throbber
APPLIED MATERIALS EXHIBIT 1042 (Part 2 of 3)
`
`Page 4 of 4
`Appendix 1029-B
`
`Page 159 of 304
`
`

`

`Appendix 1029-C
`Appendix 1029-C
`
`Page 160 of 304
`
`

`

`B
`
`s b a y em de a s MARC ags
`
`9/28/20 12 52 PM
`
`
`
`
`
`
`
` los thiClose this window to return to the catalogueindow to r to t c l
`
`
`
`
`
`
`
`
`
`
`
` Item Detailsls
`
`
`
`FMTFMT SE
`LDRLDR nas a22002417a 4500
`00001
`014532647
`00003
`Uk
`00005
`20200701010345.0
`00007
`ta
`00008
`840320c19629999xxuer p 0 a0eng
`
`02 00220 |a 0003-6951
`04040
`|a Uk |c Uk |d Uk
`
`08 0408204 |a 621 |2 21
`08084
`|a PQ 00 |2 blsrissc
`
`24 0024500 |a Applied physics letters.
`26260
`|a New York : |b American Institute of Physics, |c 1962-
`30300
`|a v. ; |c 27 cm.
`31310
`|a Fortnightly
`33336
`|a text |2 rdacontent
`33337
`|a unmediated |2 rdamedia
`33338
`|a volume |2 rdacarrier
`59595
`|a SEE ALSO SERIAL RECORDS KCS SE.
`55555
`|a Cumulative index.
`
`71 27102 |a American Institute of Physics.
`94945
`|a APPLIED PHYSICS LETTERS
`
`85 7185271 |a British Library |b STI |k (P) |h PQ 00 |m -E(12) |2 blsrissc
`
`86 0866 0 |a Volume 1(1962)- ; Deficient: v. 62, no.27, 1993
`
`85 4985249 |a British Library |b DSC |j 1576.400000
`
`86 0866 0 |a Volume 1 (1962)- |z UKRR Retained Title
`SYSYS 014532647
`
`Accessibility Terms of use © The British Library Board
`
`P2
`
`p //p moca b uk/ /?fu c=d ec & oca _base=PR MO&doc_ umbe =014532647&fo ma =001&co _ g=e g
`
`Page 1 of 1
`
`Page 1 of 1
`Appendix 1029-C
`
`Page 161 of 304
`
`

`

`Appendix 1029-D
`
`Early Citations to Dogheche
`
`Page 162 of 304
`
`

`

`
`y
`,
`,
`c!2000 The Japan Society of Applied Physics
`
`Deposition of AlN Thin Films with Cubic Crystal Structures on Silicon Substrates
`at Room Temperature
`Zhong-Min REN, Yong-Feng LU, Yeow-Whatt GOH, Tow-Chong CHONG, Mei-Ling NG1, Jian-Ping WANG1,
`Boon-Aik CHEONG1 and Yun-Fook LIEW1
`Laser Microprocessing Laboratory, Department of Electrical Engineering and Data Storage Institute, National University of Singapore,
`10 Kent Ridge Crescent, Singapore 119260
`1Data Storage Institute, 5 Engineering Drive 1, Singapore 117608
`(Received September 20, 1999 accepted for publication March 6, 2000)
`Cubic AlN thin films were deposited at room temperature by nitrogen-ion-assisted pulsed laser ablation of a hexagonal
`AlN target. The full-width at half maximum (FWHM) of the X-ray diffraction peak in the θ ∼ 2θ scan can reach a value of
`0.27degrees. In the Raman spectroscopy measurement, a new peak at 2333cm−1 originating from cubic AlN polycrystalline
`was observed. Nitrogen ions not only effectively promote the formation of stable Al–N bonds but also improve the crystal
`properties of the deposited thin films. A nitrogen ion energy of 400eV is proposed for the thin-film deposition.
`KEYWORDS: AlN pulsed laser deposition thin films cubic crystalline Raman spectroscopy XRD XPS
`
`produced by a 1-cm Kaufman-type ion source irradiated the
`substrate surface to assist the deposition. The ion flux was
`set at 1mA/cm2. The deposition rate was 0.1 nm/s as mea-
`sured by a microbalance mounted on the substrate. Si(100)
`wafers were used as substrates. The deposited thin films have
`thicknesses of around 200 ∼ 300nm. After deposition, X-ray
`diffraction (XRD), Raman spectroscopy and X-ray photoelec-
`tron spectroscopy (XPS) measurements were carried out to
`characterize the crystal, chemical binding and compositional
`properties of the deposited thin films.
`Figure 1 shows the XRD θ ∼ 2θ spectrum of an AlN
`thin film deposited by 400eV nitrogen ion bombardment.
`The measurements were performed on a Philips X’Pert-MRD
`system. Cu Kα irradiation with an average wavelength of
`1.5418Å was used as an X-ray source in the diffraction mea-
`surements. In the spectrum, besides the Si(200) and Si(400)
`diffraction peaks, there are four distinct peaks at 2θ = 38.5,
`44.7, 65.3 and 78.3, corresponding respectively to orienta-
`tions of (111), (200), (220) and (311) of the cubic AlN crys-
`tal22) although the crystal structure of the target is hexagonal.
`Hexagonal structures are not detected from Fig. 1 when the
`resolution of the MRD system is taken into account. The
`FWHM of the AlN(200) peak is about 0.27degrees, lower
`than that of films deposited by plasma source molecular beam
`epitaxy.6) The formation of AlN cubic structures on Si(100)
`
`Si(400)
`
`AlN(311)
`
`AlN(220)
`
`AlN(111)
`
`AlN(200)
`
`Si(200)
`
`20
`
`Intensity(arb.unit)
`
`40
`
`60
`
`80
`
`2
`Fig. 1. XRD θ ∼ 2θ spectrum of a AlN thin film deposited by KrF laser
`l
`400 V
`T
`
`
`
`Recently there has been tremendous interest in the synthe-
`sis of AlN thin film due to its wide band gap and other desir-
`able properties of thermal conductivity, electrical resistivity
`(dielectric constant) and acoustic properties.1–3) Many exper-
`imental methods have been used to deposit AlN thin films, in-
`cluding metalorganic chemical vapor deposition (MOCVD),4)
`plasma-assisted molecular beam epitaxy (PAMBE),5–7) RF re-
`active magnetron sputtering,8–11) ion-assisted chemical vapor
`deposition12) and pulsed laser deposition (PLD).13–19) A num-
`ber of new theoretical works have also been published re-
`cently.20 21) Almost all the deposition methods require high
`substrate temperatures (normally above 600◦C) although the
`defects both inside the thin films and at the interface between
`the substrate and the thin film cannot be avoided.6) To date, all
`the deposited AlN thin films have hexagonal structures with a
`highly textured orientation of (0001) on sapphire, silicon and
`glass substrates.3 6 7 9 10 18 19)
`In our study, we attempted to use pulsed laser ablation to
`deposit AlN thin films on silicon substrates at room tempera-
`ture. PLD has been proven to be suitable to fabricate AlN thin
`films on silicon and sapphire substrates. Compared with other
`methods, PLD has two main aspects of advantages. First, it
`can faithfully transfer the target material to the substrate sur-
`face without an obvious change in the compositional ratios of
`compound materials. Second, the energetic radicals in the ab-
`lated plume are beneficial to the formation of ideal crystalline
`structures in the deposited thin films. In our experiments, the
`ion-assisted PLD combines the advantages of ion bombard-
`ment and laser ablation. With this approach, we can indepen-
`dently control the energies of the AlN radicals in the ablated
`plasma and the nitrogen ions in the ion beam to improve the
`quality of the deposited thin films. Moreover, the nitrogen
`ions can also compensate for the loss of nitrogen species in
`the ablation process.
`In the experiment, we used a KrF excimer laser at a wave-
`length of 248nm to ablate an AlN target. The deposition was
`carried out in a PLD system with a background vacuum of
`1×10−6 Torr. An AlN target with a standard hexagonal crys-
`tal structure and a purity of 99.995% was mounted on a target
`holder that was rotated by an external motor. The target was
`placed 2cm away from the substrate surface. The laser pulse
`duration was 30ns The laser fluence was set at 2J cm−2 with
`
`Page 163 of 304
`
`

`

`L424
`
`Jpn. J. Appl. Phys. Vol. 39 (2000) Pt. 2, No. 5A
`
`Z.-M. REN et al.
`
`For the thin films deposited without nitrogen ions, no obvi-
`ous Raman peak can be observed, implying that the nitrogen
`ions can effectively improve the crystal property of the thin
`film. Although it induces defects, ion implantation can possi-
`bly benefit the growth of the crystal grains. The energetic ni-
`trogen ions can enhance the chemical combinations between
`Al and N atoms and thus lead to more and larger AlN crystal
`grains.
`The chemical binding and compositional properties of
`the AlN thin films were analyzed by XPS measurements.
`Figure 3 shows the XPS Al 2p spectra for three AlN thin films
`deposited with different ion energies. The binding energy of
`the Al 2p electron increases slightly with increasing nitrogen
`ion energy from 100 to 400eV, due to the fact that the ener-
`getic nitrogen ions can effectively react with Al atoms to form
`AlN compounds. The binding energy of the Al 2p electron in
`the AlN compound is higher than that in atomic Al due to the
`weak shielding effect. Higher ion energy can lead to the for-
`
`Al 2p
`100 eV
`
`200 eV
`
`400 eV
`
`Intensity(arb.unit)
`
`Intensity(arb.unit)
`
`Intensity(arb.unit)
`
`70
`
`82
`
`80
`78
`76
`74
`72
`Binding Energy (eV)
`Fig. 3. XPS Al 2p spectra for AlN thin films deposited under different ni-
`trogen ion energies of 100, 200, and 400eV. The laser fluence is 2J/cm2.
`The ion flux is 1mA/cm2.
`
`(a)
`
`400 eV N+
`
`N-Al
`
`N 1s
`
`N-N
`
`398
`
`(b)
`
`398
`
`406
`404
`402
`400
`Binding Energy (eV)
`N2 atmosphere
`N-N
`
`408
`
`N 1s
`
`N-Al
`
`406
`404
`402
`400
`Binding Energy (eV)
`f AlN
`fil
`
`408
`
`400 V N+
`
`F
`
`4 XPS N
`
`
`
`substrates is different from most other research results in
`which hexagonal AlN structures are formed.15 18 19) In the
`detailed studies6 7) of the microstructures and initial stages
`of thin-film deposition, AlN films have an initial amorphous
`region at the interface between the substrate and the thin
`film, followed by c-axis-oriented columnar grains. Substrate
`temperatures higher than 600◦C can significantly reduce the
`amorphous regions at the interface and promote to grow AlN
`with hexagonal (0001) orientation. However, in our deposi-
`tion, since substrate temperature is low, the c-axis-orientated
`growth of hexagonal AlN is not preferred. Instead, another
`metastable state of the crystal AlN with a cubic structure was
`obtained from our deposition, although the hexagonal AlN is
`possibly in a much stable state. The PLD at room temperature
`with the assistance of ion-beam coprocessing leads to mainly
`(111)-oriented c-AlN thin films.
`We also deposited AlN thin films without nitrogen ion
`bombardment. These deposited thin films exhibit no XRD
`peaks, indicating only amorphous structures. The result re-
`veals the important role of nitrogen ions in the synthesis of
`AlN thin films with cubic crystal structures. Moreover, ni-
`trogen ion energy lower than 400eV leads to weaker and
`broader XRD peaks. Therefore, nitrogen ions with an en-
`ergy of 400eV can effectively assist in the formation of cu-
`bic crystalline structures in the deposited thin films. When
`the nitrogen ion energy exceeds 400eV, the deposition will
`be impeded due to the resputtering effect caused by the ion
`bombardment.
`Figure 2 shows the Raman spectra of the AlN thin films de-
`posited under the different nitrogen ion energies of 100, 200,
`and 400eV. Similar to most other research findings,19 23 24)
`the Raman peaks of the AlN thin films are weak. The peaks at
`618, 670 and 826cm−1 reflect the phonon modes of E1(TO),
`A1(LO) and E1(LO), respectively,23 24) indicating the crystal
`structures of the deposited thin films. The intensities of these
`Raman peaks increase with increasing nitrogen ion energy
`from 100 to 400eV, implying that the nitrogen ion energy of
`400eV is optimal for the deposition of crystal AlN thin films,
`in agreement with the XRD analysis result. Besides these
`peaks, there is a sharp and strong peak at 2333cm−1 which is
`observed for the first time. The intensity of this peak also in-
`creases with the nitrogen ion energy and reaches a maximum
`when the ion energy increases to 400eV. Therefore, this peak
`must originate from the cubic structure of AlN.
`
`Intensity(arb.unit)
`
`400 eV
`
`200 eV
`
`2333
`
`826
`670
`618
`
`Si
`
`100 eV
`2700
`
`Si
`1800
`900
`Raman Shift (cm-1)
`Fig. 2. Raman spectra of AlN thin films deposited under different nitrogen
`f 00 200
`400 V T l
`fl
`2J/
`2 T
`
`Page 164 of 304
`
`

`

`Jpn. J. Appl. Phys. Vb]. 39 (2000) Pt. 2, No. 5A
`
`Z.-M. man et a1.
`
`L425
`
`mation of more Al—N bonds and therefore an increase in the
`
`Al 2p binding energy.
`Figure 4 shows two XPS N ls spectra for AlN thin films
`deposited with and without the assistance of nitrogen ions,
`respectively. It is evident that, in the thin films, there are two
`nitrogen statuses related to N—N and N—Al bonds. The differ—
`ence between these two spectra in Fig. 4 is quite obvious. The
`thin film deposited in the N2 atmosphere has a very strong N—
`N peak whereas that deposited with 400 eV N+ implantation
`has a strong N—Al peak. The nitrogen ions in the deposition
`promote the formation of Al—N bonds and reduce the density
`of N—N bonds. Therefore, nitrogen ions with an energy of
`about 400 eV are beneficial to the synthesis of AlN thin films,
`in agreement with the above XRD and Raman results.
`The N/Al atomic ratio of the deposited thin films is in the
`range of 0.90 to 1.12. The N/Al atomic ratio is evaluated us-
`ing N : A1 = AN/SN : Am/SAI, where AN and Am are the
`areas under the N15 and A12p peaks, and the constants SN
`and SM are the sensitivity factors of nitrogen and aluminum,
`respectively. The ratio is slightly lower than 1.0 when the
`ion energy is 400eV, due to the resputtering effect. Depo-
`sition with ion-beam bombardment is a nonequilibrium pro-
`cess. The low substrate temperature does not provide any en-
`ergy for the equilibrium growth of an AlN crystal. The de-
`position is accomplished by energetic ions with energies of
`about 400eV. Therefore, the crystalline growth mechanism
`is quite different from other deposition methods where high
`substrate temperatures and low ion energies are employed.
`Hexagonal AlN thin films were deposited by PLD at substrate
`temperatures above 675°C15-13) and by RF magnetic sputter-
`ing and molecular beam epitaxy with substrate temperatures
`higher than 400°C,6-9' 10-19) even on silicon°*9'18) and glasslo)
`substrates. However, in our deposition, the c-axis-oriented
`growth which leads to the hexagonal structure is not possible
`due to the low substrate temperature. In contrast, the ener-
`getic ions promote the formation of another metastable state
`of crystal A1N with a cubic structure. Therefore, the use of
`nitrogen ions with the energy of about 400 eV plays an im—
`portant role in the formation of a cubic AlN crystal.
`In summary, AlN thin films were deposited at room tem—
`perature on Si( 100) substrates by nitrogen-ion—assisted pulsed
`laser ablation of a hexagonal AlN target. The thin films
`have cubic crystal structures with orientations of (l l l), (200),
`(220) and (311), diflerent from most other research results in
`which hexagonal AlN was obtained. Energetic nitrogen ion
`implantation plays an important role in the formation of a cu—
`
`bic AlN crystal. Anion energy of 400 eV was determined to
`be appropriate for the deposition process.
`
`Acknowledgements
`The authors would like to thank Miss. H. L. Koh for her
`technical assistance in this research.
`
`1) W. R. L. Lambrecht Mater. Res. Syrup. Proc. 339 (1994) 565.
`2) F. A. Ponce, S. P. DenBaars, B. K. Meyer, S. Nakamura and S. Suite:
`Nitride Semiconductors (Materials Research Society, Boston, 1998).
`3) K. A. Jones, K. Xie, D. W. Eckart, M. C. Wood, V. 'I‘alyansky, R. D.
`Vispute, T. Venkatesan, K. Wongchotigul and M. Spencer: J. Appl.
`Phys. 83 (1998) 8010.
`4) P. King, A. Saxler, X. Zhaug, D. Walker, T. C. Wang, I. Furguson and
`M. Razeght App]. Phys. Lett. 66 (1995) 2958.
`S) K. S. Stevens,A. Ohtani,M. KinniburghandR. Beresforrt Appl. Phys.
`Lett. 65 (1994) 321.
`6) G. W. Auner, F. Jin, V. M. Naik and R. Nair J. App]. Phys. 85 (1999)
`7879.
`7) J. R. Heflelfinger, D. L. Medlin and K. F. Mocarty: J. App]. Phys. 85
`(1999) 466.
`8) W.J. Meng,J.HeremansandY.T_ Chang: App]. Phys. Lett. 59 (1991)
`2097.
`9) E. Dogheche, D. Remiens, A. Boudrioua and J. C. Loulergue: Appl.
`Phys. Lett. 74 (1999) 1209.
`10) A. Rodriguez-Navarro, W. Otano-Rivera, L. J. Pilioue, R. Messier and
`J. M. Garcia-Ruiz: J. Vac. Sci. & Techno]. A 16 (1998) 1244.
`11) H.Y.Joo, H.J.Kim, S.J. KimandS.Y.Kinr J.Vac. Sci. &'Ibchnol.
`A 17(1999) 862.
`12) J. C. Sanchez-Lopez, L. Contreas, A. Fernandez, A. R. Gonzalez-Elipe,
`J. M. MartinaudB.Vachec ThinSolidFilms 317 (1998) 100.
`13) T. F. Huang and]. S. Harris, Jr.: App]. Phys. ten. 72 (1998) 1158.
`14) V. 'I‘alyansky, R. D. Vrspute, R. Ramesh, R. P. Sharma, T. Venkatesan,
`Y. X. Li, L. G. Salamanca-Riba, M. C. Wood, R. T. Lareau, K. A. Jones
`MA. A. lliadis: Thin Solid Films 323 (1998) 37.
`15) G. S. Sudhir, H. Fujii, W. S. Wong, C. Kisielowski, N. Newman, C.
`Dicker, Z. liliental-Weber, M. D. Rubin and E. R. Weber. Appl. Surf.
`Sci. 127 (1998) 471.
`16) R. D. Vrspute, J. Narayan and J. D. Budai: Thin Solid Films 299 (1997)
`94.
`17) M.He,N.Cheug,P.Zhou,H.0kahe andJ.B.1-Ialperu: J.Vac.Sci.&
`Technol. A 16 (1998) 2372.
`18) A.Kumar,H.L.Chan,J.J.WeimerandL.Saudersom 'IhinSolidFilms
`308/309 (1997) 406.
`19) K. Jagannadham, A. K. Shanna, Q. Wei, R. Kalyauraman and J.
`Narayan: J. Vac. Sci. & Technol. A 16 (1998) 2804.
`20) R. Di Felice and J. E. Northrup: Appl. Phys. Iett. 73 (1998) 936.
`21) R.DiFelice, C. M. Bertoni andA.Catellaui: Appl.Phys.Lett. 74 (1999)
`2137.
`22) H. Vollstadt: Proc. Jpn. Acad. B 66 (1990) 7.
`23) C. Carlmre, K. M. Iakin and H. R. Shanks: J. Appl. Phys. 55 (1984)
`4010.
`24) L. E. McNeil, M. Grimsditchand R. 1-1.Frenc1[ J. Am. Ceram. Soc. 76
`(1993) 1132.
`
`Page 165 of 304
`
`

`

`(cid:8)(cid:17)(cid:18)(cid:16)
`(cid:5)(cid:6)(cid:6)(cid:7) (cid:8)(cid:9)(cid:7)(cid:10)(cid:9)(cid:11)(cid:12)(cid:8)(cid:13)(cid:11)(cid:9) (cid:14)(cid:15)(cid:16)(cid:8)(cid:17)(cid:9)(cid:14)(cid:18)(cid:14) (cid:6)(cid:19)
`(cid:19)(cid:18)(cid:20)(cid:7)(cid:14) (cid:21)(cid:15) (cid:16)(cid:18)(cid:8)(cid:11)(cid:6)(cid:22)(cid:9)(cid:16)(cid:4)(cid:18)(cid:6)(cid:16)(cid:4)(cid:12)(cid:14)(cid:14)(cid:18)(cid:14)(cid:8)(cid:9)(cid:23) (cid:10)(cid:13)(cid:20)(cid:14)(cid:9)(cid:23) (cid:20)(cid:12)(cid:14)(cid:9)(cid:11)
`(cid:23)(cid:9)(cid:10)(cid:6)(cid:14)(cid:18)(cid:8)(cid:18)(cid:6)(cid:16)
`
`(cid:5)(cid:6)(cid:7)(cid:8) (cid:9)(cid:10)(cid:11) (cid:12)(cid:13)(cid:14)(cid:15)(cid:16)(cid:9)(cid:17) (cid:13)(cid:18) (cid:19)(cid:20)(cid:20) (cid:6)(cid:8)(cid:21) (cid:22)(cid:23)(cid:24)(cid:10)(cid:6)(cid:25)(cid:10) (cid:24)(cid:24)(cid:26) (cid:27)(cid:28)(cid:29)(cid:30) (cid:31)(cid:32)(cid:33)(cid:33)(cid:33)(cid:34)(cid:35) (cid:23)(cid:7)(cid:7)(cid:20)(cid:10)(cid:11)(cid:36)(cid:36)(cid:21)(cid:13)(cid:6)(cid:37)(cid:13)(cid:15)(cid:38)(cid:36)(cid:39)(cid:33)(cid:37)(cid:39)(cid:33)(cid:30)(cid:28)(cid:36)(cid:39)(cid:37)(cid:39)(cid:28)(cid:32)(cid:33)(cid:33)(cid:39)(cid:33)
`(cid:40)(cid:14)(cid:41)(cid:42)(cid:6)(cid:7)(cid:7)(cid:8)(cid:21)(cid:11) (cid:39)(cid:33) (cid:19)(cid:20)(cid:15)(cid:6)(cid:17) (cid:32)(cid:33)(cid:33)(cid:33) (cid:37) (cid:19)(cid:25)(cid:25)(cid:8)(cid:20)(cid:7)(cid:8)(cid:21)(cid:11) (cid:32)(cid:43) (cid:19)(cid:14)(cid:38)(cid:14)(cid:10)(cid:7) (cid:32)(cid:33)(cid:33)(cid:33) (cid:37) (cid:22)(cid:14)(cid:41)(cid:17)(cid:6)(cid:10)(cid:23)(cid:8)(cid:21) (cid:44)(cid:16)(cid:17)(cid:6)(cid:16)(cid:8)(cid:11) (cid:32)(cid:43) (cid:45)(cid:13)(cid:46)(cid:8)(cid:42)(cid:41)(cid:8)(cid:15) (cid:32)(cid:33)(cid:33)(cid:33)
`
`(cid:47)(cid:37) (cid:48)(cid:37) (cid:49)(cid:8)(cid:16)(cid:26) (cid:50)(cid:37) (cid:51)(cid:37) (cid:52)(cid:14)(cid:26) (cid:53)(cid:37) (cid:54)(cid:37) (cid:45)(cid:6)(cid:26) (cid:55)(cid:37) (cid:50)(cid:37) (cid:51)(cid:37) (cid:52)(cid:6)(cid:8)(cid:56)(cid:26) (cid:57)(cid:37) (cid:19)(cid:37) (cid:5)(cid:23)(cid:8)(cid:13)(cid:16)(cid:38)(cid:26) (cid:40)(cid:37) (cid:58)(cid:37) (cid:5)(cid:23)(cid:13)(cid:56)(cid:26) (cid:48)(cid:37) (cid:52)(cid:37) (cid:45)(cid:38)(cid:26) (cid:9)(cid:16)(cid:21) (cid:12)(cid:37) (cid:22)(cid:37) (cid:59)(cid:9)(cid:16)(cid:38)
`
`(cid:25)(cid:5)(cid:26)(cid:27)(cid:28)(cid:29)(cid:30)(cid:31) (cid:32)(cid:33)(cid:34) (cid:35)(cid:25)(cid:32) (cid:36)(cid:30) (cid:27)(cid:37)(cid:26)(cid:30)(cid:5)(cid:30)(cid:31)(cid:26)(cid:30)(cid:38) (cid:27)(cid:37)
`
`(cid:40)(cid:7)(cid:15)(cid:14)(cid:25)(cid:7)(cid:14)(cid:15)(cid:9)(cid:17) (cid:25)(cid:23)(cid:9)(cid:15)(cid:9)(cid:25)(cid:7)(cid:8)(cid:15)(cid:6)(cid:10)(cid:7)(cid:6)(cid:25)(cid:10) (cid:13)(cid:18) (cid:19)(cid:17)(cid:45) (cid:18)(cid:6)(cid:17)(cid:42)(cid:10) (cid:21)(cid:8)(cid:20)(cid:13)(cid:10)(cid:6)(cid:7)(cid:8)(cid:21) (cid:41)(cid:24) (cid:20)(cid:14)(cid:17)(cid:10)(cid:8)(cid:21) (cid:17)(cid:9)(cid:10)(cid:8)(cid:15) (cid:21)(cid:8)(cid:20)(cid:13)(cid:10)(cid:6)(cid:7)(cid:6)(cid:13)(cid:16) (cid:9)(cid:16)(cid:21) (cid:15)(cid:8)(cid:9)(cid:25)(cid:7)(cid:6)(cid:46)(cid:8)
`(cid:42)(cid:9)(cid:38)(cid:16)(cid:8)(cid:7)(cid:15)(cid:13)(cid:16) (cid:10)(cid:20)(cid:14)(cid:7)(cid:7)(cid:8)(cid:15)(cid:6)(cid:16)(cid:38)(cid:11) (cid:19) (cid:25)(cid:13)(cid:42)(cid:20)(cid:9)(cid:15)(cid:9)(cid:7)(cid:6)(cid:46)(cid:8) (cid:10)(cid:7)(cid:14)(cid:21)(cid:24)
`(cid:12)(cid:13)(cid:14)(cid:15)(cid:16)(cid:9)(cid:17) (cid:13)(cid:18) (cid:60)(cid:9)(cid:25)(cid:14)(cid:14)(cid:42) (cid:40)(cid:25)(cid:6)(cid:8)(cid:16)(cid:25)(cid:8) (cid:61) (cid:55)(cid:8)(cid:25)(cid:23)(cid:16)(cid:13)(cid:17)(cid:13)(cid:38)(cid:24) (cid:19) (cid:39)(cid:40)(cid:26) (cid:32)(cid:43)(cid:33)(cid:29) (cid:31)(cid:39)(cid:62)(cid:62)(cid:43)(cid:34)(cid:35) (cid:23)(cid:7)(cid:7)(cid:20)(cid:10)(cid:11)(cid:36)(cid:36)(cid:21)(cid:13)(cid:6)(cid:37)(cid:13)(cid:15)(cid:38)(cid:36)(cid:39)(cid:33)(cid:37)(cid:39)(cid:39)(cid:39)(cid:30)(cid:36)(cid:39)(cid:37)(cid:63)(cid:43)(cid:39)(cid:29)(cid:32)(cid:63)
`
`(cid:64)(cid:13)(cid:16)(cid:4)(cid:9)(cid:10)(cid:10)(cid:6)(cid:10)(cid:7)(cid:8)(cid:21) (cid:20)(cid:14)(cid:17)(cid:10)(cid:8)(cid:21) (cid:17)(cid:9)(cid:10)(cid:8)(cid:15) (cid:21)(cid:8)(cid:20)(cid:13)(cid:10)(cid:6)(cid:7)(cid:6)(cid:13)(cid:16) (cid:13)(cid:18) (cid:9)(cid:17)(cid:14)(cid:42)(cid:6)(cid:16)(cid:14)(cid:42) (cid:16)(cid:6)(cid:7)(cid:15)(cid:6)(cid:21)(cid:8) (cid:7)(cid:23)(cid:6)(cid:16) (cid:18)(cid:6)(cid:17)(cid:42)(cid:10)
`(cid:12)(cid:13)(cid:14)(cid:15)(cid:16)(cid:9)(cid:17) (cid:13)(cid:18) (cid:19)(cid:20)(cid:20)(cid:17)(cid:6)(cid:8)(cid:21) (cid:22)(cid:23)(cid:24)(cid:10)(cid:6)(cid:25)(cid:10) (cid:24)(cid:41)(cid:26) (cid:39)(cid:63)(cid:29)(cid:33) (cid:31)(cid:32)(cid:33)(cid:33)(cid:33)(cid:34)(cid:35) (cid:23)(cid:7)(cid:7)(cid:20)(cid:10)(cid:11)(cid:36)(cid:36)(cid:21)(cid:13)(cid:6)(cid:37)(cid:13)(cid:15)(cid:38)(cid:36)(cid:39)(cid:33)(cid:37)(cid:39)(cid:33)(cid:30)(cid:28)(cid:36)(cid:39)(cid:37)(cid:28)(cid:27)(cid:32)(cid:33)(cid:29)(cid:30)
`
`(cid:65)(cid:20)(cid:6)(cid:7)(cid:9)(cid:66)(cid:6)(cid:9)(cid:17) (cid:38)(cid:15)(cid:13)(cid:56)(cid:7)(cid:23) (cid:13)(cid:18) (cid:19)(cid:17)(cid:45) (cid:7)(cid:23)(cid:6)(cid:16) (cid:18)(cid:6)(cid:17)(cid:42)(cid:10) (cid:13)(cid:16) (cid:10)(cid:6)(cid:17)(cid:6)(cid:25)(cid:13)(cid:16) (cid:31)(cid:39)(cid:39)(cid:39)(cid:34) (cid:10)(cid:14)(cid:41)(cid:10)(cid:7)(cid:15)(cid:9)(cid:7)(cid:8)(cid:10) (cid:41)(cid:24) (cid:20)(cid:14)(cid:17)(cid:10)(cid:8)(cid:21) (cid:17)(cid:9)(cid:10)(cid:8)(cid:15) (cid:21)(cid:8)(cid:20)(cid:13)(cid:10)(cid:6)(cid:7)(cid:6)(cid:13)(cid:16)
`(cid:12)(cid:13)(cid:14)(cid:15)(cid:16)(cid:9)(cid:17) (cid:13)(cid:18) (cid:19)(cid:20)(cid:20)(cid:17)(cid:6)(cid:8)(cid:21) (cid:22)(cid:23)(cid:24)(cid:10)(cid:6)(cid:25)(cid:10) (cid:41)(cid:41)(cid:26) (cid:29)(cid:27)(cid:32)(cid:29) (cid:31)(cid:39)(cid:62)(cid:62)(cid:63)(cid:34)(cid:35) (cid:23)(cid:7)(cid:7)(cid:20)(cid:10)(cid:11)(cid:36)(cid:36)(cid:21)(cid:13)(cid:6)(cid:37)(cid:13)(cid:15)(cid:38)(cid:36)(cid:39)(cid:33)(cid:37)(cid:39)(cid:33)(cid:30)(cid:28)(cid:36)(cid:39)(cid:37)(cid:28)(cid:63)(cid:62)(cid:29)(cid:29)(cid:39)
`
`(cid:12)(cid:13)(cid:14)(cid:15)(cid:16)(cid:9)(cid:17) (cid:13)(cid:18) (cid:19)(cid:20)(cid:20)(cid:17)(cid:6)(cid:8)(cid:21) (cid:22)(cid:23)(cid:24)(cid:10)(cid:6)(cid:25)(cid:10) (cid:24)(cid:24)(cid:26) (cid:27)(cid:28)(cid:29)(cid:30) (cid:31)(cid:32)(cid:33)(cid:33)(cid:33)(cid:34)(cid:35) (cid:23)(cid:7)(cid:7)(cid:20)(cid:10)(cid:11)(cid:36)(cid:36)(cid:21)(cid:13)(cid:6)(cid:37)(cid:13)(cid:15)(cid:38)(cid:36)(cid:39)(cid:33)(cid:37)(cid:39)(cid:33)(cid:30)(cid:28)(cid:36)(cid:39)(cid:37)(cid:39)(cid:28)(cid:32)(cid:33)(cid:33)(cid:39)(cid:33)
`
`(cid:24)(cid:24)(cid:26) (cid:27)(cid:28)(cid:29)(cid:30)
`
`(cid:67) (cid:32)(cid:33)(cid:33)(cid:33) (cid:19)(cid:42)(cid:8)(cid:15)(cid:6)(cid:25)(cid:9)(cid:16) (cid:64)(cid:16)(cid:10)(cid:7)(cid:6)(cid:7)(cid:14)(cid:7)(cid:8) (cid:13)(cid:18) (cid:22)(cid:23)(cid:24)(cid:10)(cid:6)(cid:25)(cid:10)(cid:37)
`
`Page 166 of 304
`
`

`

`JOURNAL OF APPLIED PHYSICS
`VOLUME 88, NUMBER 12
`15 DECEMBER 2000
`Room temperature synthesis of c-AlN thin films by nitrogen-ion-assisted
`pulsed laser deposition
`Z. M. Ren, Y. F. Lu,a) and H. Q. Ni
`Laser Microprocessing Laboratory, Department of Electrical Engineering and Data Storage Institute,
`National University of Singapore, 10 Kent Ridge Crescent, 119260 Singapore
`T. Y. F. Liew, B. A. Cheong, S. K. Chow, M. L. Ng, and J. P. Wang
`Data Storage Institute, 5 Engineering Drive 1, 117608 Singapore
`共Received 10 April 2000; accepted for publication 28 August 2000兲
`Cubic aluminum nitride (c-AlN) thin films have been deposited at room temperature on silicon
`substrates by nitrogen-ion-assisted pulsed laser ablation of a hexagonal AlN target. The deposited
`thin films exhibit good crystal properties with sharp x-ray diffraction peaks. The influences of the
`nitrogen ion energy on the morphological, compositional, and electronic properties of the AlN thin
`films have been studied. The nitrogen ions can effectively promote the formation of Al–N bonds
`and improve the crystal properties of the deposited thin films. A nitrogen ion energy of 400 eV is
`proposed to deposit high quality c-AlN thin films. © 2000 American Institute of Physics.
`关S0021-8979共00兲03623-9兴
`
`I. INTRODUCTION
`Aluminum nitride is increasingly receiving high interest
`from the material research community due to its wide band
`gap, high thermal conductivity, high electrical resistivity 共di-
`electric constant兲, and good acoustic properties.1–3 Many re-
`search groups are exploring the synthesis of high quality
`AlN. Some experimental methods have been used to deposit
`AlN thin films,
`including metalorganic chemical vapor
`deposition,4 plasma-assisted molecular beam epitaxy,5–7 rf
`reactive magnetron sputtering,8–11 ion-assisted chemical va-
`por deposition12 and pulsed laser deposition 共PLD兲.13–19
`Most of the deposition methods require high substrate tem-
`peratures 共normally above 800 C兲 although the defects, both
`in the thin films and at the interface between the substrate
`and the thin film, cannot be avoided.6 Such a high substrate
`temperature is undesirable for semiconductor industries and,
`therefore, impedes the practical applications of the AlN ma-
`terial. To date, most of the deposited AlN thin films have
`hexagonal structures with a highly textured orientation of
`共0001兲 on sapphire, silicon, and glass substrates.
`In this study, PLD was used to deposit AlN thin films on
`silicon substrates at room temperature. PLD has been proven
`to be suitable to fabricate AlN thin films on silicon and sap-
`phire substrates.13–19
`In the experiments, nitrogen-ion-
`assisted PLD combines the advantages of both PLD and ion
`bombardment. With this technology, we can independently
`control the energy of the AlN radicals in the ablated plasma
`as well as the nitrogen ions in the ion beam to determine the
`optimal conditions to obtain high quality thin films. More-
`over, the nitrogen ion implantation can also compensate for
`the loss of nitrogen species in the ablation process.
`
`a兲Electronic mail: eleluyf@nus edu sg
`
`II. EXPERIMENT
`In the experimental set up, as shown in Fig. 1, a KrF
`excimer laser at a wavelength of 248 nm was used as a light
`source to ablate an AlN target. The deposition was carried
`out on a PLD system with a background vacuum of 1
`⫻10⫺6 Torr. The AlN target with a hexagonal crystal struc-
`ture and a purity of 99.995% was mounted on a target holder
`that was rotated by an external motor. The target was placed
`2 cm away from the substrate surface. The laser pulse dura-
`tion was 30 ns. The laser fluence at the target was around 2
`Jcm⫺2 with a repetition rate of 10 Hz. The laser spot size on
`the target surface was about 5 mm2. A nitrogen ion beam
`which was produced by a 1 cm Kaufman-type ion source
`irradiated the substrate surface spontaneously to assist the
`deposition. The ion flux was adjusted in a range of 1–2
`mA/cm2. The energetic nitrogen ions traveled 10 cm distance
`before arriving on the substrate. The incident angle of the ion
`beam was 45 . By monitoring the microbalance mounted on
`the substrate, the deposition rate was set at ⭐1 Å/s by ad-
`justing the ion beam flux. Si共100兲 wafers were used as sub-
`strates. Before deposition, the polished Si 共100兲 substrates
`were cleaned by acetone in an ultrasonic bath.
`X-ray diffraction 共XRD兲, x-ray photoelectron spectros-
`copy 共XPS兲, Raman spectroscopy, and Fourier transfer infra-
`red 共FTIR兲 spectroscopy measurements were carried out to
`characterize the crystal, compositional, and electronic prop-
`erties of the deposited thin films. XRD measurements were
`performed on a Philips X’Pert-MRD system. Cu K␣irradia-
`tion with an average wavelength of 1.5418 Å was used as the
`x-ray source in the diffraction measurements. XPS measure-
`ments were carried out using a Mg K␣ 1253.6 eV x-ray
`source with power of 300 W. Raman spectroscopy measure-
`ments were done on a Renishaw Raman Scope. FTIR mea-
`surements were carried out by a micro-FTIR spectrometer
`共model FTS 6000 by BIO-RAD兲.
`
`0021 8979/2000/88(12)/7346/5/$17 00
`
`7346
`
`© 2000 American nstitute of Physics
`
`Page 167 of 304
`
`

`

`J Appl Phys Vol 88 No 12 15 December 2000
`
`Ren etal.
`
`7347
`
`FIG 1 Experimental setup In a vacuum chamber, a KrF excimer laser
`beam is focused to ablate a ceramic AlN target which is rotated by an
`external motor A N⫹ beam is bombarding on the substrate surface simul-
`taneously to assist the AlN deposition A microbalance where Si substrates
`are attached is use to monitor the deposition rate the AlN thin films
`
`III. RESULTS AND DISCUSSIONS
`Figure 2 shows the XRD ␪–2␪spectrum of an AlN thin
`film deposited with 400 eV N⫹ bombardment. In the spec-
`trum, besides the Si共200兲 and Si共400兲 diffraction peaks, there
`are four obvious peaks at 2␪⫽38.37 , 44.74 , 65.58 , and
`78.09 , corresponding to orientations of 共111兲, 共200兲, 共220兲,
`and 共311兲, respectively, of the c-AlN crystalline with rock-
`salt structure20 though the crystal structure of the target is
`hexagonal. The formation of cubic crystal structures of AlN
`on Si共100兲 substrates is unique compared with most of other
`works where hexagonal crystal structures were formed.15 18 19
`In other studies6 7 of the microstrucrures and initial stages of
`thin film deposition, AlN films formed an initial amorphous
`region at the interface between the substrate and the thin
`film, followed by c-axis oriented columnar grains. Substrate
`temperature above 600 C can significantly reduce the amor-
`phous region at the interface and promote the hexagonal
`共0001兲 orientation of AlN. However, in this study, since high
`substrate temperature was not used, the c-axis orientated
`growth of hexagonal AlN was not promoted. Instead, another
`metastable state of cubic crystalline AlN was obtained, al-
`though the hexagonal AlN crystal is possibly more stable due
`to its close packed stacking.
`In the experiments, AlN thin films were also deposited
`without N⫹ bombardment. The deposited thin films exhibit
`no XRD peaks, indicating amorphous structures. This result
`
`FIG 2 XRD ␪–2␪spectrum of an AlN thin film deposited by KrF laser
`ablation with 400 eV N⫹ bombardment at room temperature The laser
`fluence is 2 J/cm2
`
`FIG 3 Optical microscopic images of AlN thin films deposited with dif-
`ferent N⫹ energies: 共a兲 0 共in N2 atmosphere with a pressure of 100 mTorr兲,
`共b兲 100, 共c兲 200, and 共d兲 400 eV
`
`demonstrates the important role of the nitrogen ions in the
`synthesis of AlN thin films with cubic crystal structures.
`Moreover, N⫹ energies lower than 400 eV lead to weaker
`and broader XRD peaks. Therefore, the nitrogen ions with
`the energy of 400 eV can effectively assist the formation of
`cubic crystalline in the deposited thin films. When nitrogen
`ion energy exceeds 400 eV, the deposition will be impeded
`due to the resputtering effect caused by the ion bombard-
`ment.
`The deposition with the assistance of ion-beam bom-
`bardment is a nonequilibrium process. The low substrate
`temperature does not provide any energy for the equilibrium
`growth of crystalline AlN. The deposition is accomplished
`with energetic ions of hundreds eV. Therefore, the crystalline
`growth mechanism is quite different from other deposition
`methods where high substrate temperatures and low ion en-
`ergies were employed. Hexagonal AlN thin films were de-
`posited by PLD at
`substrate temperature higher
`than
`675 C15 18 and by rf magnetic sputtering and molecular
`beam epitaxy with substrate temperature higher
`than
`400 C6 9 10 19 on silicon6 9 18 and glass substrates.10 However,
`in this study, the c-axis oriented growth which leads to hex-
`agonal structures is not possible due to the lack of high sub-
`strate temperatures. On the contrary, the energetic nitrogen
`ions of 400 eV promote the formation of cubic AlN crystals.
`Figures 3共a兲–3共d兲 present the surface morphologies of
`the AlN thin

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket