throbber
I .
`
`
`
`Customer name
`Organisation
`Our reference
`Customer
`reference
`Price
`Item
`
`PUBLIC AVAILABILITY DATE REQUEST
`
`Janelle Beitz
`Fredrikson & Byron, P.A
`200103-2
`
`£90.00
`
`Electrochemical engineering: science & technology in chemical and
`other industries, Hartmut Wendt, Gerhard Kreysa, Springer/Verlag
`Berlin Heidelberg (1999), ISBN 3-540-64386-9.
`Shelfmark(s): Document Supply 99/19145; Science Technology &
`Business (B) LG 80.
`
`British Library Research Service
`Tel: +44 (0) 20 7412 7903 bipc-research@bl.uk
`
`Tennant Company
`Exhibit 1018
`
`Exhibit 1018_0001
`
`

`

`I .
`
`Janelle K. Beitz, J.D., M.L.I.S.
`Research Librarian
`Fredrikson & Byron, P.A.
`200 South Sixth Street, Suite 4000
`Minneapolis, Minnesota 55402
`USA
`
`18th December 2020
`
`Dear Janelle
`
`“Title: Electrochemical engineering: science & technology in chemical and
`other industries, Hartmut Wendt, Gerhard Kreysa, Springer/Verlag Berlin
`Heidelberg (1999), ISBN 3-540-64386-9. Shelfmark(s): Document Supply
`99/19145; Science Technology & Business (B) LG 80”.
`
`According to our records, this item was receipted by The British Library on 29th March
`1999, when it would have been available for public use from this date.
`
`A scan of the cover pages showing the date stamp on page two indicating the date of
`availability has been attached, together with the table of contents.
`
`Please note that we can only provide the date that the British Library made this item
`available for public use; for the actual date of publication, please contact the
`publisher.
`
`Yours sincerely
`
`Ms S Rampersad
`
`British Library Research Service
`Tel: +44 (0) 20 7412 7903 bipc-research@bl.uk
`
`Exhibit 1018_0002
`
`

`

`...........,.,,-· E;lectrochemicaf
`Engineering
`Science
`andTe~hnology
`in Chemical
`and Other
`Industries
`
`'S~ringer
`
`Exhibit 1018_0003
`
`

`

`Hartmut Wendt and Gerhard Kreysa
`
`Electrochemical
`Engineering
`
`Science and Technology in Chemical and Other Industries
`
`With 177 Figures and 45 Tables
`
`BRITISH LIBRARY
`DOCUMENT SUPPL'< CENTRE
`
`Springer
`
`Exhibit 1018_0004
`
`

`

`Prof. Dr. Hartmut Wendt
`Institut for Chemische Technologie
`TU Darmstadt
`Petersenstraf3e 20
`D-64287 Darmstadt
`Germany
`
`Prof. Dr. Gerhard Kreysa
`Karl Winnacker Institut
`DECHEMA e. V.
`Theodor-Reuss-Allee 25
`D-60486 Frankfurt am Main
`Germany
`
`ISBN 3-540-64386-9 Springer-Verlag Berlin Heidelberg New York
`
`Library of Congress Cataloging-in-Publication Data
`Wendt, Hartmut, 1933-
`Electrochemical engineering : science and technology in chemical and other industries / Hartmut Wendt,
`Gerhard Kreysa.
`p.cm.
`Includes bibliographical references.
`ISBN 3-540-64386-9 (hardcover: alk. paper)
`1. Electrochemistry, Industrial. I. Kreysa, Gerhard. IL Title.
`TP255.W46 1999
`660' .297--dc2 l
`
`This work is subject to copyright. All rights are reserved, whether the whole part of the material is concerned,
`specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
`on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof
`is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current ver(cid:173)
`sion, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecu(cid:173)
`tion under the German Copyright Law.
`
`© Springer-Verlag Berlin Heidelberg 1999
`Printed in Germany
`
`The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
`even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
`regulations and therefore free for general use.
`
`Typesetting: MED IO, Berlin
`Coverdesign: Design & Production, Heidelberg
`
`SPIN: 10675807 2/3020 - 5 4 3 2 1 0 - Printed on acid-free paper.
`
`Exhibit 1018_0005
`
`

`

`Preface
`
`)lications. The authors
`nfined to the relatively
`dustries, but that elec(cid:173)
`re money in the metal(cid:173)
`J the electronic indus(cid:173)
`m of processes to these
`
`!merging fuel cell tech-
`1 engineering are more
`rochemical process.
`-ipt of the two authors,
`agen, who so patiently,
`Mr. Bottiger, who with
`>k and whose quality is
`er programs.
`
`H. Wendt
`
`Contents
`
`Chapter 1
`The Scope and History of Electrochemical Engineering
`
`1.1
`
`1.2
`1.3
`
`Carl Wagner and the Beginning of Electrochemical
`Engineering Science . . . . . . . . . . . . . . . . . . . . . . . .
`Electrochemistry and Electrochemical Engineering Science .
`Electrochemical Engineering Science and Technology
`Since the Mid-1960s .. .. . . . . . . . . . . . . . .
`1.4 What Means Electrochemical Engineering Science
`and Technology Today?
`References . . . .
`Further Reading
`
`Chapter 2
`Basic Principles and Laws in Electrochemistry
`
`2.1
`2.2
`2.3
`2.4
`2.5
`
`Stoichiometry of Electrochemical Reactions
`Faraday's Law . . . . . . . . . . . . . . . . .
`Production Rates and Current Densities ..
`Ohm's Law and Electrolyte Conductivities .
`Parallel Circuits and Cells with Electrolytic Bypass
`and Kirchhoff's Rules
`Further Reading.
`
`Chapter 3
`Electrochemical Thermodynamics
`
`3.1
`3.2
`
`3.3
`
`3.4
`
`Equilibrium Cell Potential and Gibbs Energy . . . . . . . .
`Electrode Potentials, Reference Electrodes,Voltage Series,
`Redox Schemes . . . . . . . . . . . . . . . . . . . . . . . . .
`Reaction Enthalpy, Reaction Entropy, Thermoneutral Cell
`Voltage and Heat Balances of Electrochemical Reactions
`. . . . . . . . .
`Heat Balances of Electrochemical Processes
`
`1
`2
`
`3
`
`5
`7
`7
`
`8
`10
`11
`12
`
`14
`16
`
`17
`
`21
`
`28
`29
`
`Exhibit 1018_0006
`
`

`

`VIII
`
`Contents
`
`I
`
`Retrieval of Thermodynamic Data and Activity Coefficients
`3.5
`Thermodynamics of Electrosorption.
`3.6
`References . . . . . . . . . . . . . . . . . . . .
`
`Chapter4
`Electrode Kinetics and Electrocatalysis
`
`4.1
`4.2
`4.3
`4.4
`
`4.5
`4.6
`
`4.7
`
`4.8
`
`4.9
`
`4.10
`
`4.6.2
`4.6.2.1
`4.6.3
`
`The Electrochemical Double Layer . . . . . . . . . . . . . . . . .
`Kinetics of Interfacial Charge Transfer
`. . . . . . . . . . . . . .
`Electrode Kinetics of Multielectron Charge Transfer Reactions.
`Thermal Activation and Activation Energies of
`Electrochemical Reactions
`. . . . . . . . .
`Electrochemical Reaction Orders . . . . . .
`Current Density/Potential Correlations for
`Different Limiting Conditions
`. . . . . . . . . . . . . . .
`4.6.1
`Micro- and Macrokinetics of Electrochemical
`Reactions . . .... .. . . .. . . . ... . . . .
`Mass Transfer Controlled Current Potential Curves
`Reaction Controlled Current Voltage Curves
`Charge Transfer Controlled Current Voltage
`Correlation .. . . . . . . . . . . . . . . . . . .
`Combined Activation and Mass Transport Control
`4.6.4
`Reaction Controlled Current Voltage Curves . . . . . .
`4.7.1
`Introductory Remarks .. . .. . ... . . . .
`4.7.2
`Fast Preceding Reaction of an Electroactive
`Minority Species . . . . . .
`4.7.3
`Fast Consecutive Reactions
`Electrocatalysis . . . . . . . . . . . . . .
`4.8.1
`Principles of Electrocatalysis
`4.8.2
`Heterogeneous Electrocatalysis in Cathodic
`Evolution and Anodic Oxidation of Hydrogen
`The Volcano Curve . . . . . . . . . . . . . . . .
`Electrocatalysis in Anodic Oxygen Evolution
`and Cathodic Oxygen Reduction
`Redox Catalysis . . . . . . . . . . . . . . . . . .
`4.8.4
`Catalyst Morphology and Utilisation
`. . . . . . . . . . .
`4.9.1
`Structural Features and Catalyst Morphology
`of Electro catalysts for Gas Evolving and Gas
`Consuming Electrodes . . . . . . . . . . . . . .
`Utilisation of Porous Electro catalyst Particles .
`4.9.2
`Electrocatalysis in Electro organic Synthesis . . . . . . ..
`4.10.1
`Introduction into the Field of Electroorganic
`Synthesis . .. . . . . . . . . . . . . . . . . .
`4.10.1.1 Mediated Electrochemical Conversions of
`Organic Substrates . . . . . . . . . . . . . .
`
`4.8.2.1
`4.8.3
`
`31
`35
`37
`
`39
`41
`45
`
`49
`49
`
`51
`
`51
`52
`54
`
`55
`56
`57
`57
`
`58
`60
`61
`61
`
`61
`62
`
`64
`66
`68
`
`68
`69
`71
`
`71
`
`71
`
`Exhibit 1018_0007
`
`

`

`Contents
`
`Contents
`
`:fficients . . . .
`
`.... .. .
`. ..... .
`r Reactions.
`
`. . . ...
`
`nical
`
`ial Curves
`ves
`1ge
`
`·t Control
`
`ive
`
`die
`ogen
`
`tion
`
`fogy
`3as
`
`:ides.
`
`anic
`
`if
`
`. .....
`
`.. .. . . ..
`
`31
`35
`37
`
`39
`41
`45
`
`49
`49
`
`51
`
`51
`52
`54
`
`55
`56
`57
`57
`
`58
`60
`61
`61
`
`61
`62
`
`64
`66
`68
`
`68
`69
`71
`
`71
`
`71
`
`4.10.2
`
`4.10.2.1
`
`4.10.3
`
`4.10.4
`
`4.10.1.2 Direct Anodic and Cathodic Electrochemical
`Conversions of Organic Substrates . . .
`Electrocatalytic Oxidations by Oxides
`of Multiply-Valent Metals .. . ..... .. . .. .. .
`The Heterogeneously Catalysed Benzene Oxidation
`. . . . . . . .
`at Pb/PbO 2 Electrodes in Sulfuric Acid
`Electrocatalytic Hydrogenation and Electrocatalyzed
`Mediated Reduction . . . . . . . . . . . . . . .
`The Electrode Surface as Medium Catalysing
`Chemical Reactions of Electro generated
`Reactive Organic Intermediates
`. . . . . . . . . . . . . .
`4.10.4.1 Electrocatalytic Action of Electrosorbed Non-Reactant
`Species - Electrocatalysis of the Second Kind . . . . .
`Kinetics and Selectivity of Homogeneous Chemical
`Consecutive Reactions Following Charge Transfer .
`
`4.10.5
`
`References . .
`Further Reading
`
`Chapter 5
`Mass Transfer by Fluid Flow, Convective Diffusion and Ionic Electricity
`Transport in Electrolytes and Cells
`
`5.1
`5.2
`5.3
`
`5.4
`
`. . . ... .
`
`Introduction. . . . . . . .
`Fluid Dynamics and Convective Diffusion . . . . .
`Fluid Dynamics of Viscous, Incompressible Media.
`Laminar vs Turbulent Flow . ...... .
`5.3.1
`Velocity Distributions for Laminar Flow
`5.3.2
`Singular Electrode: Unidirectional Laminar
`5.3.2.1
`Flow Along a Plate . . . . .
`Pair of Planar Electrodes ...
`5.3 .2.2
`Circular Capillary Gap Cell . .
`5.3.2.3
`Mass Transport by Convective Diffusion
`Fundamentals
`. . . ..... .
`5.4.1
`Dimensionless Numbers Defining Mass Transport
`5.4.2
`Towards Electrodes by Convective Diffusion .
`Hydrodynamic Boundary Layer and Nernst
`Diffusion Layer: Planar Electrodes . . . . .
`Mass Transport Towards a Singular Planar
`Electrode Under Laminar Forced Flow . . . . . . . . .
`Channel Flow and Mass Transfer to Electrodes
`of Parallel Plate Cells for Free and Forced Convection
`Free Convection at Isolated Planar Electrodes
`and between Two Vertical Electrodes . . . . . . .
`Convective Mass Transfer for Parallel Plate Cells
`with Forced Convection: Planar Plate Cells . . . .
`
`5.4.3
`
`5.4.4
`
`5.4.5
`
`5.4.5.l
`
`5.4.5.2
`
`IX
`
`72
`
`72
`
`74
`
`74
`
`75
`
`78
`
`79
`80
`80
`
`81
`81
`84
`86
`87
`
`87
`88
`89
`90
`90
`
`92
`
`93
`
`95
`
`97
`
`97
`
`98
`
`Exhibit 1018_0008
`
`

`

`X
`
`Contents
`
`5.4.5.3
`5.4.6
`
`5.4.6.1
`5.4.6.2
`5.4.7
`5.4.7.1
`
`5.4.7.2
`
`5.5.2
`
`5.6
`
`Mass Transfer in Circular Capillary Gap Cells.
`Convective Mass Transfer Toward Rotating
`Electrodes . . . . . . . .
`Rotating Cylinder . . . . . . . . . . . . . . .
`Rotating Disc Electrode ....... ... .
`Mass Transfer at Gas Evolving Electrodes .
`Calculating km, bubble According to the Penetration
`Model or Model of Periodic Boundary Layer Renewal .
`Calculating Bubble-Enhanced Mass Transfer
`According to Flow Model. . . . . . . . . . . . . . .
`Mass Transfer in Three-Dimensional Electrodes .
`5.4.8
`Summary. . . . . . . . . . . . . . . . . . . . .
`5.4.9
`5.5 Heat Transport . . . . . . . . . . . . . . . . . . . . . . .
`5.5.1
`Chilton- Colburn Analogy of Mass and Heat
`Transfer. . . . . . . . . . . . . . . . . . . . . .
`General Description of Heat Generation and Heat
`Transfer in Electrolyzers and Fuel Cells . . . . . . . .
`Heat Balance and Steady State-Temperature of Cells .
`5.5.2.1
`Ionic Charge and Mass Transport in Electrolytes
`. . . .
`5.6.1
`Strong Electrolytes . . . . . . . . . . . . . . . .
`Temperature Dependence of Electrolyte Conductivities .
`5. 7
`5.8 Molten Salt Electrolytes . . . . . . . . . . . . . . . . . .
`5.9
`Segregation in Stagnant Electrolytes of Binary Molten
`Carbonates in Fuel Cells . . . . . . . . . . . . . . . . . .
`5.10 Current Density Distribution in Cells and Electrochemical
`Devices . . . . . . . . . . . . . . . . . . . .
`5.11 Primary Current Density Distribution . . . . . . . . . . . . . . . .
`5.12 Secondary Current Density Distribution. . . . . . . . . . . . . . .
`5.13 Secondary Current Density Distribution and "Throwing Power"
`in Electrodeposition and Electrocoating
`5.14 The Wagner Number . . . . . .
`5.15 Tertiary Current Distribution .
`References . . . .
`Further Reading
`
`. . . . . . . . . . . .
`
`Chapter 6
`Electrochemical Reaction Engineering
`
`Introductory Remarks
`6.1
`6.2 Microkinetic Models .
`6.3 Mode of Operation ..
`6.4
`Electrical Control of Cells
`6.5 Macrokinetic Models . . .
`6.5.1
`Stirred-Batch Tank Reactor
`6.5.2
`Continuously Stirred Tank Reactor
`
`101
`
`102
`102
`102
`103
`
`105
`
`105
`106
`107
`107
`
`107
`
`108
`109
`110
`110
`111
`113
`
`114
`
`117
`119
`121
`
`122
`124
`125
`127
`127
`
`128
`128
`129
`131
`131
`131
`132
`
`Exhibit 1018_0009
`
`

`

`Contents
`
`Contents
`
`Cells.
`ing
`
`!S
`.
`)enetration
`,ayer Renewal .
`nsfer
`
`ectrodes .
`
`Heat
`
`t and Heat
`
`ture of Cells .
`
`.vities .
`
`,lten
`
`chemical
`
`rowing Power"
`
`101
`
`102
`102
`102
`103
`
`105
`
`105
`106
`107
`107
`
`107
`
`108
`109
`llO
`110
`lll
`113
`
`114
`
`117
`119
`121
`
`122
`124
`125
`127
`127
`
`128
`128
`129
`131
`131
`131
`132
`
`6.5.3
`6.5.3.1
`6.5.3.2
`
`6.5.4
`6.5.5
`6.5.6
`6.5.7
`
`. . . . . . . . . . . . . . . . . .
`Plug-Flow Reactor (PFR)
`Plug Flow Electrolyzer with Uniform Current Density .
`PFR Operated at Mass Transfer Limited and
`Higher Current Density . . . . . . . .
`Cell Cascades . . . . . . . . . . . . . .
`Extended Modelling of Electrolyzers.
`Residence-Time Distribution . . . . .
`The Selectivity Problem of Consecutive Reactions
`in Batch Reactors . . . . . . . . . . . . . . . . . .
`Coupling of Electrochemical and Chemical Reactors . .
`Electrolyzer Design and Chemical Yield Losses Due To
`Parasitic Chemical Reactions . . . . . . . . . . . . .
`Performance Criteria of Electrochemical Reactors
`6.8.1
`Fractional Conversion, X . . . . . . .
`Relative Amount of Charge-Qr . . . .
`6.8.2
`Overall Conversion Related Yield 0P .
`6.8.3
`Current Efficiency <I> e . . . .
`6.8.4
`. . . . .
`6.8.5
`Parameters for Energy Considerations
`References .
`Further Reading
`
`6.6
`6.7
`
`6.8
`
`Chapter 7
`Electrochemical Engineering of Porous Electrodes and Disperse
`Multiphase Electrolyte Systems
`
`7.1
`7.2
`
`Introduction. . . . ..
`Three-Dimensional Electrodes ..
`7 .2.1
`General Considerations
`7.2.2
`Fundamental Equations . .
`7.2.2.1
`Nanoporous Electrode Particles
`7.2.2.2
`Microporous Electrodes . . . . .
`7.2.2.3
`Packed and Fluidized Bed Electrodes
`7.2.3
`Gas Consuming Nanoporous Electrodes for
`Fuel Cells and Nanoporous Catalyst Particles
`and Layers for Gas E.vol.ving Electrodes . . . .
`Physical Structure of Particulate, Gas Consuming
`Nanoporous Gas Diffusion Electrodes . .. .
`Physical Structure of Raney Nickel Coatings
`for Hydrogen Evolving Cathodes . . . . . . .
`Modelling Hydrogen Concentration Profiles
`and Catalyst Efficiencies for Hydrogen Consuming
`Fuel Cell Anodes or Other Gas Diffusion Electrodes .
`Modelling of Hydrogen Concentration Profiles
`and Catalyst Efficiencies for Hydrogen Evolving
`Nanoporous Raney-Nickel Catalyst Coatings . . .
`
`7.2.3.3
`
`7.2.3.4
`
`7.2.3.1
`
`7.2.3.2
`
`XI
`
`133
`135
`
`135
`136
`138
`139
`
`142
`146
`
`148
`149
`150
`150
`150
`151
`152
`152
`152
`
`153
`154
`154
`155
`156
`156
`157
`
`157
`
`157
`
`159
`
`160
`
`165
`
`Exhibit 1018_0010
`
`

`

`XII
`
`f
`I
`
`Contents
`
`7.2.4
`7.2.5
`
`7.3
`
`Porous Battery Electrodes . . . . . . . . . .
`Packed Bed and Fluidized Bed Electrodes
`Composed of Coarse Particles . . . . . . . .
`Fluidized Bed Electrodes ....... . .. .
`7.2.5.1
`Ionic Conductivity of Electrolytes Containing Dispersed
`Gas Bubbles in Gas Evolving Electrolyzers.
`Electrolyzers with Gaseous Reactants .
`7.4
`Electrochemical Liquid/Liquid Systems
`7.5
`References . . . .
`Further Reading
`
`. . . . . . . . . . . . . .
`
`Chapter 8
`Electrochemical Cell and Plant Engineering
`
`8.2
`
`8.3
`
`8.4
`
`8.1 Materials Choice and Corrosion Problems.
`8.1.1
`Metals ...
`8.1.2
`Carbon .....
`Electrode Materials . . . .
`8.2.1
`Stainless Steel .
`8.2.2
`Nickel . . .
`8.2.3
`Lead . . .. . .
`Titanium .. .
`8.2.4
`8.2.5
`Noble Metals.
`8.2.6
`Massive Carbon .
`Electrode Design . . . . . .
`8.3.1
`Gas Evolving Electrodes
`8.3.2
`Gas Consuming Electrodes, Gas Diffusion Electrodes ..
`Separators: Membranes and Diaphragms
`8.4.1
`Membranes .... ... . .... . .. ... .. . .. . . .
`8.4.2
`Diaphragms . . . . . . . . . . . . . . . . . . . . . . . . ..
`Polymeric Materials for Cell Bodies and Electrolyte Loops . . . . .
`Gaskets ..... . ........ .
`Electrodes . . . . . . . . . . . . . . .
`8.7.1
`Horizontal Electrodes .
`8.7.2
`Membrane Electrolyzer. .
`Cell and Electrode Design . . . . . .
`8.8.1
`Zero Gap Electrolysis Cells.
`8.8.2
`Vertical/Horizontal Electrodes
`8.8.3
`Divided/Undivided Monopolar/Bipolar Cells
`and Modes of Electrolyte Flow
`8.8.4
`Special Cell Designs.
`8.8.5
`Capillary Gap Cells . . . . . . .
`8.8.6
`Swiss Roll Cell . . . . . . . . . .
`Cells with Three-Dimensional Electrodes .
`8.8.7
`Power Supply for Electrochemical Plants . . . . . . .
`
`8.5
`8.6
`8.7
`
`8.8
`
`8.9
`
`171
`
`173
`178
`
`179
`183
`186
`186
`186
`
`187
`188
`192
`193
`194
`194
`195
`195
`195
`196
`196
`196
`197
`199
`201
`203
`203
`205
`206
`206
`207
`208
`208
`209
`
`209
`210
`216
`216
`217
`218
`
`Exhibit 1018_0011
`
`

`

`Contents
`
`Contents
`
`Rectifiers. . . . . . .
`8.9.1
`Transformer Wiring
`8.9.2
`8.9.3
`Further Equipment.
`Further Reading
`. . . . . . . . . . . . .
`
`Chapter9
`Process Development
`
`es
`
`persed
`
`ion Electrodes ..
`
`yte Loops ....
`
`Lr Cells
`
`des .
`
`171
`
`173
`178
`
`179
`183
`186
`186
`186
`
`187
`188
`192
`193
`194
`194
`195
`195
`195
`196
`196
`196
`197
`199
`201
`203
`203
`205
`206
`206
`207
`208
`208
`209
`
`209
`210
`216
`216
`217
`218
`
`XIII
`
`218
`218
`219
`220
`
`221
`222
`
`222
`222
`223
`223
`
`225
`226
`230
`230
`230
`
`231
`233
`233
`235
`236
`236
`236
`236
`237
`238
`
`239
`239
`
`9.2.1.1
`9.2.1.2
`9.2.1.3
`9.2.1.4
`
`9.2.1.5
`9.2.2
`9.2.2.1
`9.2.2.2
`9.2.2.2.1
`
`9.1
`
`9.2
`
`9.3
`
`9.5
`
`Scope and Purpose of Laboratory and Pilot Plant
`Measurements
`. . . . . . . . . . . . . . . . . . . .
`Laboratory Methods . . . . . . . . . . . . . . . . .
`Steady-State Measurements of Current Density
`9.2.1
`Potential Correlations
`General Remarks . . . . . . . . . ...... .
`Measuring Devices . . . . . . . . . . . . . . .
`Evaluation of Rotating Disc Measurements .
`Current-Voltage Correlation for Competing
`Reactions by Non-Electrochemical Methods
`The Ring Disc Electrode ..
`Non-Steady State Methods ..... . ... .
`General Remarks . . . . . . . . . . . . . .
`Potentiodynamic Polarisation Curves . .
`Cyclic Voltammetry and Linear Potential
`Sweep Method
`. . . . . . . .
`9.2.2.2.2
`Initial Polarisation Curves
`9.2.2.3
`Square-Wave Pulses . . .
`9.2.2.4
`Eliminating the IR Drop . .
`9.2.2.4.1
`Galvanostatic Methods
`. .
`9.2.2.4.2 Potentiostatic Procedures .
`Pilot Plant Methods
`. . . . . . . . . .
`9.3.1
`General Considerations . .
`9.3.2
`Mass-Transfer Measurements.
`9.3.3
`Determination of Residence-Time Distributions.
`9.4 Mathematical Modelling and Optimisation by Factorial
`. . . . . . . . . . . . . . . . .
`Design of Experiments
`9.4.1
`Introduction
`. . . . . . . . . . . . . . . . .
`9.4.2
`General Procedure for Optimum Finding
`by Experiment . . . . . . . . . . .
`239
`240
`Factorial Design of Experiments . . . . . .
`9.4.3
`243
`Cost Analysis . . . . . . . . . . . . . . . . . . . . . . .
`243
`9.5.1
`Composition of Productions Costs
`. . . . .
`9.5.2
`Total and Specific Investment Costs . . . . . . . . . . . . 244
`9.5 .3
`Cost Optimisation with Respect to Current Density . .
`245
`9.5.4
`Optimisation of Non-Selective Electrolysis Processes .
`248
`9.5.4.1
`Current Density Against Current Efficiency. . . . . . .
`249
`
`Exhibit 1018_0012
`
`

`

`XIV
`
`Contents
`
`r
`
`Temperature vs Current Efficiency . . . . . . . . . . . .
`Examples Including Influences of Process Parameters
`on the Equipment for Non-Electrochemical
`Unit Operations and Corresponding Costs . . . . . . .
`250
`Further Reading
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
`~
`
`250
`
`252
`
`253
`255
`
`255
`257
`258
`
`260
`
`260
`260
`
`261
`261
`
`261
`262
`
`263
`264
`265
`265
`
`265
`265
`
`266
`
`266
`268
`
`268
`
`268
`
`9.5.4.2
`9.5.5
`
`Industrial Electrodes
`
`10.5.3
`10.5.4
`
`10.5.5
`10.5.6
`
`10.1 Catalytically Activated Electrodes.
`10.2 Functioning, Longevity and Application of
`Electrocatalyst Coatings . . . . . . . . . . .
`10.3 Design oflndustrial Electrodes . . . . . . .
`10.3.1 Monopolar Electrodes and Current Density
`Distribution on Their Surface . . . . . .
`Electrodes for Bipolar Electrode Stacks . . .
`10.3.2
`Gas Evolving Electrodes . . . . . . . . . . . .
`10.3.3
`10.4 Structural Features of Electrocatalysts for Gas Evolving and
`Gas Consuming Electrodes . . . . . . . . . . . . . .
`10.5 Electrocatalytically Activated Dimensionally Stable
`Chlorine-Evolving Electrodes . . . . . . . . . . . . .
`Technological History . . . . . . . . . . .
`10.5.1
`Electrocatalysis and Selectivity of Anodic
`10.5.2
`Chlorine Evolution at RuO 2-Anodes . . . .
`Preparation and Formulation of the Coatings .
`Improvement of Adhesion and Strength
`of the Coatings . . . . . . . . . . . . . . . .
`Design of Cells Using DSAs . . . . . . . . .
`Lifetime of Dimensionally Stable Chlorine
`Evolving Anodes . . . . . . . . . . . . . . .
`DSAs for Chlorate and Hypochlorite Production.
`10.5.7
`10.6 Oxygen Evolving Anodes. . . . . . . . . . . . . . . , . . . . .
`Technical Processes
`. . . . . . . . . . . . . . . . .
`10.6.1
`Electrocatalysis of Oxygen Evolution in Advanced
`10.6.2
`Alkaline Water Electrolysis. . . . . . . . . . . . . .
`10.6.2.1 Coatings Containing Cobalt and Iron Oxides . . .
`Electro catalysis of the Anodic Oxygen Evolution
`10.6.3
`by Raney-Nickel Coatings . . . . . . . . . . . . . .
`Catalyst-Coated Titanium Electrodes for Oxygen
`Evolution From Acid Solutions . . . . . . . .
`10.7 Hydrogen Evolving Cathodes . . . . . . . . . . . . . . .
`Technoeconomical Significance of Cathodic
`10.7.l
`Hydrogen Evolution . . . . . . . . . . . . . .
`Electrocatalyst Coatings for Hydrogen Evolution
`from Alkaline Solution . . . . . . . . . . . . . . . .
`
`10.6.4
`
`10.7.2
`
`Exhibit 1018_0013
`
`

`

`Contents
`
`Contents
`
`10.8.3
`
`10.8.4
`10.8.5
`
`10.8
`
`,s Parameters
`ical
`sts .... . . .
`
`tsity
`
`Jlving and
`
`le
`
`lie
`
`atings.
`1
`
`ine
`
`·eduction .. . ..
`
`tAdvanced
`
`>xides . . ..
`Evolution
`
`:,r Oxygen
`
`10dic
`
`Evolution
`
`250
`
`250
`251
`
`252
`
`253
`255
`
`255
`257
`258
`
`260
`
`260
`260
`
`261
`261
`
`261
`262
`
`263
`264
`265
`265
`
`265
`265
`
`266
`
`266
`268
`
`268
`
`268
`
`10.7.2.1 Technically Applied Coatings .
`10.7.2.2 Nickel Sulfide Coatings
`. . . .
`10.7.2.3 Raney-Nickel Coatings .. . .
`10.7.2.3.1 Precursor Alloys and Fabrication
`of Coated Cathodes
`. . . . .
`10.7.2.3.2 Utilisation of the Catalyst in
`Raney-Nickel Coatings ...
`10.7.2.3.3 Performance and Ageing of Raney-Nickel Coatings .
`Coatings of Platinum Metal Oxides
`. . . . . . .. . .
`10.7.3
`Active Coatings of Flame Sprayed, Doped Nickel Oxide.
`10.7.4
`Platinum and Platinum Metal Cathodes in Membrane
`10.7.5
`Water Electrolyzers
`. . . . . . . . . . .
`Fuel-Cell Electrodes .. .. .. .. . . . . . . . . . . . . . .
`Low- and High-Temperature Fuel Cells ... . .
`10.8.1
`Structural Design of Gas-Diffusion Electrodes
`10.8.2
`in Low-Temperature Fuel Cells .
`Oxygen Reduction Catalysts in
`Low-Temperature Cells
`. . . . .
`Catalysts for Anodic Hydrogen Oxidation
`Properties, Preparation and Improvement
`of Electrocatalysts in Gas Diffusion Electrodes
`for Low Temperature Cells
`. . . . . . . . . . ..
`10.8.5.1 Pt-Activated Active Carbon . . ... .. .. .. .
`Particle Size of Pt Nanocrystals on Active Carbon
`10.8.5.2
`and Their Effective Catalytic Activity . .
`Pt-Alloy Catalysts ..... . ...... .
`Morphology and Structure of Complete
`PTFE-Bonded Active-Carbon Electrodes
`Ageing of Pt-Catalysts . .... . .... .
`Electrocatalysis of Anodic Methanol Oxidation
`Technoeconomic Significance of the Process . . .
`Self-Poisoning of Methanol Oxidising Pt-Catalyst
`by Oxidation Products of Methanol . . . . . . .
`Anodic Methanol Oxidation at Alloy Catalysts .
`Gas-Diffusion Electrodes in Membrane (PEM)
`. ... .. . . . . . . . . . . . . . . . .
`Fuel Cells
`Rationale of Developing a Method of Internal
`Wetting for Membrane Fuel Cell Electrodes
`Improving Catalyst Utilisation by Ionomer
`Impregnation of Gas-Diffusion Electrodes .
`The Preparation of Membrane Electrode
`Assemblies (MEAs) for Membrane Fuel Cells
`Electrodes for High-Temperature Fuel Cells
`Stability of Electrode Structures
`at High Temperatures . . . . . . . . . . . . .
`
`10.8.5.3
`10.8.6
`
`10.8.7
`10.8.8
`10.8.8.1
`10.8.8.2
`
`10.8.8.3
`10.8.9
`
`10.8.9.1
`
`10.8.9.2
`
`10.8.9.3
`
`10.8.10
`10.8.10.1
`
`xv
`
`268
`269
`269
`
`269
`
`271
`272
`273
`273
`
`273
`274
`274
`
`275
`
`276
`276
`
`277
`277
`
`278
`278
`
`279
`280
`281
`281
`
`281
`281
`
`282
`
`282
`
`282
`
`283
`284
`
`284
`
`Exhibit 1018_0014
`
`

`

`XVI
`
`10.8.11
`
`10.8.11.1
`10.8.11.2
`10.8.12
`10.8.12.l
`10.8.12.2
`10.8.12.3
`References . . .
`Further Reading
`
`Electrode Kinetics and Electrocatalysis in
`Molten-Carbonate Fuel Cells
`Anodic Hydrogen Oxidation . ...... . .
`Cathodic Oxygen Reduction
`. . . . . . . .
`Electrodes in Solid-Oxide Fuel Cells (SOFC)
`Electrodes and Electrode Structure.
`The SOFC-Anode . .
`The SOFC-Cathode .
`
`11.1
`11.2
`11.3
`
`11.4
`
`11.5
`
`11.6
`
`Introductory Remarks . . . . ..... . .. .
`Inorganic Electrolysis and Electrosynthesis .
`Chloralkali-Electrolysis
`. . . . . . . . . . . .
`The Electrochemical Reaction . ..
`11.3.1
`Thermodynamics and Energy Demands .
`11.3.2
`Anodic Chlorine Evolution ....... .
`11.3.3
`The Cathodic Reaction .. . . .. .. .. .
`11.3.4
`11.3.4.1 Cathodic Sodium Deposition in the Mercury Process
`11.3.4.2 Cathodic Hydrogen Evolution in the
`Diaphragm and Membrane Process
`Process Technologies . . . . . . . .
`The Amalgam Process .
`11.4.1
`The Diaphragm Process
`11.4.2
`The Membrane Process.
`11.4.3
`11.4.3.1 Process-Flow Sheets
`. .
`11.4.3.2 Brine Recycling . . . . .
`Gas Purification and Conditioning .
`11.4.4
`11.4.4.1 Chlorine . . . . . . . . . . . . . . ..
`11.4.4.2 Hydrogen . . ... . .. . . . . ... .
`Comparison of the Three Processes
`11.4.5
`Hypochlorite, Chlorate and Chlorine Dioxide.
`Production of Sodium Hypochlorite .
`11 .5.1
`11 .5.1.1 Electrolytic Generation of Hypochlorite
`11.5.1.2 Current Efficiency Losses
`. . . . . . . . .
`Production of Sodium Chlorate
`. . . . .
`11.5.2
`11.5.2.1 Balance of Plant of Chlorate Electrosynthesis
`11.5.2.2 Construction Materials . . . . . . . . . ..
`Chlorine Dioxide from Sodium Chlorate.
`11.5.3
`Perchloric Acid, Perchlorates, Peroxidsulfates .
`Perchloric Acid . . .
`11.6. l
`Sodium Perchlorate
`11.6.2
`
`. . . . . . . . .
`
`Contents
`
`285
`285
`285
`287
`287
`287
`288
`289
`289
`
`290
`291
`291
`292
`292
`293
`294
`294
`
`295
`295
`295
`297
`298
`300
`302
`303
`303
`304
`304
`306
`306
`306
`307
`307
`310
`311
`311
`312
`312
`312
`
`Exhibit 1018_0015
`
`

`

`Contents
`
`Contents
`
`?C)
`
`rcury Process
`
`:e
`
`1thesis
`
`te ..
`
`285
`285
`285
`287
`287
`287
`288
`289
`289
`
`290
`291
`291
`292
`292
`293
`294
`294
`
`295
`295
`295
`297
`298
`300
`302
`303
`303
`304
`304
`306
`306
`306
`307
`307
`310
`311
`311
`312
`312
`312
`
`Peroxidisulfates . . . .
`11.6.3
`11. 7 Fluorine . . . . . . . . . . . . . .
`11.8 Hydrogen by Water Electrolysis
`Technoeconomic Environment .
`11.8.1
`Thermodynamics and Technological Principles
`11.8.2
`of Electrolytic Water Splitting
`. . . . . . .
`Process Technologies
`. . . . . . . . . . . .
`11.8.3
`Conventional Alkaline Water Electrolysis .
`11.8.4
`11.8.4.1 Monopolar Technology . . . . . .
`11.8.4.2 Bipolar Technology
`. . . . . . . .
`Improved Alkaline Technologies .
`11.8.4.3
`New Technologies ...... .
`11.8.5
`11.8.5.1 Membrane Water Electrolysis ..
`11.8.5.2 Steam Electrolysis . . . . . . . . .
`Economic Implications of Technical
`11.8.6
`Innovations for Alkaline Water Electrolysis .
`11. 9 Electrowinning and Electrorefining of Metals
`. . .
`11.9.1 Metal Electrowinning and Refining from
`Aqueous Electrolytes
`. . . . . . . . . . .
`Copper Electrowinning and Electrorefining
`11.9.2
`Nickel Electrowinning . . . . . . . . . . .
`11.9 .3
`Nickel from the Chloride Leach Process .
`11.9.4
`Nickel Refining ... .
`11.9.5
`Zinc Electrowinning . . . . . . . . . . . .
`11.9.6
`Lead Electrorefining . . . . . . . . . . . .
`11. 9. 7
`11.10 Metal Electrowinning from Molten Salt Electrolytes
`11.10.1 General Considerations . . . . . . . . . . .
`11.10.2 Aluminium Production - the Hall-Heroult Process . . .
`11.10.2.1 The Melt . . . . . . .
`11.10.2.2 Electrode Reactions . . . . . . . . .
`11.10.3 TheCell....... ...... . ..
`11.10.4 Alkali Metals from Chloride Melts .
`11.10.5 Magnesium Electrolysis . . . .
`11.10.5.1 Production of the Feed Salt . .
`11.10.5.2 Magnesium Electrolysis Cells.
`11.11 Organic Electrosynthesis Processes . . .
`11.11.1 General Overview
`. . . . . . .
`11.11.2 Cell Types Used in Commercial Electroorganic
`Synthesis . . . . . . . . . . . . . . . . . . . . . .
`Process and Reaction Techniques of Some
`Examples of Industrial Organic Electrosyntheses . . .
`11.11.3.1 Adipodinitrile Production by the Monsanto/Baizer
`Process . . . . . . . . . . . . .. ... .
`11.11.3.2 Electrosynthesis of Sebacic Diesters by
`Kolbe Synthesis . . . . . . . . . . . . . .
`
`11.11.3
`
`XVII
`
`313
`315
`316
`316
`
`317
`318
`320
`320
`320
`323
`324
`324
`324
`
`325
`326
`
`326
`330
`331
`333
`334
`334
`335
`335
`335
`336
`336
`338
`339
`341
`342
`343
`344
`345
`345
`
`347
`
`349
`
`349
`
`352
`
`Exhibit 1018_0016
`
`

`

`XVIII
`
`Contents
`
`11.11.3.3 Benzaldehydes by Direct Anodic Oxidation
`of Toluenes. . . . . . . . . . . . . . . . . . . .
`11.11.3.4 The Selective Anodic Oxidation of L-Sorbose
`in Commercial Vitamin C Synthesis . . . . . .
`11.11.3.5 Anodic Formation of Perfluoro-Propylene Oxide.
`11.12 Selected Electrochemical Procedures Outside the Chemical and
`Metallurgical Industries . . . . . . . . . . . . . . . . . .
`11.12.1 Electrochemical Wastewater Treatment by
`Electrodeposition and by Electroosmosis .
`11.12.1.1 General Considerations . . . . . . . . . . .
`11.12.1.2 Particular Cells for Removal of Metal Ions
`from Effluents . . . . . . . . . . . . . . . .
`Electrodialysis
`. . . . . . . . . . . . . . .
`Electrochemical Surface Treatment and
`Shaping of Metals . . . . .
`Electrochemical Shaping. . . . . . .
`Electropolishing. . . . . . . . . . . .
`Electrochemical Machining (ECM) .
`Electrochemical Grinding . . . . . .
`Electroreforming of Micro dies and Microtools
`by the LI GA-Process
`
`11.12.2.1
`11.12.2.2
`11.12.2.3
`11.12.2.4
`11.12.3
`
`11.12.1.3
`11.12.2
`
`References . .
`Further Reading
`
`Chapter 12
`Fuel Cells
`
`12.3.1.4
`
`12.1 Fuel Cells as Gas Supplied Batteries. . . . . . . . . . . . . .
`12.2 Theoretical Efficiency of Hydrogen/Oxygen Fuel Cells. . .
`12.3 Fuel Cell Types
`. . . . . . . . . . . . . . . . . . . . . . . . .
`12.3.1
`Low-Temperature Fuel Cells - Their Technological State
`12.3.1.1 Phosphoric-Acid Cells . . . . . . . . . . . .
`12.3.1.2 Membrane Cells .. ...... .. . : . . .
`Direct and Indirect Methanol-Combusting
`12.3.1.3
`Membrane Cells
`. . . . . . . . . . . . . . .
`Process Principles of the PAFCs and PEMFCs
`with Proton Conducting Electrolyte . . . . . .
`High-Temperature Fuel Cells ... ... ... .
`Molten-Carbonate and Solid Oxide Fuel Cells
`Process Schemes of MCFCs and SOFCs ... .
`Internal Reforming in High-Temperature Fuel Cells .
`Cell Technologies of MCFCs and SOFCs .
`Molten-Carbonate Fuel Cells
`Solid Oxide Fuel Cells
`. . . . .
`The Westinghouse Technology
`
`12.3.2
`12.3.2.1
`12.3.2.2
`12.3.2.3
`12.3.3
`12.3.3.1
`12.3.3.2
`12.3.3.3
`
`353
`
`353
`355
`
`357
`
`357
`357
`
`358
`361
`
`362
`362
`363
`365
`366
`
`368
`369
`369
`
`370
`371
`373
`375
`375
`376
`
`377
`
`378
`379
`379
`379
`380
`381
`381
`382
`382
`
`Exhibit 1018_0017
`
`

`

`Contents
`
`Contents
`
`XIX
`
`Flat-Plate Solid Oxide Cells . . . . . . . . . . . . . . . . . 384
`12.3.4
`12.4 Current Voltage Curves of Different Fuel Cells . . . . . . . . . . . . 385
`12.5 Fuel-Cell Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
`387
`Phosphoric-Acid Fuel Cell/ PC 25 . . . . . . . . . . . . .
`12.5.1
`12.5.2 Molten Carbonate Cells . . .
`. . . . . .
`390
`12.5.2.1 ERC-2 MW Plant . . . . . . . . . . .
`. . . . . . . .
`390
`12.5.2.2 Hot Module of MIU . . . . . . . .
`390
`391
`Proton Exchange Membrane Cells .
`12.5.3
`392
`The Ballard Cel

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket