:5)(cid:92)(cid:70)(cid:88)(cid:5)(cid:90)(cid:85)(cid:81)(cid:84)(cid:70)(cid:73)(cid:74)(cid:73)(cid:5)(cid:71)(cid:94)(cid:5)(cid:44)(cid:74)(cid:84)(cid:75)(cid:75)(cid:5)(cid:45)(cid:19)(cid:5)(cid:48)(cid:74)(cid:81)(cid:88)(cid:70)(cid:81)(cid:81)(cid:5)(cid:84)(cid:83)(cid:5)(cid:22)(cid:30)(cid:5)(cid:47)(cid:70)(cid:83)(cid:90)(cid:70)(cid:87)(cid:94)(cid:5)(cid:23)(cid:21)(cid:22)(cid:26)(cid:19)
`
`(cid:57)(cid:77)(cid:74)(cid:5)(cid:90)(cid:88)(cid:74)(cid:87)(cid:5)(cid:77)(cid:70)(cid:88)(cid:5)(cid:87)(cid:74)(cid:86)(cid:90)(cid:74)(cid:88)(cid:89)(cid:74)(cid:73)(cid:5)(cid:74)(cid:83)(cid:77)(cid:70)(cid:83)(cid:72)(cid:74)(cid:82)(cid:74)(cid:83)(cid:89)(cid:5)(cid:84)(cid:75)(cid:5)(cid:89)(cid:77)(cid:74)(cid:5)(cid:73)(cid:84)(cid:92)(cid:83)(cid:81)(cid:84)(cid:70)(cid:73)(cid:74)(cid:73)(cid:5)(cid:75)(cid:78)(cid:81)(cid:74)(cid:19)
`
`Tennant Company
`Exhibit 1022
`
`

`

`459
`
`Canadian Metallurgical Quarterly, Vol 40, No 4 pp 459-469, 2001
`© Canadian Institute of Mining, Metallurgy and Petroleum
`Published by Canadian Institute of Mining, Metallurgy and Petroleum
`Printed in Canada. All rights reserved
`
`ZINC ELECTROWINNING WITH GAS DIFFUSION ANODES:
`STATE OF THE ART AND FUTURE DEVELOPMENTS
`
`M. BESTETTI1, U. DUCATI1, G. KELSALL2, G. LI3, E. GUERRA4 and R. ALLEN5
`
`1Department of Applied Physical Chemistry, Polytechnic of Milan 20131, Milan, Italy
`2T.H. Huxley School, Imperial College London SW7 2BP, UK
`3Cominco Research, Cominco Ltd. Trail, British Columbia, Canada, V1R 4S4
`4Department of Metals and Materials Engineering, University of British Columbia
`Vancouver, British Columbia, Canada, V6T 1Z4
`5E-TEK Division, De Nora North America Inc., Ashland, MA, 01721, USA
`
`(Selected from: Electrometallurgy 2001 Symposium, 31st Annual Hydrometallurgical Meeting, Editor A. Gonzalez)
`
`Abstract — Hydrogen gas diffusion anodes (HGDA) have been considered previously as alternatives to
`oxygen-evolving lead alloy anodes in metal electrowinning. Despite their higher capital costs, the sub-
`stantial decrease in electrowinning production costs potentially offered by HGDAs is causing renewed
`interest in their industrial use. This paper reviews the more recent applications of hydrogen gas diffusion
`anodes in industrial electrowinning. Using data from the literature, a simplified economical assessment
`is presented for a zinc electrowinning tank house implementing hydrogen gas diffusion anodes; optimum
`operating current densities of about 3 kA m-2 are predicted.
`
`Résumé — Des anodes de diffusion de gaz hydrogène (ADGH) ont été considérées antérieurement
`comme remplacement des anodes d’alliage au plomb produisant de l’oxygène pour l’extraction
`électrolytique du métal. En dépit de leur coût plus élevé en capital, la diminution substantielle des coûts
`de production par extraction électrolytique offerte potentiellement par les ADGHs suscite un intérêt
`renouvelé pour leur utilisation industrielle. Cet article révise les applications les plus récentes d’anodes
`à diffusion de gaz hydrogène dans l’extraction électrolytique industrielle. En utilisant les données de la
`littérature, on présente une évaluation économique simplifiée d’un ensemble de cellules d’extraction
`électrolytique de zinc ayant mis en application les anodes à diffusion de gaz hydrogène; on prédit des
`densités de courant d’opération optimum d’environ 3 kA m-2.
`
`INTRODUCTION
`
`Conventional electrowinning of zinc from aqueous elec-
`trolytes involves water decomposition at oxidized lead alloy
`anodes. This results in the evolution of oxygen, an intrinsi-
`cally slow and therefore energy intensive process.
`Increasing environmental and economic pressures have and
`will continue to heighten pressures to decrease energy con-
`sumptions in such processes. In aqueous electrowinning pri-
`marily, this involves decreasing the anode thermodynamic
`and overpotential contributions to the cell voltage, hence
`decreasing specific electrical energy consumptions [1].
`
`One approach to this objective in conventional zinc
`electrowinning is to replace the oxygen evolving lead
`alloy anodes with hydrogen oxidation to hydrogen ions in
`gas diffusion anodes1. These multiphase structures have
`been developed primarily for use in fuel cells and the
`
`engineering is even more challenging in electrowinning
`processes.
`
`At present, hydrogen is produced from a variety of
`feedstocks (natural gas, coal, biomass and water) by using
`several technologies (reforming, gasification and electroly-
`sis). However, steam reforming of methane is the most
`common and least expensive method for hydrogen produc-
`tion accounting for about 48% of world hydrogen produc-
`tion with a unit cost of $.60 – 1.14 (U.S.)kg-1 [2]. Hydrogen
`is also the main byproduct of the chlor-alkali industry. In
`1999, the world chlorine use was estimated as 42.8 million
`tonnes [3], resulting in co-production of 1.2 million tonnes
`of hydrogen [4]. In principle, this corresponds to ca. 35
`
`1 The standard Gibbs free energy change values, at 25 °C, for the reactions
`ZnSO4 + H2O = Zn + 1/2O2 + H2SO4 and ZnSO4 + H2 = Zn + H2SO4 are,
`respectively, DG∞ = 384.159 kJ/x (E∞ = 1.99 V) and DG∞ = 147.018 kJ/x
`(E∞ = 0.76 V).
`
`CANADIAN METALLURGICAL QUARTERLY
`
`

`

`460
`
`M. BESTETTI, U. DUCATI, G. KELSALL, G. LI, E. GUERRA and R. ALLEN
`
`million tonnes per annum of zinc that could be produced at
`a current efficiency of 0.9 with hydrogen diffusion anodes;
`zinc production in 1999 was 7.7 million tonnes [3,5]. For
`example, a zinc plant producing 105 tonnes per annum
`would require 4¥107 Nm3 hydrogen (see below). Hydrogen
`can be transported by pipelines or by truck, rail or ship in
`liquefied or in gaseous form. The primary methods for
`hydrogen storage are compressed gas, liquefied hydrogen,
`metal hydride and carbon based systems. Transportation
`and storage costs must be accounted for in the economical
`assessment of electrowinning processes using gas diffusion
`anodes. A survey of the economics of hydrogen technolo-
`gies can be found in Reference 2.
`
`STRUCTURE OF GAS DIFFUSION ANODES
`
`The structure of a gas diffusion electrode is shown
`schematically in Figure 1 [6]. Gaseous hydrogen permeates
`through the porous structure of the electrode, dissolves into
`the electrolyte and diffuses to the electrocatalyst, when it is
`oxidised to protons. As the performance of hydrogen diffu-
`sion anodes depends mainly on the dissolution of the
`hydrogen gas in the electrolyte and its diffusion towards
`reaction sites, higher hydrogen solubilities and higher
`transport rates improve the performance of such anodes.
`
`In order to attain high current densities, porous elec-
`trodes must satisfy some basic requirements:
`
`1) Catalysts must have high activities.
`
`2) Pores must neither fill with electrolyte because of cap-
`illary action (“flooding”, “percolation”) nor must the
`gas pressure become so large that electrolyte is com-
`pletely expelled from the pores.
`
`3) The shorter the distance from gas dissolution sites to
`catalyst sites, the higher the gas feed rate and conse-
`quently, the higher the sustainable current densities.
`
`The main parts of a gas diffusion electrode are the gas
`supplying layer and the reaction layer. The current collec-
`tor is imbedded in the structure so as to be in electrical con-
`tact with the electrocatalyst region. To prevent electrolyte
`percolation, the side of the electrode exposed to the elec-
`trolyte is made hydrophobic by a layer that constitutes a
`barrier for the electrolyte; electrode performance also
`depends on the characteristics of that hydrophobic layer.
`
`Furuya [27] performed zinc electrowinning experi-
`ments using gas diffusion electrodes prepared by hot press-
`ing together the reaction and the gas supplying layers at
`600 kg cm-2 and 380 °C. The reaction layer was made from
`hydrophobic carbon black (45%), hydrophilic carbon black
`(35%), PTFE (20%) and a platinum catalyst (0.56 mg cm-2).
`The gas supply layer was made from hydrophobic carbon
`black (70%) and PTFE (30%). The thickness of the reaction
`and gas supplying layers was 0.1 mm and 0.5 mm, respec-
`tively. A similar structure was fabricated by Nikolova et al.
`[7,8] for their experiments on zinc and nickel electrowin-
`ning using a gas supplying layer coupled with an active
`layer containing PTFE coated carbon black and tungsten
`
`Gas phase
`
`Zone of high current density
`(Three-phase zone)
`
`Solution
`
`ring-like
`reaction zone
`
`Electrode wall
`
`Gas phase
`
`Electrolyte
`space
`
`long
`
`short
`
`transport paths
`
`Fig. 1. Single pore of a gas diffusion electrode (left) and three-phase zone in a gas diffusion electrode (right). Reproduced by permission of Wiley-VCH.
`
`CANADIAN METALLURGICAL QUARTERLY
`
`

`

`ZINC ELECTROWINNING WITH GAS DIFFUSION ANODES: STATE OF THE ART AND FUTURE DEVELOPMENTS
`
`461
`
`carbide as a catalyst. In both cases, the gas was supplied to
`the diffusion electrode from a gas chamber structure in an
`arrangement similar to that shown schematically in Figure 2.
`
`in preference to tungsten carbide because of their higher
`catalytic activity. Hydrogen was supplied to the carbon
`cloth layer through grooves in the substrate (Figure 4).
`Such anodes are no longer produced by E-TEK.
`
`1
`
`2 H2O
`
`LABORATORY, PILOT
`AND INDUSTRIAL TESTS
`
`H2SO4
`ZnSO4
`
`5
`
`Prototech (U.S.A.) investigated the influence of zinc sul-
`fate and sulfuric acid concentrations, and of current densi-
`ty on cell voltage and energy consumption for zinc elec-
`
`1. Tungsten carbide gas
`diffusion anode
`2. Zinc cathode
`3. Gas chamber
`4. Electrolyte chamber
`5. Water jacket for
`temperature control
`
`H2
`
`H2
`
`1'
`
`7
`
`3 1
`
`1'
`
`5
`
`5
`
`T0
`
`0
`
`H2
`Outlet
`
`0
`
`I
`
`H2
`Inlet
`
`I
`
`Groove
`
`45
`
`41
`
`40
`
`44
`
`G'
`
`G
`
`42
`
`3
`
`4
`
`H2O
`
`Fig. 2. Schematic arrangement of the cell with a gas diffusion electrode
`[7,8].
`
`Instead of using a separate gas plenum structure, it is
`actually more convenient to flow hydrogen over a large
`electrode surface area through a carbon cloth electrode
`substrate. Figure 3 represents the laminated structure of an
`anode used in metal electrowinning by Allen et al. [9,11].
`A thick catalysed carbon cloth coated with an anti-percola-
`tion layer is epoxy bonded to a solid substrate material.
`Lead was generally used as metal substrate in sulfuric acid
`electrolytes and platinum group metals catalysts were used
`
`A B C D E F G
`
`L
`
`I
`
`Inlet
`
`Inlet
`
`Inlet
`
`A. Substrate metal
`B. Priming epoxy
`C. Bonding epoxy
`D. Carbon cloth
`E. Catalyst layer
`F. Polysulfone layer
`G. Microporous
`membrane
`
`Fig. 3. The sequence of laminations applied to the anode substrate (E-
`TEK).
`
`Fig. 4. Examples of gas distribution in plenum-free gas diffusion elec-
`trodes (Allen, Metallgesellschaft AG).
`
`CANADIAN METALLURGICAL QUARTERLY
`
`43
`
`

`

`462
`
`M. BESTETTI, U. DUCATI, G. KELSALL, G. LI, E. GUERRA and R. ALLEN
`
`trowinning using hydrogen diffusion anodes which resulted
`in a patented process [12]. For 100 g dm-3 H2SO4 at 55 °C
`and a current density of 388 A m-2, increasing the Zn(II)
`concentration in the range 0 - 100 g dm-3 increased current
`efficiencies from 0 to 96%, whereas above 100 -
`120 g Zn(II) dm-3, current efficiencies were 95 - 96%
`(Figure 5). Cell voltages increased with increasing Zn(II)
`concentration due to sulfate ions forming hydrogen sulfate
`ions, decreasing proton activities and so increasing elec-
`trolyte resistances. Under such experimental conditions,
`specific electrical energy consumptions were insensitive to
`Zn(II) concentration in the range of 50 - 120 g dm-3.
`
`This value must be compared with the cost of hydrogen
`produced, for example, by steam reforming of methane. If
`the electrolyte contains 300 g H2SO4 dm-3, according to
`Figure 6, the current efficiency of the zinc deposition
`process at 388 A m-2 is 60 % and the cell voltage is ca.
`1.1 V when the energy requirement for Zn electrowinning
`is still low (Figure 7). By comparison, hydrogen production
`in conventional water electrolysis cells requires cell volt-
`ages of 1.8 - 2 V [14,15].
`
`Table I lists contributions to the cell voltage (U) for zinc
`electrowinning, conventionally and using a hydrogen gas
`diffusion anode at 450 A m-2 and pH = 1 [16]. Assuming a
`current efficiency (F) of 0.90 for both processes, then
`Equation 2 gives
`
`(
`SEEC kWh tonne Zn
`
`) =–1
`
`2
`3.6
`
`F U
`MZn
`
`F
`
`(2)
`
`Fig. 6. Effect of H2SO4 concentration on reactor performance at
`50 g Zn(II) dm-3 and 388 A m-2 (Prototech).
`
`Fig. 7. Effect of current efficiency and cell voltage on specific electrical
`energy consumption.
`
`Fig. 5. Effect of Zn(II) concentration on reactor performance at
`100 g H2SO4 dm-3 and 388 A m-2 (Prototech).
`
`Figure 6 shows that increasing H2SO4 concentrations
`decreased current efficiencies because of the enhancement
`of the hydrogen evolution reaction rate. However, their
`effect in decreasing the electrolyte resistance, decreasing
`ohmic potential drops and cell voltages led to a corre-
`sponding decrease in specific electrical energy consump-
`tion which exhibited a minimum at ca. 100 g H2SO4 dm-3.
`Increasing current densities to 776 A m-2 then 967 A m-2
`produced minima at ca. 125 g H2SO4 dm-3 and
`150 g H2SO4 dm-3, respectively. The hydrogen diffusion
`anodes performed well in even more concentrated sulfuric
`acid solutions with the optimum concentration being about
`4 molar [13]. Moreover, the decrease in current efficiencies
`with increasing acid concentration is less of a drawback
`than in conventional zinc electrowinning, as hydrogen
`evolved at the cathode is reusable at the anode. The value
`of the cathodically by-product hydrogen, eH2,by-prod.,
`(US$ kg-1) is given by:
`
`.
`26 8
`Ue
`
`(1)
`
`Ue
`3600
`
`=
`
`ˆ ¯˜
`
`2
`M
`
`F
`
`H
`
`2
`
`Ê ËÁ
`
`=
`
`e
`
`2 ,
`H by – prod
`
`.
`
`CANADIAN METALLURGICAL QUARTERLY
`
`

`

`ZINC ELECTROWINNING WITH GAS DIFFUSION ANODES: STATE OF THE ART AND FUTURE DEVELOPMENTS
`
`463
`
`where MZn is the molar mass of zinc, the specific electrical
`energy consumptions (SEEC) are 3.19 and 1.41 kWh kg-1
`of zinc, respectively. The use of hydrogen gas diffusion
`anodes also affects the heat balance such that significantly
`less electrolyte cooling would be required compared with
`that for conventional electrowinning.
`
`Table I – Components of Zinc Electrowinning Cell
`Voltage (Prototech)
`
`Voltage
`Component
`
`Conventional
`(V)
`
`H2 Depolarised
`(V)
`
`EA + EC
`h
`C
`h
`A
`IR
`Ucell
`
`2.04
`0.06
`0.86
`0.54
`3.50
`
`0.81
`0.06
`0.14
`0.54
`1.55
`
`Ruhr-Zink GmbH, together with Lurgi GmbH and
`Prototech, started the development of hydrogen diffusion
`anodes in the 1980s. They built a demonstration pilot scale
`installation comprising 41 gas diffusion anodes in Datteln,
`Germany with the aim of becoming commercially viable in
`1990 [17,18]. The advantages claimed by Ruhr-Zink
`GmbH for this technology were the decreased energy con-
`sumption and decreased concentrations of acid mist that
`pollute the atmosphere of tank houses and require expen-
`sive ventilation. In addition, improved zinc purity
`(99.999%) was claimed. The deposits were fine, smooth
`and thick and consequently, attractive for the galvanizing
`industry. However, the plant is no longer in operation
`because of the sharp decrease in zinc prices.
`
`Two-sided, free standing hydrogen anodes for
`immersed tank electrolysis were demonstrated in active
`areas of up to 0.6 m wide and 1.0 m deep. These electrodes
`were developed in cooperation with Lurgi AG with a view
`to replace lead anodes in an older tankhouse at Ruhr-Zink
`GmbH in Datteln, Germany. More modern facilities using
`“jumbo” anodes would be more difficult to retrofit.
`However, these anodes were tested at 1500 A m-2; higher
`current densities would have to be supported by higher gas
`flows which could potentially cause excessive internal
`pressure at the point of entry. Hence, the distance of the
`extremities of the electrodes from the entry point of the gas
`feeds is the key factor in their design limiting their immer-
`sion depth. Hydrogen utilization in these anodes is around
`90 - 95%; the balance is lost to the electrolyte without
`being oxidised.
`
`tinuously for a year at 500 A m2 in a typical zinc electrowin-
`ning solution (150 g H2SO4 dm-3 60 - 70 g Zn(II) dm-3, 40
`°C). This was attributed to catalyst poisoning by the carbon
`monoxide impurity in the hydrogen gas, although inorganic
`or organic impurities in the electrolyte may have con-
`tributed; HGDAs would be more prone to these effects than
`conventional lead alloy anodes. The zinc deposits obtained
`were uniform with no dendrite or nodule formation.
`
`Fig. 8. Time dependence of a (E-TEK) hydrogen gas diffusion anode
`operated at 500 A m2 in 150 g H2SO4 dm-3 60 - 70 g Zn(II) dm-3 at 40 °C.
`
`As hydrogen distribution and transport is more facile in
`plate and frame cell designs, higher current densities are
`possible compared with immersed tank construction.
`Electrodes with microporous anti-percolation coatings
`manufactured by E-TEK in a plate and frame configuration
`adopted apparent anode potentials of 300 to 400 mV (SHE)
`(uncompensated for IR) at current densities of 5 - 6 kA m-2
`in 150 g H2SO4 dm-3 at 40 °C. Electrodes for plate and
`frame electrolyzers are far less expensive to manufacture
`than immersed tank electrodes and are considered the pre-
`ferred route for new processes [19]. However, for elec-
`trowinning processes, the reactor design has to be capable
`of facilitating intermittent or continuous removal of the
`metal product.
`
`Wiesener et al. (20) reported cell voltage reductions of
`about 1.5 - 1.7 V at 200 - 1000 A m-2 for zinc electrowin-
`ning using gas diffusion anodes with tungsten carbide as
`the catalyst layer, in electrolyte containing 50-130 g Zn dm-3
`and 100 g H2SO4 dm-3 at 40 °C, relative to the convention-
`al process.
`
`The performances of hydrogen anodes have been
`assessed in short term experiments which showed no degra-
`dation in their behaviour over 200 hours. However, Figure 8
`shows an increase of ca. 150 mV in the potential of a
`100 cm2 E-TEK hydrogen gas diffusion anode operated con-
`
`In electrowinning copper using a hydrogen diffusion
`anode [21], depending on the anode potential, copper can
`be deposited on both the cathode and anode, thereby deac-
`tivating the anode catalyst since there is ca. 0.3 V driving
`force for the reaction:
`
`CANADIAN METALLURGICAL QUARTERLY
`
`

`

`464
`
`M. BESTETTI, U. DUCATI, G. KELSALL, G. LI, E. GUERRA and R. ALLEN
`
`2
`
`+ + Æ
`–
`2
`e
`
`Cu
`
`0
`;
`Cu ECu
`
`+
`
`2
`
`Cu
`
`=
`
`
`
`0 334.
`
`(
`V SHE
`
`)
`
`(3)
`
`to be driven spontaneously by
`

`
`+
`
`+
`
`2
`
`H
`
`H
`
`2
`
`2
`
`– ;
`0
`e EH H
`
`+
`
`2
`
`=
`
`(
`0 0. V SHE
`
`
`
`)
`
`(4)
`
`As sites for hydrogen oxidation are blocked on the
`anode, the anode potential rises, eventually causing it to
`behave as a copper anode as the potential surpasses the
`reversible copper potential. Hence, there is a degree of self-
`regulation in the anode behaviour. However, to achieve the
`maximum benefit in minimizing anode potentials, metals
`electrowon should have reversible potentials lower than
`that of the hydrogen electrode.
`
`Janssen [22] reported the use of a hydrogen gas diffu-
`sion anode developed for phosphoric acid fuel cells for
`electrotinning of strip steel; chromium, zinc, iron-zinc and
`zinc-nickel alloy coatings on steel may also be applied by
`this method. The difference in anode potential in running
`the tinning process with a hydrogen diffusion anode or with
`an oxygen evolving anode was approximately 1.6 V at
`1000 A m-2 resulting in lower energy consumption com-
`pared to the conventional process. Part of the saving in cell
`voltage was in the ohmic potential drop. The absence of the
`oxygen bubbles of the conventional process resulted in an
`additional saving of ca. 0.1 V. The gas bubbles generated in
`the conventional process create voidage (e
`g) in the elec-
`trolyte decreasing its (effective) conductivity (s
`eff) relative
`to the bulk phase conductivity (s) according to the
`Bruggeman equation [23]
`
`Additional advantages included decreased emissions of
`acid mist, stability of the electrolyte with respect to addi-
`tives as anode potentials preclude oxidation of the organics
`used, improvement in coating quality and no sludge forma-
`tion at the anode because of Sn(II) oxidation to the less sol-
`uble Sn(IV).
`
`Exposito et al. [24] reported hydrogen diffusion anodes
`operated ca. 1.3 V lower than oxygen evolving DSAs at
`1000 A m-2 in lead electrowinning from fluoborate elec-
`trolytes in which a hydrogen anode enables the use of an
`undivided cell with consequently lower ohmic potential
`drops.
`
`Rambla et al. [25] studied the electrowinning of nickel
`in a batch reactor using a hydrogen diffusion anode in sul-
`phate electrolytes containing variable amounts of Ni2+
`(10 g dm-3 up to saturation) and 35 g dm-3 of H3BO3 at pH
`3.5. Results showed that the energy cost increased linearly
`from 1 to 3 kWh kg-1 for current densities of 100 - 500 A m-2
`at a Ni2+ concentration of 74 g dm-3, room temperature and
`an interelectrode gap of 2 cm.
`
`Zinc Electrowinning at High Current Densities
`Since the industrial zinc electrowinning process was devel-
`oped during 1914-1918, a few reports [26] have appeared
`demonstrating its feasibility at higher current densities than
`those typical of industrial practice (400 - 600 A m-2). In the
`last two decades, such process intensification has been
`extended by incorporation of hydrogen gas diffusion
`anodes [27,28,29,30]; an example using a rotating alumini-
`um disc cathode is shown in Figure 9.
`
`(5)
`
`Table II shows the performance figures for convention-
`al zinc electrowinning and that proposed by Furuya [27].
`
`100 cm
`
`1
`
`7
`
`0.4 cm
`
`4 5 6 3
`
`4
`
`2
`
`3
`
`]
`)
`
`
`
`1 5.
`
`s
`eff
`
`)
`
`(
`x, y, z
`s
`
`[
`
`1
`
`=
`
`(
`
`e
`g
`
`–
`
`x, y, z
`
`1. Rotating aluminium
`disc cathode: Ø=1 m
`2. Hydrogen anode,
`active area: 4¥100 cm2
`2. Electrolyte inlet
`3. Electrolyte outlet
`4. Hydrogen inlet
`5. Hydrogen outlet
`7. Electric motor
`
`Fig. 9. Zinc electrowinning cell incorporating hydrogen gas diffusion cathodes [27].
`
`CANADIAN METALLURGICAL QUARTERLY
`
`

`

`ZINC ELECTROWINNING WITH GAS DIFFUSION ANODES: STATE OF THE ART AND FUTURE DEVELOPMENTS
`
`465
`
`9
`
`15
`
`H2
`
`2
`
`4
`
`13
`
`1 3
`
`5
`
`11
`
`10
`
`16
`
`12
`
`14
`
`H2
`
`Fig. 11. Metal electrowinning on an aluminium strip with a gas diffusion
`electrode.
`
`(6)
`
`ˆ¯
`
`jg
`s
`
`+
`
`h – E – h
`A
`C
`c
`
`+
`
`A
`
`ÊË
`
`=
`U – E
`
`a (mean) current density j passing a distance g between anode
`(A) and cathode (C) in an electrolyte of (mean) conductivity
`s. Figure 12 shows the effect of current density on cell volt-
`age and current efficiency for an electrowinning reactor
`incorporating a hydrogen diffusion anode in an electrolyte
`containing 160 g H2SO4 dm-3 and 60 g Zn(II) dm-3 at 21 °C.
`
`Under simplified assumptions (for a more detailed
`description see References 31 and 32), the total cost per
`unit mass of zinc produced is given by
`
`(7)
`
`Ue
`F
`
`ˆ ¯˜
`
`2
`F
`M
`
`Zn
`
`Ê ËÁ
`
`+
`
`1
`3600
`
`*
`aI
`F
`j
`
`ˆ ¯˜
`
`2
`F
`M
`
`Zn
`
`Ê ËÁ
`
`=
`
`TC
`
`1
`3153600
`
`+
`
`MC
`
`˘˚˙
`
`F
`–
`F
`
`1
`
`–
`
`r
`
`ÈÎÍ
`
`1
`
`e
`
`H
`
`2
`
`ˆ ¯˜
`
`H Z
`M M
`
`2
`
`n
`
`Ê ËÁ
`
`+
`
`CANADIAN METALLURGICAL QUARTERLY
`
`Table II – Operating Characteristics and Energy
`Requirements in Zinc Electrowinning [27]
`
`Using
`Using
`Pb Anode H2 Anode
`
`e
`
`Current density, j / A m-2
`Current efficiency, F
`Cell voltage, U / V
`Specific electrical energy
`consumption / kWh (tonne Zn)-1
`Hydrogen requirement/
`Nm3 H2 (tonne Zn)-1
`
`580
`90%
`3.6
`
`3300
`
`-
`
`5000
`90%
`1.8
`
`1640
`
`380
`
`The advantages of using hydrogen diffusion anodes lies in
`their use at very high current densities at the same current
`efficiency as in conventional zinc electrowinning; indeed,
`their captial cost necessitates high current density opera-
`tion. At the current densities specified in Table II, the cell
`voltage and specific electrical energy consumption are
`decreased by >50% and the purity (99.999%) of zinc pro-
`duced with hydrogen diffusion anodes is higher than that
`obtained with conventional lead alloy anodes. However,
`such comparisons neglect the capital and hydrogen costs of
`gas diffusion anodes which also require very pure elec-
`trolytes to avoid poisoning of the electrocatalyst by inor-
`ganic and organic impurities. Possibly, this might necessi-
`tate the purification of the electrolyte by solvent extraction.
`
`Furuya [31,32] has also proposed other reactor designs
`for high current density electrowinning, involving a rotat-
`ing drum cathode or an aluminium foil as shown in Figure
`10 and Figure 11, respectively.
`
`Fig. 10. Metal electrowinning on a rotating drum with a gas diffusion
`electrode.
`
`OPTIMIZATION OF OPERATING
`PARAMETERS
`The thermodynamic (E), overpotential (h) and ohmic con-
`tributions to the cell voltage (U) are related by
`
`

`

`466
`
`M. BESTETTI, U. DUCATI, G. KELSALL, G. LI, E. GUERRA and R. ALLEN
`
`Fig. 12. Effect of current density on cell voltage and current efficiency.
`Experimental conditions: 60 g Zn(II) + 160 g H2SO4 dm-3 and
`T = 21 ± 4 °C; g = 4 mm [27].
`
`Fig. 13. Fixed and variable costs as a function of current density for
`r = 0 and r = 1. Curves are drawn for eH2 = 1 US$ kg-1, a = 2500 US$ m-2,
`I* = 15 % y-1 and e = 0.03 US$ kWh-1.
`
`being fixed. This may be an important issue whenever the
`hydrogen evolved at the cathode can be recovered from very
`acidic solutions and reused at the anode. Hence, the curves
`in Figure 15 were calculated using the experimental data
`provided by Juda [12] (P0 and P1 are respectively drawn for
`r = 0 and r = 1) and by Furuya [27] (F0 and F1).
`
`The operating conditions for P1 and P0 are the same for
`Figure 6 and those for curves F1 and F0 are related to
`Figure 14. The curves are markedly different because of the
`diversity in operating conditions employed especially in
`current density. From Figure 15 it can be concluded that at
`high current densities the costs decrease with increasing
`sulfuric acid concentration. As an example, for curves F1
`
`Fig. 14. Effect of H2SO4 concentration on reactor performance at
`50 g Zn(II) dm-3 and 5000 A m-2.
`
`where TC is the total cost and MC is the maintenance cost.
`The variable costs (VC) include the electrical energy cost,
`the hydrogen cost and the savings attributable to the recov-
`ery of the hydrogen byproduct at the cathode. The fraction
`of cathodically evolved hydrogen that is recycled at the gas
`diffusion anode is symbolised with r. The optimized condi-
`tions can be obtained by minimization of the total cost with
`respect to temperature, current density, composition and
`anode-to-cathode gap (g). Such problems can be solved
`analytically by knowing the two functions
`)
`(
`]
`] [
`[
`F F=
`T, j, Zn , H SO g
`2
`4
`)
`(
`] [
`]
`[
`=
`U U T, j, Zn , H SO g
`2
`4
`
`and
`
`(8)
`
`, ,
`
`The economics of a process incorporating hydrogen

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket