throbber
Basic Integrated Circuit
`Technology Reference
`Manual
`
`e m i c o nductorIn
`
`dustr y
`

`
`S
`
`i n c e 1964
`
`bal S
`
`rvingtheGlo
`
`e
`
`S
`
`Editor:
`Richard D. Skinner
`
`ICE Staff Contributors:
`Ron Bowman
`Jim Griffin
`Bill McClean
`
`Introduction
`
`Section 1. Products
`
`Section 2. Basic Integrated
`Circuit Manufacturing
`
`Section 3. Packaging
`
`Seciton 4. Terms by Major
`Area of Interest
`
`Glossary
`
`Qualcomm Incorporated
`EX1026
`Page 1 of 19
`
`

`

`Basic Integrated Circuit
`Technology Reference
`Manual
`
`e m i c o nductorIn
`
`dustr y
`

`
`S
`
`i n c e 1964
`
`bal S
`
`rvingtheGlo
`
`e
`
`S
`
`Editor:
`Richard D. Skinner
`
`ICE Staff Contributors:
`Ron Bowman
`Jim Griffin
`Bill McClean
`
`Introduction
`
`Section 1. Products
`
`Section 2. Basic Integrated
`Circuit Manufacturing
`
`Section 3. Packaging
`
`Seciton 4. Terms by Major
`Area of Interest
`
`Glossary
`
`Page 1 of 19
`
`

`

`ISBN 1-877750-24-7
`
`Copyright © 1993 by Integrated Circuit Engineering Corporation
`
`All rights reserved. No material contained in this report may be
`reproduced in whole or in part without the written permission of the
`publisher.
`
`Page 2 of 19
`
`

`

`Basic Integrated Circuit Manufacturing
`
`b. Photomasks
`
`The photomask is created by a series of additional process steps beyond the making of a 10X ret-
`icle for each layer. Refer to Figure 2-20. At the contact print to submaster stage the mask polarity
`must be determined (depends on whether negative or positive photoresist is used). The submas-
`ter to working print stage can print either emulsion or chrome on glass substrates. The choice is
`determined by the wafer alignment equipment. A photomask is shown in Figure 2-17.
`
`c. E-beam
`
`Also shown in Figure 2-20 are two other alternative technologies to form the designer's require-
`ments into a photoresist layer on the silicon wafer. One alternative is to use an e-beam system to
`write the pattern directly on the photoresist-coated wafer. This approach eliminates the reticles or
`mask-making stage but has a very slow throughput.
`
`d. X-ray
`
`The other technique uses x-ray energy to expose the photoresist-coated wafer. The mask for this
`technique is very expensive and difficult to manufacture. However, x-ray steppers have excellent
`resolution capability and will probably be needed by the end of the 1990's.
`
`4. Photolithography Sequence
`
`Figure 2-21 illustrates the manufacturing sequence for photolithography. These photolitho-
`graphic steps encompass all of the patterning operations, including wafer priming, coating, align,
`expose, develop, etch, and photoresist removal. The characteristics of the light-sensitive photore-
`sists determine the basic process technique. As was shown in Figure 2-16, the photolithographic
`process is repeated several times. Because of this it is often referred to as the hub of the IC fabri-
`cation process.
`
`a. Photoresist, Negative and Positive
`
`There are two kinds of photoresist commonly used: negative and positive. The chemical behav-
`ior of each resist is illustrated in Figure 2-22. The negative resist responds to the radiation (UV
`light) in a manner that prevents the developer solution from removing the exposed resist. The
`image formed in the resist is the same as the clear area on the mask. The unexposed resist is
`removed by the developing process. Positive photoresist has the opposite response to the radia-
`tion. The areas of the photoresist that are exposed are removed by the developer solution. Thus,
`the unexposed resist remains and forms the image on the surface of the wafer.
`
`The chemistries of positive and negative photoresist are very different. Positive photoresist is
`developed with a mild alkaline (basic) solution and the negative resist requires a solvent (xylene)
`for developing.
`
`INTEGRATED CIRCUIT ENGINEERING CORPORATION
`
`2-21
`
`Page 3 of 19
`
`

`

`Basic Integrated Circuit Manufacturing
`
`Photoresist
`
`Wafers
`
`Vapor Prime
`and Bake
`
`Coating
`
`Class 1 - 100, "Gold Lighted" Area
`(Yellow Room)
`
`Inspected
`Masks or
`Reticle
`
`Develop
`Inspect
`(A.D.I.)
`
`Develop
`
`Wafer
`Alignment
`And Exposure
`
`Dry and
`Cure Bake
`(Soft Bake)
`
`Hard Bake
`
`Etch
`
`Etch Inspect
`(A.E.I.)
`
`Photoresist
`Strip And
`Clean
`
`1146E
`
`Figure 2-21. Photolithography Process Flow Chart
`
`i. Exposure Wavelengths
`
`A portion of the electromagnetic spectrum is illustrated in Figure 2-23. The blue-violet region is
`referred to as the ultraviolet wavelengths. Also shown is the relationship between wavelength (l)
`and the frequency (f) for this form of energy.
`
`The light-sensitive responses of both resists are similar in that both are exposed by light in the
`blue-violet wavelength (190 - 450nm). These wavelengths are commonly found in mercury arc
`lamps and similar bulbs. For this reason, the process area for photoresist must have these wave-
`lengths filtered out during manufacturing to prevent unwanted exposure. Yellow filters or lights
`are used to illuminate the work area for these processing steps.
`
`2-22
`
`INTEGRATED CIRCUIT ENGINEERING CORPORATION
`
`Page 4 of 19
`
`

`

`Basic Integrated Circuit Manufacturing
`
`Exposing Radiation
`
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`
`Mask
`
`Irradiation
`Region
`
`Resist
`Thin Film
`
`Substrate
`
`Actinic: The property of radiant energy, especially in
`the visible and ultra-violet spectral regions,
`by which chemical changes are produced.
`
`Developing
`
`Positive Resist
`
`Resist
`
`Negative Resist
`
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`
`Etching and Stripping
`
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`
`(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)
`
`Source: ICE
`
`7417A
`
`Figure 2-22. Characteristic of Negative and Positive Resists
`
`1013
`
`1014
`
`Frequencies
`1015
`1016
`
`1017
`
`1018
`
`Ultraviolet
`
`X-Rays
`
`Visible Light
`
`Region
`
`Infrared
`
`10–2
`100µ
`
`10–3
`10µ
`
`10–4
`1µ
`
`10–5
`0.1µ
`Wavelength (in cm)
`
`10–6
`0.01µ
`
`10–7
`0.001µ
`
`10–8
`0.0001µ
`
`18069B
`
`Figure 2-23. Part of the Electromagnetic Spectrum
`
`INTEGRATED CIRCUIT ENGINEERING CORPORATION
`
`2-23
`
`Page 5 of 19
`
`

`

`Basic Integrated Circuit Manufacturing
`
`vi. Inspection After Develop
`
`Visual inspection of the photoresist-patterned surface is a difficult task. And, as the circuitry
`becomes denser, the inspection after develop (ADI) will become even more difficult. Therefore,
`the photoresist process will rely more on Statistical Process Control and less on the visual inspec-
`tion.
`
`The current trend in technology for monitoring the develop process after developing is to use pro-
`grammed pattern recognition visual inspection equipment. This type of automation eliminates
`the eye fatigue problem and provides more consistent results. The automated visual inspection
`station sample inspects using a statistical plan. This provides immediate feedback for manufac-
`turing control and aids in keeping the rework rate low.
`
`The decision to rework a wafer (or wafers) after the develop inspection has a significant impact
`on the cycletime of the overall process. Good manufacturing practices dictate keeping reworks
`low at this inspection. The long-term goal is to be able to eliminate this inspection through con-
`tinued improvement by using Statistical Process Control.
`
`vii. Post-Develop (Hard) Bake
`
`After the inspection is completed, the wafers are given a "hard bake" at a temperature of 130°C to
`160°C to dehydrate the photoresist prior to etch or ion implant processes. This bake stabilizes the
`resist characteristics and makes the resist less sensitive to these hostile process environments.
`
`f. Etch
`
`The etching process removes the material not protected by the hardened photoresist. The result
`of the etching process was illustrated in Figure 2-15 for positive resist and is shown in Figure 2-39
`for negative resist.
`
`These figures are idealistic representations of the patterning process. In actual manufacturing,
`there are varying degrees of acceptable results. Figure 2-40 illustrates several examples.
`
`The etching process is divided into two basic methods: isotropic and anisotropic. These terms
`describe the geometrical shape the film will have after the etching process.
`
`i. Isotropic/Anisotropic
`
`An isotropic etch process will etch laterally while etching the material vertically. The worst case
`is when the lateral rate is equal to the vertical etch rate. The anisotropic etch will etch only in the
`vertical direction. These concepts are illustrated in Figure 2-41.
`
`2-40
`
`INTEGRATED CIRCUIT ENGINEERING CORPORATION
`
`Page 6 of 19
`
`

`

`1
`
`2
`
`3
`
`Basic Integrated Circuit Manufacturing
`
`Photoresist
`
`SiO2
`
`Photoresist
`
`SiO2
`
`SiO2
`
`18408
`
`Figure 2-39. Photolithography Using Negative Photoresist
`
`The etching process is essentially a subtractive process to remove the material not protected by
`the photoresist. There are several methods used to remove any given material. The more
`common methods are: wet chemistry, plasma dry chemistry, reactive ion etching dry chemistry,
`and ion milling.
`
`INTEGRATED CIRCUIT ENGINEERING CORPORATION
`
`2-41
`
`Page 7 of 19
`
`

`

`Basic Integrated Circuit Manufacturing
`
`Heating the photoresist as a cleaning process is not used because of the residue remaining. A tech-
`nique that is gaining acceptance is to use ultraviolet energy in the presence of ozone (O3).
`
`After the photoresist has been stripped (removed), the wafer is given some type of visual inspec-
`tion. Like other visual inspections, pattern recognition inspection equipment and sampling tech-
`niques are used.
`
`E. JUNCTION FORMATION
`
`Recalling from the materials section, dopant atoms are added to the silicon lattice when the sili-
`con ingot is grown to provide the electrical characteristics of the wafer (N-type or P-type). During
`the process of producing ICs on the wafer, atoms of the same polarity as the wafer or of the oppo-
`site polarity must be introduced into the wafer in selected regions. This alteration of the dopant
`levels is done by solid-state diffusion or ion implantation.
`
`1. Diffusion
`
`Diffusion is the term used to describe the movement of atoms, molecules, or particles from a loca-
`tion of high concentration to a new location of lower concentration. An example of the process of
`diffusion can be visualized by watching a small drop of red coloring being dropped into a glass
`of clear water.
`
`Initially, as the drop strikes the clear water, the red color is highly concentrated. After a short
`period of time the deep red color begins to lessen and the color starts to spread out over a larger
`volume. As more time elapses, the color continues to spread out and the red color starts to change
`to pale red and on into a pink. In a given time the pink will almost disappear in the now nearly
`clear water.
`
`The process just described represents diffusion as a function of time and temperature. The rate an
`atom, molecule or compound diffuses from a high concentration to a lesser concentration is
`related to temperature and time. The parameter that ties the diffused rate to temperature for a
`given time is known as the diffusion coefficient or diffusivity.
`
`The dopant atom must displace a silicon atom in the crystal structure of the silicon to become elec-
`trically active. The process of diffusion is used in semiconductor processing to introduce a con-
`trolled amount of a chosen dopant into selected regions of a semiconductor crystal. The diffusion
`process used to accomplish this substitution is divided into two distinct steps.
`
`1. Predeposition
`2. Redistribution or drive-in
`
`INTEGRATED CIRCUIT ENGINEERING CORPORATION
`
`2-47
`
`Page 8 of 19
`
`

`

`Basic Integrated Circuit Manufacturing
`
`A. Stained single-junction structure
`revealed by interference fringes.
`
`B. Stained double-junction structure
`revealed by interference fringes.
`
`Photos by ICE
`
`1851
`
`Figure 2-54. Monochromatic Light Examinations
`
`Figure 2-55. Silicon Gate MOS Cross-Section
`
`10250B
`
`INTEGRATED CIRCUIT ENGINEERING CORPORATION
`
`2-55
`
`Page 9 of 19
`
`

`

`Basic Integrated Circuit Manufacturing
`
`• Low electrical resistivity
`• Ohmic and low contact resistance
`• Stable contact formation to silicon or other metal(s)
`• High temperature stability
`• Excellent adhesion and low stress
`• Good electromigration resistance
`• Good corrosion resistance
`• Controlled oxidation properties and stability in an
` oxidizing environment
`• Ease of formation
`• Ease of fine line pattern transfer
`• Smooth surface features
`
`18419
`
`2. Materials
`
`The basic materials requirements to
`interconnect the components within
`an IC are listed in Figure 2-70.
`Unfortunately, no individual metal
`can meet all of the requirements.
`Aluminum is the most often used
`metal but its use is being challenged
`by newer circuit requirements.
`
`Figure 2-70. Conductor Material Properties
`Requirements for VLSI
`
`When pure aluminum is used to
`interconnect shallow p-n junction
`devices, a reliability problem can
`occur. The silicon atoms in the sub-
`strate diffuse into the aluminum metallization. Over extended time and temperature, sufficient sil-
`icon is depleted to cause a metal short through the p-n junction. This concept is illustrated in Figure
`2-71. The problem can be minimized by adding a small percentage of silicon into the aluminum.
`
`0.3µ
`
`N+
`
`SHORT
`
`Al
`SiO2
`
`P
`
`N
`
`Source: ICE
`
`3090A
`
`Figure 2-71. Aluminum/Silicon Dissolution
`
`3. Methods
`
`a. E-beam, Filament Evaporation
`
`The methods for depositing metal films are tabulated in Figure 2-72. The semiconductor industry
`has evolved through each of the methods except Ion Beam deposition, which has not been imple-
`mented to any great extent yet. Sputtering is the most commonly used method while
`LPCVD/PECVD is being used for selected films of tungsten. Diagrams for filament evaporation
`and electron-beam (e-beam) are shown in Figure 2-73 and Figure 2-74, respectively.
`
`2-66
`
`INTEGRATED CIRCUIT ENGINEERING CORPORATION
`
`Page 10 of 19
`
`

`

`Basic Integrated Circuit Manufacturing
`
`Evaporation
`• Hot Filaments
`• Resistive Filaments, Heated Crucible
`• R.F. Heated Crucible
`• Electron-Beam
`
`Sputtering
`• Planar Diode
`• Planar Triode
`• Planar Magnetron (Diode or Triode)
`• R.F. Diode
`
`Chemical Vapor Deposition
`• LPCVD
`• PECVD
`
`Ion Beam Deposition
`
`Figure 2-72. Methods of Metal Deposition
`
`18420
`
`Evaporant
`Charge
`
`Bell Jar
`
`To
`High Current
`Source
`
`1959B
`
`To Vacuum Pump
`(10–5 Torr)
`
`Source: ICE
`
`Figure 2-73. Vacuum Evaporation System
`
`INTEGRATED CIRCUIT ENGINEERING CORPORATION
`
`2-67
`
`
`(cid:0)(cid:0)(cid:0)(cid:0)
`
`
`
`(cid:0)(cid:0)(cid:0)(cid:0) 
`
`
`
`(cid:0)(cid:0)(cid:0)(cid:0) 
`
`
`
`(cid:0)(cid:0)(cid:0)(cid:0)
`
`
`
`Heater
`Filament
`
`Vapor
`
`Wafers
`
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)@@@PPP(cid:0)(cid:0)(cid:0)
`
`Page 11 of 19
`
`

`

`Basic Integrated Circuit Manufacturing
`
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`Planetary
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`Wafer
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`Holder
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`Vapor
`Evaporant
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`Charge
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`Electron
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`Beam Gun
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)
`To Vacuum
`(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)
`Pump
`(cid:0)(cid:0)(cid:0)
`(cid:0)(cid:0)(cid:0)
`
`(cid:0)(cid:0)(cid:0)
`
`Source: ICE
`
`Figure 2-74. Electron Beam Evaporation
`
`To EB
`Power
`Supply
`1430
`
`The electron-beam system requires a separate e-gun for each material to co-deposit the film. This
`increases the cost of the deposition system.
`
`b. Sputtering
`
`Low-pressure sputtering evolved as an improved alternative to the e-beam deposition system. A
`sputtering system is diagrammed in Figure 2-75. The main advantage of sputtering is the physi-
`cal nature of the process. Argon is the ionized atom most commonly used to bombard the target
`material. This physical bombardment causes the target material to be deposited from many dif-
`ferent angles, which provides a more uniform deposition, regardless of target composition. The
`resulting step coverage is improved as shown in Figure 2-76.
`
`Many refinements have been made on the hardware of sputtering deposition systems. These
`improvements have made it the method of choice for the majority of wafer fabs. Various ways of
`configuring the sputtering system were noted in Figure 2-72. One of the more popular concepts
`is shown in Figure 2-77.
`
`2-68
`
`INTEGRATED CIRCUIT ENGINEERING CORPORATION
`
`Page 12 of 19
`
`

`

`Basic Integrated Circuit Manufacturing
`
`I. PROCESSES
`
`1. CMOS
`
`Figures 2-83, 2-84, and 2-85 provide a graphical representation of the IC manufacturing cycle.
`Figures 2-86, 2-87, and 2-88 provide graphical cross-sections of the CMOS structure as the circuit
`travels through the manufacturing cycle. Each group of process steps are narrated relative to
`Figures 2-83, 2-84, and 2-85.
`
`EPI-Silicon
`Single Crystal
`
`Wafers
`
`Oxidation
`Furnace
`
`LPCVD
`Furnace
`
`Mask 1
`
`Plasma Etch
`
`Ion Implanter
`
`Initial
`Oxidation
`
`Deposit
`Silicon
`Nitride
`
`N-Well
`Photolithography
`
`Nitride Etch
`
`Phosphorus Ion Implant
`N-Well
`
`Diffusion
`Furnace
`
`Plasma Etch
`
`Ion Implanter
`
`Diffusion
`Furnace
`
`Strip
`Resist
`
`Diffusion
`Furnace
`
`Strip
`Oxide
`
`Strip Nitride
`
`N-Well Drive &
`Selective Oxidation
`
`Boron Ion Implant
`P-Well
`
`P-Well
`Drive &
`Oxidation
`
`Grow
`Buffer
`Oxide
`
`LPCVD
`Furnace
`
`Mask 2
`
`Diffusion
`Furnace
`Plasma System
`
`Diffusion
`Furnace
`
`Deposit Silicon
`Nitride
`
`Active Area
`Photolithography
`
`Etch Nitride
` Strip Resist
`
`Selective Oxidation
`Field
`
`Planarize -
`Strip Nitride
`Etch-Back
`Oxide
`
`Grow Implant
`Buffer Oxide
`
`Ion Implanter
`
`Mask 3
`
`Ion Implanter
`
`Diffusion
`Furnace
`
`LPCVD
`Furnace
`
`Strip
`Resist
`
`Adjust Implant
`
`VTR
`Source: ICE
`
`VTP
` Adjust Implant
`Photolithography
`
`VTP Adjust Implant
`
`Gate Oxidation
`
`Polysilicon
`Deposition
`
`14811
`
`Figure 2-83. Twin-Well Silicon-Gate CMOS Manufacturing Sequence (1 of 3)
`
`2-74
`
`INTEGRATED CIRCUIT ENGINEERING CORPORATION
`
`Page 13 of 19
`
`

`

`Basic Integrated Circuit Manufacturing
`
`LPCVD
`
`Rapid Thermal
`Processor
`
`Mask 4
`
`RIE Plasma Etch
`
`Poly Doping
`Implant
`
`Tungsten Silicide
`Deposition
`
`Create Polycide
`
`Gate
`Photolithography
`
`Etch Silicide/Poly
`
`Ion Implanter
`
`Mask 5
`
`Ion Implanter
`
`Lpcvd
`Furnace
`
`RIE Plasma Etch
`
`Phosphorus Implant,
`N-Channel Lightly
`Doped Drain (LDD)
`
`P-Channel LDD
`Photolithography
`
`Boron Implant
`P-Channel Lightly
`Doped Drain (LDD)
`
`Deposit Oxide
`For Sidewall
`Spacers
`
`Form Sidewall
`Spacers
`
`Diffusion
`Furnace
`
`Mask 6
`
`Ion Implanter
`
`Mask 7
`
`Ion Implanter
`
`Grow Implant
`Buffer Oxide
`
`P-Channel Source-Drain
`Photolithography
`
`Boron Ion Implant
`P-Channel Source-Drain
`Ion Implant
`
`N-Channel Source-Drain
`Photolithography
`
`Arsenic Ion Implant
`N-Channel
`Source-Drain
`
`Furnace
`
`LPCVD
`Furnace
`
`Diffusion
`Furnace
`
`LPCVD
`Furnace
`
`Diffusion
`Furnace
`
`Mask 8
`
`Apply
`Spin-On
`Glass
`(SOG)
`
`Implant Anneal,
`Source Drain
`Diffusion
`
`Deposit
`Low-Temperature
`Phosphosilicate
`Glass
`
`Source: ICE
`
`Deposit
`Reflow Oxide
`Densify SOG
`Borophosphosilicate
`Glass (BPSG)
`
`Contact
`Photolithography
`
`14812
`
`Figure 2-84. Twin-Well Silicon-Gate CMOS Manufacturing Sequence (2 of 3)
`
`INTEGRATED CIRCUIT ENGINEERING CORPORATION
`
`2-75
`
`Page 14 of 19
`
`

`

`Basic Integrated Circuit Manufacturing
`
`Plasma Etch
`
`Etch Contacts
`
`Mask 9
`
`Ion Implanter
`
`Rapid Thermal
`Processor
`
`Metal Deposition
`System
`
`N-Contact
`Enhancement
`Photolithography
`
`Phosphorus Implant
`N+ Contacts
`
`Implant
`Active/Anneal
`
`Deposit First
`Level Metal
`
`Mask 10
`
`Plasma Etch
`
`Diffusion
`Furnace
`
`LPCVD
`Furnace
`
`Mask 11
`
`Plasma Etch
`
`Metal-1
`Photolithography
`
`RIE Etch
`Metal 1
`
`Sinter
`Metal 1
`
`Deposit
`Interlevel
`Oxide
`
`Via
`Photolithography
`
`RIE Etch Vias
`
`Metal Deposition
`System
`
`Mask 12
`
`LPCVD
`Furnace
`
`Plasma Etch
`
`Metal 2
`Photolithography
`
`RIE Metal 2
`
`Deposit
`Passivation
`Film
`
`Deposit Metal 2
`
`Mask 13
`
`Wafer Probe
`
`Bonding Pad
`Photolithography
`& Etch
`Source: ICE
`
`14813
`
`Figure 2-85. Twin-Well Silicon-Gate CMOS Manufacturing Sequence (3 of 3)
`
`2-76
`
`INTEGRATED CIRCUIT ENGINEERING CORPORATION
`
`Page 15 of 19
`
`

`

`Basic Integrated Circuit Manufacturing
`
`INFANT
`MORTALITY
`
`OPERATING
`LIFE
`
`WEAROUT
`
`TIME
`
`INSTALLATION
`CUSTOMER USE
`
`15038
`
`FAILURE RATE l
`
`BURN-IN
`
`Source: IEEE
`
`Figure 2-120. Bathtub Curve Prediction of Reliability
`
`L. SUMMARY OF SEMICONDUCTOR MANUFACTURING
`
`The impact of integrated circuits on the electronics industry has been phenomenal. Not only are
`they changing the physical appearance and modes of operation of electronic equipment, but are
`also causing major changes in the entire structure of the electronic industry. Methods of transact-
`ing business are changing. The supplier-user interface is changing. The decision to custom design
`ICs or use standard or semicustom devices becomes a major consideration for many electronic
`companies.
`
`The IC manufacturing process roadmap is illustrated in Figure 2-121. The logic designer can
`either work for a systems company or be part of the IC design team within the semiconductor
`manufacturer. The circuit designer generally works for the semiconductor manufacturer. The cir-
`cuit designer translates the logic designer's requirements into a semiconductor circuit design.
`
`The circuit designer will convert the electrical schematic of the circuit into the physical size of each
`component, i.e., transistor, diode, resistor, capacitor, etc., that makes up the circuit. The designer
`uses a workstation (CAD) to accomplish the design and do the many different simulations
`required for design verification.
`
`INTEGRATED CIRCUIT ENGINEERING CORPORATION
`
`2-107
`
`Page 16 of 19
`
`

`

`Basic Integrated Circuit Manufacturing
`
`Logic Designer
`
`Circuit Designer
`
`Computer
`Pushed Polygons
`
`Electron
`Beam System
`
`Tape-Out
`
`Grow
`Crystal
`
`Slice/Polish
`Wafers
`
`Reticle or Masks
`
`Ion Implantation
`+ Reoxidation
`
`Photoetch
`
`Basic Building
`Block
`
`Die-Attach Lead
`Bonding and Sealing
`
`Test Scribe
`and Dice
`
`Aluminum Interconnection
`and Passivation
`
`M
`
`E T E K
`1 2 3 4 5 6 7 8 A B C
`
`A C
`
`Marking
`
`End Product
`
`Shipping
`
`Source: ICE
`
`Test
`
`16859
`
`Figure 2-121. Integrated Circuit Manufacturing Process
`
`2-108
`
`INTEGRATED CIRCUIT ENGINEERING CORPORATION
`
`Page 17 of 19
`
`

`

`Basic Integrated Circuit Manufacturing
`
`The geometrical layout is the final output of the workstation in the form of a database tape. The
`database tape is the input information for the electron-beam system. The electron-beam system
`uses the input data to create the reticles or masks required in IC manufacturing. The number of
`reticles or masks is determined by the actual manufacturing process cycle. This is often referred
`to as the "Fab Process." The newer Fab Processes use between fourteen and twenty-four reticles
`or masks.
`
`The central region of Figure 2-121 depicts the wafer fab process. After the wafer fab process is
`completed, the wafers are tested electrically to the required specifications and then forwarded to
`the assembly process.
`
`The assembly process will package each electrically good die. After packaging is completed, the
`device will be given a final electrical test, burn-in as required, and shipped to the end user. The
`end user creates the electronic system by bringing together all the necessary electrical compo-
`nents, mechanical hardware and the final package of the product.
`
`There is no doubt the world is in the silicon age. Silicon devices in the form of discrete products
`or ICs touch our lives in many ways everyday. And — since silicon is the second most abundant
`element in the earth, there doesn't appear there will ever be a shortage of the raw material.
`
`INTEGRATED CIRCUIT ENGINEERING CORPORATION
`
`2-109
`
`Page 18 of 19
`
`

`

`Basic Integrated Circuit Manufacturing
`
`2-110
`
`INTEGRATED CIRCUIT ENGINEERING CORPORATION
`
`Page 19 of 19
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket