throbber
REFLECTANCE-BASED PULSE OXIMETER
`FOR THE CHEST AND WRIST
`
`A Major Qualifying Project Report:
`
`Submitted to the Faculty
`
`Of the
`
`WORCESTER POLYTECHNIC INSTITUTE
`
`In partial fulfillment of the requirements for the
`
`Degree of Bachelor of Science
`
`By
`
`_________________________________________
`Alexandra Fontaine
`
`_________________________________________
`Arben Koshi
`
`_________________________________________
`Danielle Morabito
`
`_________________________________________
`Nicolas Rodriguez
`
`Submitted on:
`
`________________________________________________________________
`Professor Yitzhak Mendelson, Advisor, Dept. of Biomedical Engineering
`
`Approved by:
`
`- 1 -
`
`Masimo Ex. 2015
`Apple v. Masimo
`IPR2020-01714
`
`

`

`Authorship
`
`Section
`
`Introduction
`
`Literature Review
`
`Design Approach
`
`Author
`
`Nicolas Rodriguez, Danielle Morabito, Alex
`Fontaine, Arben Koshi
`Nicolas Rodriguez, Danielle Morabito, Alex
`Fontaine, Arben Koshi
`Alex Fontaine, Danielle Morabito
`
`Device Development
`
`Nicolas Rodriguez, Danielle Morabito
`
`Methods
`
`Final Design
`
`Results
`
`Discussion
`
`Summary
`
`Conclusion
`
`Nicolas Rodriguez, Danielle Morabito
`
`Arben Koshi, Nicolas Rodriguez, Danielle
`Morabito
`Alex Fontaine, Arben Koshi
`
`Arben Koshi, Alex Fontaine
`
`Arben Koshi
`
`Arben Koshi
`
`Future Improvements
`
`Arben Koshi, Nicolas Rodriguez
`
`Appendix A
`
`Appendix B
`
`Appendix C
`
`Appendix D
`
`Danielle Morabito
`
`Arben Koshi
`
`Alex Fontaine
`
`Arben Koshi
`
`i
`
`- 2 -
`
`

`

`Abstract
`
`Reflectance-based pulse oximetry is a technique used for noninvasively monitoring the oxygen saturation
`
`(SpO2) and pulse rate (PR). However, there is little supporting evidence that it can accurately collect
`
`measurements from the chest and wrist. In this project, a reflectance-based pulse oximeter was built and
`
`used to collect measurements while sitting, standing, during self-induced hypoxia, and during self-
`
`induced hyperventilation then compared to the measurements taken by a HOMEDIC Deluxe Pulse
`
`Oximeter. The prototype was able to accurately measure within an error of + 1% and ±3% for SpO2 and
`
`PR respectively from the wrist while an error of ±1% and +4% for SpO2 and PR respectively from the
`
`chest.
`
`
`
`
`
`ii
`
`- 3 -
`
`

`

`Acknowledgements
`
`We would like to thank Professor Mendelson for advising this project. We would also like to
`acknowledge Dr. Adriana Hera and Lisa Wall for their support.
`
`
`
`
`
`iii
`
`- 4 -
`
`

`

`Executive Summary
`Oxygen saturation (SpO2) is the measurement of oxyhemoglobin (HbO2) in arterial blood. SpO2 is an
`
`important vital measurement because it shows the levels of blood oxygenation. Traditionally, SpO2 is
`
`measured by invasively drawing blood samples. This method, however, is not ideal and it is unable to
`
`provide clinicians with real-time measurements. With the need for a noninvasive way to measure SpO2,
`
`pulse oximetry was developed. The use of this technology allows clinicians to determine SpO2 in patients
`
`that are sedated, anesthetized, unconscious, or unable to regulate their own oxygen supply.
`
`
`
`Reflectance-based pulse oximetry allows measurements to be taken from areas of the body in
`
`which transmittance based pulse oximetry cannot be applied. In reflectance-based pulse oximetry, the
`
`incident light is passed through the skin and is reflected off the subcutaneous tissue and bone. To this day,
`
`being able to measure signals from the chest and wrist with one single device has not been successfully
`
`achieved. Such a device would allow patients to measure SpO2 and pulse rate (PR) without hindering
`
`their normal day-to-day activities.
`
`The prototype pulse oximeter constructed during this project consists of two hardware
`
`components and a programmed LabVIEW Virtual Instrument (VI). The hardware components consist of
`
`the sensor and a circuit which produces, collects, and processes photoplethysmographic (PPG) signals.
`
`The VI collects the PPG signals produced by the hardware and process them in order to produce
`
`numerical results for PR and SpO2 . The optical sensor is made up of two Light Emitting Diodes (LEDs),
`
`a red LED, with a peak emission wavelength of 660 nm, and an infrared emitter with a peak emission
`
`wavelength of 940 nm. These LEDs are positioned next to each other in the center of a circular Printed
`
`Circuit Board (PCB) and surrounded by 8 photodiodes (PD). The circuitry for the sensor consists of an
`
`Arduino Duo Microprocessor which is programmed to light up the red and infrared LEDs intermittently at
`
`a frequency of 100Hz. The PDs are connected in photovoltaic mode in order to produce a voltage output.
`
`Operational amplifiers are utilized to amplify the photodiode output. Once amplified, the red and infrared
`
`PPG signals obtained from the photodetectors are sent through two Sample-and-Hold circuits to separate
`
`the signals into their respective alternating current (AC) and direct current (DC) components for further
`
`filtering and amplification.
`
`The four input signals sent to the LabVIEW software : AC red, AC infrared, DC red and DC
`
`infrared access the VI via a National Instruments (NI) Data Acquisition (DAQ) system. The AC
`
`components of the red and infrared PPGs are measured using a peak-to-peak detection algorithm, while
`
`the DC components are measured by finding their respective averages. Once the signals are processed,
`
`SpO2 is calculated by obtaining the ratio of the AC and DC components of the red PPG and dividing that
`
`by the ratio of the AC and DC components of the infrared PPG. To calculate PR, the frequency of the
`
`infrared AC signal is measured using frequency measurement parameters in LabVIEW and then
`
`
`
`iv
`
`- 5 -
`
`

`

`multiplied by 60 to display PR in beats per minute (bpm). To compare the measurants taken from the
`
`pulse oximeter prototype, a transmission-type finger HOMEDICS Deluxe Pulse Oximeter was utilized as
`
`reference. The reliability of the Deluxe Pulse Oximeter was tested against a Biopac ECG model 100C
`
`module and was concluded that the HOMEDICS Deluxe Pulse Oximeter was provided accurate enough
`
`measurements for pulse rate.
`
`For testing, the sensor was strapped to the wrist and chest of each subject using a Velcro strap
`
`while the HOMEDICS Deluxe Pulse Oximeter was placed on the subject’s index finger. The VI was set
`
`up to collect, average and display SpO2 and PR data every 10 seconds throughout a 6 minute timespan
`
`accounting for 36 measurements. At this point, a second individual that was monitoring the reference
`
`device recorded the corresponding SpO2 and PR values displayed by the HOMEDICS pulse oximeter.
`
`Subjects were tested on the chest and wrist while sitting, standing, during self-induced hyperventilation,
`
`and during self-induced hypoxia.
`
`While collecting data, it was noticed that the PR measurements collected from the chest had
`
`significantly larger margins of error compared to those from the wrist. One possible explanation for this
`
`discrepancy deals with the LabVIEW algorithm for PR calculation. Instead of doing peak-peak analysis,
`
`we opted to use a search tool which graphs a power spectrum of the data and searches for the highest
`
`amplitude frequency between 0.75Hz and 2.25Hz. This method is very effective at PR values ranging
`
`between 45 and 135 bpm, but loses its accuracy at higher PR values. Measurements above 135 bpm were
`
`detected by the reference, but not accurately detected by the prototype.
`
`Margins of error obtained from the standing and sitting measurement tests on the wrist included
`
`0.6%, and 0.2% for SpO2 and 0.2%, 1.1% for PR respectively. Measurements from the chest displayed
`
`errors of 0.4% and 0.3% for SpO2 and 0.1%, and 0.7% for PR while standing and sitting respectively.
`
`Based on this data, our prototype for a reflectance-based pulse oximeter for the chest and wrist was
`
`successful in measuring PR and SpO2.
`
`
`
`
`
`v
`
`- 6 -
`
`

`

`Table of Contents
`Authorship.................................................................................................................................................................. i
`
`Abstract ...................................................................................................................................................................... ii
`
`Acknowledgements ............................................................................................................................................... iii
`
`Executive Summary .............................................................................................................................................. iv
`
`Table of Figures .................................................................................................................................................. viii
`
`Table of Tables ........................................................................................................................................................ x
`
`Abbreviations .......................................................................................................................................................... xi
`
`1
`
`2
`
`Introduction .................................................................................................................................................. 12
`
`Literature Review ....................................................................................................................................... 13
`
`2.1
`
` Oxygen Saturation .............................................................................................................................. 13
`
`2.2
`
`
`
`Pulse Oximetry .................................................................................................................................... 13
`
`2.2.1
`
`Principle of a Pulse Oximeter ................................................................................................ 15
`
`2.2.2 Methods of Light Detection .................................................................................................... 16
`
`2.2.3
`
`Photoplethysmogram ................................................................................................................ 17
`
`2.2.4 Wavelength Optimization ....................................................................................................... 17
`
`2.2.5
`
`Limitations and Applications of Pulse Oximetry ............................................................. 17
`
`2.3
`
` Reflectance vs. Transmittance Pulse Oximetry ......................................................................... 18
`
` New Studies for Pulse Oximeters .................................................................................................. 19
`2.4
`
`3 Design Approach ........................................................................................................................................ 21
`
`3.1
`
`
`
`Initial Client Statement ..................................................................................................................... 21
`
`3.2
`
` Clinical Need ....................................................................................................................................... 21
`
`3.3
`
` Design Parameters .............................................................................................................................. 21
`
`3.3.1 Objectives .................................................................................................................................... 21
`
`3.3.2 Constraints ................................................................................................................................... 22
`
`3.3.3
`
`Functions ...................................................................................................................................... 22
`
`3.3.4 Design Specifications ............................................................................................................... 23
`
` Revised Client Statement ................................................................................................................. 25
`3.4
`
`4 Device Development ................................................................................................................................. 27
`
`4.1
`
` Device Alternatives............................................................................................................................ 27
`
`4.1.1
`
`Sensor Design 1.......................................................................................................................... 27
`
`4.1.2
`
`Sensor Design 2.......................................................................................................................... 28
`
`
`4.2
`
`Software Design .................................................................................................................................. 29
`
`5 Methods ......................................................................................................................................................... 30
`
`
`
`vi
`
`- 7 -
`
`

`

`5.1
`
`
`
`5.2
`
`
`
`5.3
`
`
`
`5.4
`
`
`
`Photodetection Unit ........................................................................................................................... 30
`
`PPG ......................................................................................................................................................... 30
`
`Filter Design ........................................................................................................................................ 30
`
`Software ................................................................................................................................................ 31
`
`5.4.1
`
`Incoming Signals ....................................................................................................................... 32
`
`5.4.2
`
`5.4.3
`
`Filtering ........................................................................................................................................ 34
`
`Frequency of Pulse Rate .......................................................................................................... 35
`
`5.4.4
`
`Pulse Rate Calculation ............................................................................................................. 36
`
`5.4.5
`
`Spectral Measurements ............................................................................................................ 37
`
`5.4.6
`
`SpO2 Calculation ........................................................................................................................ 39
`
`5.4.7
`
`Preliminary VI Test ................................................................................................................... 44
`
`5.5
`
` Experimentation/Testing .................................................................................................................. 48
`
`6
`
`Final Design ................................................................................................................................................. 51
`
`6.1
`
` Device Hardware ................................................................................................................................ 51
`
`6.1.1
`
`Sensor ............................................................................................................................................ 51
`
`6.1.2 Circuitry ........................................................................................................................................ 52
`
`6.2
`
`
`
`Software ................................................................................................................................................ 56
`
`7 Results ........................................................................................................................................................... 59
`
` Comparison Graphs ........................................................................................................................... 61
`7.1
`
`7.2
`
` Dynamic Response Plots .................................................................................................................. 73
`
`7.3
`
` Residual Plots ...................................................................................................................................... 91
`
`8 Discussion..................................................................................................................................................... 98
`
`10 Summary ..................................................................................................................................................... 101
`
`11 Conclusion .................................................................................................................................................. 103
`
`12 Future Improvements .............................................................................................................................. 104
`
`References ............................................................................................................................................................ 106
`
`Appendix A: Description of LabVIEW ....................................................................................................... 107
`
`Appendix B: Bill of Materials ........................................................................................................................ 117
`
`Appendix C: Data Sets ..................................................................................................................................... 118
`
`Appendix D: Filter Bode Plots ....................................................................................................................... 128
`
`
`
`
`
`
`
`
`
`vii
`
`- 8 -
`
`

`

`Table of Figures
`
`Figure 2.1: Arterial blood changing over time, PPG [11] .................................................................................................................. 14
`Figure 2.2: Optical absorption spectra of Hb, HbO2, MetHb, and BbCO [11] ........................................................................... 15
`Figure 2.3: Transmittance pulse oximetry ............................................................................................................................................. 18
`Figure 2.4: Reflectance pulse oximetry ................................................................................................................................................... 18
`Figure 2.5: Forehead pulse oximeter ....................................................................................................................................................... 19
`Figure 3.1: Objective tree ............................................................................................................................................................................ 22
`Figure 5.1: Unfiltered output of a PPG signal with an AC component riding on top of a DC component ..................... 30
`Figure 5.2: Configuration of functions to separate incoming signals .......................................................................................... 33
`Figure 5.4: Filter function and graph ...................................................................................................................................................... 35
`Figure 5.5: Tone measurements output frequency .............................................................................................................................. 35
`Figure 5.6: Configure tone measurements parameters ..................................................................................................................... 36
`Figure 5.7: Functions used to calculate pulse rate ............................................................................................................................. 37
`Figure 5.8: Amplitude and level measurements functions with numeric indicators ................................................................ 38
`Figure 5.9: Configure amplitude and level measurements set to mean (DC) ............................................................................ 39
`Figure 5.10: SpO2 calculation .................................................................................................................................................................... 40
`Figure 5.11: The configuration of function that limit the displayed SpO2 .................................................................................. 41
`Figure 5.12: VI Block Diagram ................................................................................................................................................................. 42
`Figure 5.13: VI Front Panel........................................................................................................................................................................ 43
`Figure 5.14: Front panel for the simulated hypoxia test with low amplitude ............................................................................ 45
`Figure 5.15: Front panel for the simulated hypoxia test with high amplitude .......................................................................... 46
`Figure 5.16: Block diagram for the simulated hypoxia test ............................................................................................................. 47
`Figure 5.17: Application of the sensor to the wrist (left) and the chest (right) ......................................................................... 49
`Figure 6.1: Top View of sensor module with photodiodes and LEDs. ......................................................................................... 51
`Figure 6.2: Platform view of sensor module ......................................................................................................................................... 52
`Figure 6.3: Block diagram of the prototype pulse oximeter ............................................................................................................ 53
`Figure 6.4:LED driver timing diagram with 2.5ms time increments ............................................................................................ 54
`Figure 6.5: Circuit design for pulse oximeter device ......................................................................................................................... 55
`Figure 6.6: Block Diagram of Final VI ................................................................................................................................................... 57
`Figure 6.7: Front Panel of Final VI ......................................................................................................................................................... 58
`Figure 7.1: Example of corrupted PPG .................................................................................................................................................. 60
`Figure 7.2: Comparison graph for the chest sitting tests. The solid line represents the regression line and the dashed
`line represents the identity line. ................................................................................................................................................................. 62
`Figure 7.3: Comparison graph for the chest standing tests. The solid line represents the regression line and the
`dashed line represents the identity line. .................................................................................................................................................. 64
`Figure 7.4: Comparison graph for the wrist sitting tests. The solid line represents the regression line and the dashed
`line represents the identity line. ................................................................................................................................................................. 66
`Figure 7.5: Comparison graph for the wrist standing tests. The solid line represents the regression line and the
`dashed line represents the identity line. .................................................................................................................................................. 68
`Figure 7.6: Comparison graph for hyperventilation tests ................................................................................................................ 70
`Figure 7.7: Comparison graph for hypoxia tests. The solid line represents the regression line and the dashed line
`represents the identity line. .......................................................................................................................................................................... 72
`Figure 7.8: Oxygen saturation measurement validation plot for the chest standing test ...................................................... 74
`Figure 7.9: Pulse rate measurement validation plot for the chest standing test ....................................................................... 75
`Figure 7.10: Oxygen saturation measurement validation plot for the chest sitting test ......................................................... 77
`Figure 7.11: Pulse rate measurement validation plot for the chest sitting test ......................................................................... 78
`Figure 7.12: Pulse rate measurement validation plot 1 for hyperventilation test .................................................................... 80
`Figure 7.13: Pulse rate measurement validation plot 2 for hyperventilation test .................................................................... 81
`Figure 7.14: Pulse rate measurement validation plot for the wrist sitting test ......................................................................... 83
`Figure 7.15: Oxygen saturation measurement validation plot for the wrist sitting test ......................................................... 84
`Figure 7.16: Oxygen saturation measurement validation plot for the wrist standing test .................................................... 86
`Figure 7.17: Pulse rate measurement validation plot for the wrist standing test ..................................................................... 87
`Figure 7.18: Oxygen saturation measurement validation plot 1 for hypoxia test .................................................................... 89
`
`
`
`viii
`
`- 9 -
`
`

`

`Figure 7.19: Oxygen saturation measurement validation plot 2 for hypoxia test .................................................................... 90
`Figure 7.20: Residual plot for hyperventilation testing for data set 1 (dotted lines: + 2SD, solid line: average of
`differences) ........................................................................................................................................................................................................ 92
`Figure 7.21: Residual plot for hyperventilation testing for data set 2(dotted lines: + 2SD, solid line: average of
`differences) ........................................................................................................................................................................................................ 93
`Figure 7.22: Residual plot for hyperventilation testing for data set 3 (dotted lines: + 2SD, solid line: average of
`differences) ........................................................................................................................................................................................................ 94
`Figure 7.23: Residual plot for hypoxia testing for data set 1 (dotted lines: + 2SD, solid line: average of differences)
` ............................................................................................................................................................................................................................... 96
`Figure 7.24: Residual plot for hypoxia testing for data set 2 (dotted lines: + 2SD, solid line: average of differences)
` ............................................................................................................................................................................................................................... 97
`
`
`
`
`
`
`
`
`ix
`
`- 10 -
`
`

`

`Table of Tables
`Table 3.1: Respironic's WristOx Ambulatory Finger Pulse Oximeter Specifications [21] ...................................................... 23
`Table 3.2: Santa Medical's Finger Pulse Oximeter Specifications[7]............................................................................................ 24
`Table 3.3: Crucial Medical Systems Finger Pulse Oximeter Specifications [22]........................................................................ 24
`Table 3.4: Project Specifications ............................................................................................................................................................... 25
`Table 7.1: Calculated accuracy for the average SpO2 and PR for each data set ..................................................................... 59
`Table 7.2: Prototype accuracy based on all data collected ............................................................................................................. 60
`
`
`
`
`
`x
`
`- 11 -
`
`

`

`Abbreviations
`O2: Oxygen
`Hb: Hemoglobin
`HbO2: Oxyhemoglobin
`SpO2: Oxygen saturation
`SaO2: Oxygen saturation measured invasively
`PR: Pulse rate
`COHb: Carboxyhemoglobin
`MetHb: Methyl hemoglobin
`PPG: Photoplethysmogram
`VI: Virtual Instrument
`
`
`
`
`
`xi
`
`- 12 -
`
`

`

`1 Introduction
`
`One of the most important elements needed to sustain life is oxygen (O2) because it is used by cells to
`
`turn sugars into useable energy. Oxyhemoglobin (HbO2) is the protein hemoglobin, found in red blood
`
`cells, bounded to O2 that delivers 98% of oxygen to cells. The measurement and calculation of the
`percentage of HbO2 in arterial blood is known as oxygen saturation (SpO2). [1]
`
`Originally, SpO2 was measured by taking samples of blood and measuring O2 levels directly. This
`
`method was invasive and was unable to provide real-time measurements. This measuring technique made
`
`it impossible for SpO2 to be recognized as an important measure of wellness until a non-invasive method
`of measuring SpO2 in real-time was established. [2]
`
`The need for a non-invasive method of measuring SpO2 in real-time led to the development of
`
`pulse oximetry. Pulse oximetry derives SpO2 and pulse rate (PR) from a photoplethysmogram (PPG). The
`
`PPG is obtained by measuring changes in light absorbed by the blood. Red and infrared wavelengths are
`
`used to obtain the PPG because these wavelengths are easily transmitted through tissues, allowing SpO2
`
`to be calculated from the ratio of the absorption of the red and infrared light.
`
`The first device used to continuously measure blood oxygen saturation of human blood in vivo
`
`(SaO2) was built by Karl Matthes in 1935. [2] However, it was not until 1983 that William New and Mark
`
`Yelderman, after recognizing the need of an accurate oximeter in the operating room evaluated and
`
`produced the pulse oximeter with aims to make it an intraoperative monitoring device. [2] Pulse oximetry
`
`allows for an accurate determination of O2 levels in patients that are sedated, anesthetized, unconscious,
`
`and unable to regulate their own oxygen supply as well as provides information needed to avoid
`
`irreversible tissue damage. [2]
`
`Since the invention of pulse oximetry, the measurement of SpO2 has become an important part of the
`
`medical world. Nevertheless, improvements such as the application of the reflectance-based technique to
`
`measure SpO2 from multiple locations on the body are still to be developed. This project demonstrates the
`
`use of reflectance-based pulse oximetry to obtain measurements for PR and SpO2 from the chest and
`
`wrist. This development in pulse oximetry technology will pave the way for the development of new and
`
`novel pulse oximeters that can be worn as accessories, are easily concealed under clothing, and more
`
`acclimated to use outside of hospital settings.
`
`
`
`
`
`
`
`12
`
`- 13 -
`
`

`

`2 Literature Review
`
`This is a thorough literature review covering the necessary background needed to fully understand this
`
`project.
`
` Oxygen Saturation 2.1
`
`SpO2 is the amount of O2 that is carried in the blood. In the human body, SpO2 is defined as the ratio of
`HbO2 to the total concentration of Hb (reduced Hb + HbO2) present in the blood [1].
`
` ( )
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket