throbber
Button cell - Wikipedia
`
`https://en.wikipedia.org/wiki/Button_cell
`
`A watch battery or button cell is a small single
`cell battery shaped as a squat cylinder typically 5 to
`25 mm (0.197 to 0.984 in) in diameter and 1 to 6 mm
`(0.039 to 0.236 in) high — resembling a button. A
`metal can forms the bottom body and positive
`terminal of the cell. An insulated top cap is the
`negative terminal.
`
`Button cells are used to power small portable
`electronics devices such as wrist watches, and pocket
`calculators. Wider variants are usually called coin
`cells. Devices using button cells are usually designed
`around a cell giving a long service life, typically well
`over a year in continuous use in a wristwatch. Most
`button cells have low self-discharge and hold their
`charge for a long time if not used. Relatively high-
`power devices such as hearing aids may use a zinc–air
`battery which have much higher capacity for a given
`size, but dry out after a few weeks even if not used.
`
`Button cells are single cells, usually disposable primary
`cells. Common anode materials are zinc or lithium.
`Common cathode materials are manganese dioxide,
`silver oxide, carbon monofluoride, cupric oxide or
`oxygen from the air. Mercuric oxide button cells were
`formerly common, but are no longer available due to
`the toxicity and environmental effects of mercury.
`
`Button, coin, or watch cells
`
`Button cell use in RTC modules as power source
`
`Cells of different chemical composition made in the
`same size are mechanically interchangeable. However,
`the composition can affect service life and voltage
`stability. Using the wrong cell may lead to short life or improper operation (for example, light
`metering on a camera requires a stable voltage, and silver cells are usually specified). Sometimes
`different cells of the same type and size and specified capacity in milliampere hour (mAh) are
`optimised for different loads by using different electrolytes, so that one may have longer service life
`than the other if supplying a relatively high current.
`
`Button cells are very dangerous for small children. Button cells that are swallowed can cause severe
`internal burns and significant injury or death.[1][2]
`
`Properties of cell chemistries
`
`1 of 12
`
`12/3/2020, 11:24 AM
`
`VARTA Ex. 2026 Page 1 of 12
`PEAG/Audio Partnership v. VARTA
`IPR2020-01212
`
`

`

`Button cell - Wikipedia
`
`https://en.wikipedia.org/wiki/Button_cell
`
`Type designation
`Electrochemical system
`Package size
`Letter suffix
`Other package markings
`Date codes
`Common manufacturer code
`Rechargeable variants
`Health issues
`Accidental ingestion
`Mercury and cadmium
`Lithium
`See also
`References
`Sources
`External links
`
`Alkaline batteries are made in the same button sizes as the other types, but typically provide less
`capacity and less stable voltage than more costly silver oxide or lithium cells.[3]
`
`Silver cells may have a stable output voltage until it suddenly drops at end of life. This varies for
`individual types; one manufacturer (Energizer) offers three silver oxide cells of the same size, 357-303,
`357-303H and EPX76, with capacities ranging from 150 to 200 mAh, voltage characteristics ranging
`from gradually reducing to fairly constant, and some stated to be for continuous low drain with high
`pulse on demand, others for photo use.
`
`Mercury batteries also supply a stable voltage, but are now banned in many countries due to their
`toxicity and environmental impact.
`
`Zinc-air batteries use air as the depolarizer and have much higher capacity than other types, as they
`take that air from the atmosphere. Cells have an air-tight seal which must be removed before use; they
`will then dry out in a few weeks, regardless of use.
`
`For comparison, the properties of some cells from one manufacturer with diameter 11.6 mm and
`height 5.4 mm were listed in 2009 as:[4]
`
`Silver: capacity 200 mAh to an end-point of 0.9 V, internal resistance 5–15 ohms, weight 2.3 g
`Alkaline (manganese dioxide): 150 mAh (0.9), 3–9 ohms, 2.4 g
`Mercury: 200 mAh, 2.6 g
`Zinc-air: 620 mAh, 1.9 g
`
`Examining datasheets for a manufacturer's range[4] may show a high-capacity alkaline cell with a
`
`2 of 12
`
`12/3/2020, 11:24 AM
`
`VARTA Ex. 2026 Page 2 of 12
`
`

`

`Button cell - Wikipedia
`
`https://en.wikipedia.org/wiki/Button_cell
`
`capacity as high as one of the lower-capacity silver types; or a particular silver cell with twice the
`capacity of a particular alkaline cell. If the powered equipment requires a relatively high voltage (e.g.,
`1.3 V) to operate correctly, a silver cell with a flat discharge characteristic will give much longer service
`than an alkaline cell—even if it has the same specified capacity in mAh to an end-point of 0.9 V. If a
`device seems to "eat up" batteries after the original supplied by the manufacturer is replaced, it may be
`useful to check the device's requirements and the replacement battery's characteristics. For digital
`calipers, in particular, some are specified to require at least 1.25 V to operate and others 1.38 V.[5][6]
`
`While alkaline, silver oxide, and mercury batteries of the same size may be mechanically
`interchangeable in any given device, use of a cell of the right voltage but unsuitable characteristics can
`lead to short battery life or failure to operate equipment. Common lithium primary cells, with a
`terminal voltage around 3 volts, are not made in sizes interchangeable with 1.5 volt cells. Use of a
`battery of significantly higher voltage than equipment is designed for can cause permanent damage.
`
`International standard IEC 60086-3 defines an alphanumeric
`coding system for "Watch batteries". Manufacturers often have
`their own naming system; for example, the cell called LR1154
`by the IEC standard is named AG13, LR44, 357, A76, and other
`names by different manufacturers. The IEC standard and some
`others encode the case size so that the numeric part of the code
`is uniquely determined by the case size; other codes do not
`encode size directly.
`
`LR44 alkaline cell
`
`Examples of batteries conforming to the IEC standard are
`CR2032, SR516, and LR1154, where the letters and numbers indicate the following characteristics.
`
`Electrochemical system
`
`The first letter in the IEC standard system identifies the chemical composition of the battery, which
`also implies a nominal voltage:
`
`3 of 12
`
`12/3/2020, 11:24 AM
`
`VARTA Ex. 2026 Page 3 of 12
`
`

`

`Button cell - Wikipedia
`
`https://en.wikipedia.org/wiki/Button_cell
`
`Letter
`code
`
`Common
`name
`
`Positive
`electrode
`
`Electrolyte Negative
`electrode
`
`Nominal
`voltage
`(V)
`
`End-
`point
`voltage
`(V)
`
`L
`S
`
`P
`
`C
`
`B
`
`G
`
`Z
`
`Alkaline
`
`Silver
`
`Zinc-air
`
`Lithium
`
`Manganese dioxide
`
`Silver oxide
`
`Oxygen
`
`Manganese dioxide
`
`Carbon monofluoride
`
`Copper oxide
`
`Nickel
`oxyhydroxide
`
`Manganese dioxide, nickel
`oxyhydroxide
`
`M, N
`(withdrawn)
`
`Mercury
`
`Mercuric oxide
`
`Alkali
`
`Alkali
`
`Alkali
`
`Organic
`
`Organic
`
`Organic
`
`Alkali
`
`Alkali
`
`Zinc
`
`Zinc
`
`Zinc
`
`Lithium
`
`Lithium
`
`Lithium
`
`Zinc
`
`Zinc
`
`1.5
`
`1.55
`
`1.4
`
`3
`
`3
`
`1.5
`
`1.5
`
`1.0
`
`1.2
`
`1.2
`
`2.0
`
`2.0
`
`1.2
`
`?
`
`1.35/1.40
`
`1.1
`
`For types with stable voltage falling precipitously at end-of-life (cliff-top voltage-versus-time graph),
`the end-voltage is the value at the "cliff-edge", after which the voltage drops extremely rapidly. For
`types which lose voltage gradually (slope graph, no cliff-edge) the end-point is the voltage beyond
`which further discharge will cause damage to either the battery or the device it is powering, typically
`1.0 or 0.9 V.
`
`Common names are conventional rather than uniquely descriptive; for example, a silver (oxide) cell
`has an alkaline electrolyte.
`
`L, S, and C type cells are today the most commonly used types in quartz watches, calculators, small
`PDA devices, computer clocks, and blinky lights. Miniature zinc-air batteries – P type – are used in
`hearing aids and medical instruments. In the IEC system, larger cells may have no prefix for the
`chemical system, indicating they are zinc-carbon batteries; such types are not available in button cell
`format.
`
`The second letter, R, indicates a round (cylindrical) form.
`
`The standard only describes primary batteries. Rechargeable types made in the same case size will
`carry a different prefix not given in the IEC standard, for example some ML and LiR button cells use
`rechargeable lithium technology.
`
`Package size
`
`Package size of button batteries using standard names is indicated by a 2-digit code representing a
`standard case size, or a 3- or 4-digit code representing the cell diameter and height. The first one or
`two digits encode the outer diameter of the battery in whole millimeters, rounded down; exact
`diameters are specified by the standard, and there is no ambiguity; e.g., any cell with an initial 9 is
`9.5 mm in diameter, no other value between 9.0 and 9.9 is used. The last two digits are the overall
`height in tenths of a millimeter.
`
`4 of 12
`
`12/3/2020, 11:24 AM
`
`VARTA Ex. 2026 Page 4 of 12
`
`

`

`Button cell - Wikipedia
`
`https://en.wikipedia.org/wiki/Button_cell
`
`Diameter codes (1st 1 or 2 digits)
`Number
`Nominal
`Tolerance
`code
`diameter (mm)
`(mm)
`4.8
`±0.15
`
`4
`5
`6
`7
`9
`10
`11
`12
`16
`20
`23
`24
`44
`
`Several sizes of button and coin cell
`with four 9 V batteries as a size
`comparison
`
`5.8
`
`6.8
`
`7.9
`
`9.5
`
`10.0
`
`11.6
`
`12.5
`
`16.0
`
`20.0
`
`23.0
`
`24.5
`
`5.4
`
`±0.15
`
`±0.15
`
`±0.15
`
`±0.15
`
`±0.20
`
`±0.20
`
`±0.25
`
`±0.25
`
`±0.25
`
`±0.50
`
`±0.50
`
`±0.20
`
`Examples:
`
`CR2032: lithium, 20 mm diameter, 3.2 mm height
`CR2025: lithium, 20 mm diameter, 2.5 mm height
`SR516: silver, 5.8 mm diameter, 1.6 mm height
`LR1154/SR1154: alkaline/silver, 11.6 mm diameter, 5.4 mm height. The two-digit codes
`LR44/SR44 are often used for this size
`
`Some coin cells, particularly lithium, are made with solder tabs for permanent installation, such as to
`power memory for configuration information of a device. The complete nomenclature will have
`prefixes and suffixes to indicate special terminal arrangements. For example, there is a plug-in and a
`solder-in CR2032, a plug-in and three solder-in BR2330s in addition to CR2330s, and many
`rechargeables in 2032, 2330, and other sizes.[7]
`
`Letter suffix
`
`After the package code, the following additional letters may optionally appear in the type designation
`to indicate the electrolyte used:
`
`P: potassium hydroxide electrolyte
`S: sodium hydroxide electrolyte
`No letter: organic electrolyte
`SW: low drain type for quartz watches (analog or digital) without light, alarm, or chronograph
`functions
`W: high drain type for all quartz watches, calculators and cameras. The battery complies with all
`
`5 of 12
`
`12/3/2020, 11:24 AM
`
`VARTA Ex. 2026 Page 5 of 12
`
`

`

`Button cell - Wikipedia
`
`https://en.wikipedia.org/wiki/Button_cell
`
`the requirements of the international IEC 60086-3[8] standard for watch batteries.
`
`Other package markings
`
`Apart from the type code described in the preceding section, watch batteries
`should also be marked with
`
`the name or trademark of the manufacturer or supplier;
`the polarity (+);
`the date of manufacturing.
`
`Type CR2032 watch
`battery (lithium anode,
`3 V, 20.0 mm × 3.2 mm)
`
`Date codes
`
`Often a 2-letter code (sometimes on the side of the battery) where the first
`letter identifies the manufacturer and the second is the year of manufacture.
`For example:
`
`YN – the letter N is the 14th letter in the alphabet – indicates the cell
`was manufactured in 2014.
`
`There is no universal standard.
`
`The manufacturing date can be abbreviated to the last digit of the year,
`followed by a digit or letter indicating the month, where O, Y, and Z are used
`for October, November and December, respectively (e.g., 01 = January 1990 or January 2000, 9Y =
`November 1999 or November 2009).
`
`Leaked and corroded
`button cell
`
`Common manufacturer code
`
`A code used by some manufacturers is AG (alkaline) or SG (silver) followed by a number, as follows
`
`6 of 12
`
`12/3/2020, 11:24 AM
`
`VARTA Ex. 2026 Page 6 of 12
`
`

`

`Button cell - Wikipedia
`
`https://en.wikipedia.org/wiki/Button_cell
`
`G code
`xG0
`
`IEC code
`521
`
`xG1
`
`xG2
`
`xG3
`
`xG4
`
`xG5
`
`xG6
`
`xG7
`
`xG8
`
`xG9
`
`xG10
`
`xG11
`
`xG12
`
`xG13
`
`621
`
`726
`
`736
`
`626
`
`754
`
`920 or 921
`
`926 or 927
`
`1120 or 1121
`
`936
`
`1130 or 1131
`
`721
`
`1142
`
`1154
`
`To those familiar with the chemical symbol for silver, Ag, this may suggest incorrectly that AG cells are
`silver.
`
`In addition to disposable (single use) button cells, rechargeable
`batteries in many of the same sizes are available, with lower
`capacity than disposable cells. Disposable and rechargeable
`batteries are manufactured to fit into a holder or with solder tags
`for permanent connection. In equipment with a battery holder,
`disposable or rechargeable batteries may be used, if the voltage is
`compatible.
`
`A typical use for a small rechargeable battery (in coin or other
`format) is to back up the settings of equipment which is normally
`permanently mains-powered, in the case of power failure. For
`example, many central heating controllers store operation times
`and similar information in volatile memory, lost in the case of
`power failure. It is usual for such systems to include a backup
`battery, either a disposable in a holder (current drain is extremely
`low and life is long) or a soldered-in rechargeable.[9]
`
`Coin cells being tested
`
`Rechargeable NiCd button cells were often components of the
`backup battery of older computers; non-rechargeable lithium button cells with a lifetime of several
`years are used in later equipment.
`
`7 of 12
`
`12/3/2020, 11:24 AM
`
`VARTA Ex. 2026 Page 7 of 12
`
`

`

`Button cell - Wikipedia
`
`https://en.wikipedia.org/wiki/Button_cell
`
`Rechargeable batteries typically have the same dimension-based numeric code with different letters;
`thus CR2032 is a disposable battery while ML2032, VL2032 and LIR2032 are rechargeables that fit in
`the same holder if not fitted with solder tags. It is mechanically possible, though hazardous, to fit a
`disposable battery in a holder intended for a rechargeable; holders are fitted in parts of equipment
`only accessible by service personnel in such cases.
`
`Accidental ingestion
`
`Button cells are attractive to small children; they may put them in their mouth and swallow them. The
`ingested battery can cause significant damage to internal organs. The battery reacts with bodily fluids,
`such as mucus or saliva, creating a circuit which can release an alkali that is strong enough to burn
`through human tissue.[10]
`
`Swallowed batteries can cause damage to the lining of the oesophagus, and can create a hole in the
`oesophagus lining in two hours.[10] In severe cases, damage can cause a passage between the
`oesophagus and the trachea. Swallowed button cells can damage the vocal cords. They can even burn
`through the blood vessels in the chest area, including the aorta.[10]
`
`In Greater Manchester, England, with a population of 2,700,000, two children between 12 months
`and six years old died, and five suffered life-changing injuries, in the 18 months leading up to October
`2014. In the United States, on average over 3,000 pediatric button batteries ingestions are reported
`each year with a trend toward major and fatal outcomes increasing.[11] Coin cells of diameter 20 mm
`or greater cause the most serious injuries, even if expended and intact.[11][12] In Auckland, New
`Zealand as of 2018 there are about 20 cases per year requiring hospitalization.[13]
`
`In 2020, Duracell announced that they were coating some of their lithium button cells with a bitterant
`compound to discourage children from ingesting them.[14]
`
`Mercury and cadmium
`
`Some button cells contain mercury or cadmium, which are toxic. In early 2013 the European
`Parliament Environment Committee voted for a ban on the export and import of a range of mercury-
`containing products such as button cells and other batteries, to be imposed from 2020.[15][16]
`
`Lithium
`
`Lithium cells, if ingested, are highly dangerous. In the pediatric population, of particular concern is
`the potential for one of these batteries to get stuck in the oesophagus.[11][12] Such impactions can
`rapidly devolve and cause severe tissue injury in as little as two hours.[12][17][18] The damage is not
`caused by the contents of the battery, but by the electric current that is created when the anode
`(negative) face of the battery comes in contact with the electrolyte-rich esophageal tissue. The
`surrounding water undergoes a hydrolysis reaction that produces a sodium hydroxide (caustic soda)
`build-up near the battery's anode face (cathodic reaction in the electrolyte). This results in the
`liquefactive necrosis of the tissue, a process whereby the tissue effectively is melted away by the
`
`8 of 12
`
`12/3/2020, 11:24 AM
`
`VARTA Ex. 2026 Page 8 of 12
`
`

`

`Button cell - Wikipedia
`
`https://en.wikipedia.org/wiki/Button_cell
`
`alkaline solution.[17] Severe complications can occur, such as erosion into nearby structures like the
`trachea or major blood vessels, the latter of which can cause fatal bleeds.
`
`While the only cure for an esophageal impaction is endoscopic removal, a 2018 study from Children's
`Hospital of Philadelphia by Rachel R. Anfang and colleagues found that early and frequent ingestion
`of honey or sucralfate suspension prior to removal can reduce the injury severity to a significant
`degree.[18] As a result of these findings, US-based National Capital Poison Center (Poison Control)
`updated its triage and treatment guideline for button battery ingestions to include the administration
`of honey and/or sucralfate as soon as possible after a known or suspected ingestion.[19] Prevention
`efforts in the US by the National Button Battery Task force in cooperation with industry leaders have
`led to changes in packaging and battery compartment design in electronic devices to reduce a child's
`access to these batteries.[20][21] However, there still is a lack of awareness across the general
`population and medical community to its dangers. Central Manchester University Hospital Trust
`warns that "a lot of doctors are unaware that this can cause harm".[1]
`
`List of battery sizes
`List of battery types
`Battery recycling
`Artificial cardiac pacemaker
`Implantable cardioverter-defibrillator
`
`1. BBC News:'Button battery' warning over child deaths in Manchester, 14 October 2014 (https://ww
`w.bbc.co.uk/news/uk-england-manchester-29610570) Archived (https://web.archive.org/web/2014
`1015133134/http://www.bbc.co.uk/news/uk-england-manchester-29610570) 15 October 2014 at
`the Wayback Machine. Bbc.co.uk. Retrieved on 2015-11-08.
`2. "See what a button battery can do to a child's throat" (https://www.bbc.co.uk/news/health-3743536
`4). BBC News Online. 22 September 2016. Archived (https://web.archive.org/web/2016092222044
`6/http://www.bbc.co.uk/news/health-37435364) from the original on 22 September 2016.
`3. Alkaline button cell (https://www.amazon.co.uk/Hyundai-791-522-Alkaline-button/dp/B000N209O
`M). amazon.co.uk. A card marked with the name Hyundai with 30 button cells in 5 sizes made in
`China, stating that they are alkaline but with pictures of watches, calculators, etc. is sold for prices
`ranging from about £1 to £4 in the UK
`4. Energizer website (http://data.energizer.com/) Archived (https://web.archive.org/web/20090828093
`736/http://data.energizer.com/) 2009-08-28 at the Wayback Machine, with datasheets for many
`batteries of several chemistries
`5. Buying Button Cells for Digital Calipers (http://www.truetex.com/buttons.htm) Archived (https://we
`b.archive.org/web/20100727054346/http://www.truetex.com/buttons.htm) 2010-07-27 at the
`Wayback Machine. Truetex.com. Retrieved on 2015-11-08.
`6. Caliper Battery Life (http://www.davehylands.com/Machinist/Caliper-Batteries/) Archived (https://w
`eb.archive.org/web/20100621072728/http://www.davehylands.com/Machinist/Caliper-Batteries/)
`2010-06-21 at the Wayback Machine. Davehylands.com. Retrieved on 2015-11-08.
`
`9 of 12
`
`12/3/2020, 11:24 AM
`
`VARTA Ex. 2026 Page 9 of 12
`
`

`

`Button cell - Wikipedia
`
`https://en.wikipedia.org/wiki/Button_cell
`
`7. Panasonic CR battery data page (http://www.panasonic.com/industrial/batteries-oem/oem/primary-
`coin-cylindrical/br-cr.aspx) Archived (https://web.archive.org/web/20130702222839/http://www.pan
`asonic.com/industrial/batteries-oem/oem/primary-coin-cylindrical/br-cr.aspx) 2013-07-02 at the
`Wayback Machine, showing many batteries in plug-in and horizontal and vertical solder versions.
`The same site lists rechargeable cells with various chemistries, in the same sizes and options as
`disposable batteries of the same size code and hence mechanically interchangeable, though
`carrying risks of malfunctioning and damage.
`8. IEC 60086-3 Standard for Watch Batteries (withdrawn) (http://webstore.iec.ch/p-preview/info_iec6
`0086-3%7Bed2.0%7Den_d.pdf) Archived (https://web.archive.org/web/20130627045835/http://we
`bstore.iec.ch/p-preview/info_iec60086-3%7Bed2.0%7Den_d.pdf) 2013-06-27 at the Wayback
`Machine. (PDF) . Just scope/preview. Retrieved on 2015-11-08.
`9. Datasheet of a mains-powered smoke alarm, with models backed up by disposable battery or by
`rechargeable UL2330 button battery (http://www.kiddefirex.co.uk/utcfs/ws-5250/Assets/Datashee
`t%20KF3.pdf) Archived (https://web.archive.org/web/20130805050433/http://www.kiddefirex.co.uk/
`utcfs/ws-5250/Assets/Datasheet%20KF3.pdf) 2013-08-05 at the Wayback Machine.
`Kiddefirex.co.uk (2015-10-01). Retrieved on 2015-11-08.
`10. "Button batteries – using them safely" (https://www.gosh.nhs.uk/conditions-and-treatments/conditio
`ns-we-treat/button-batteries-using-them-safely). Great Ormond Street Hospital. Great Ormond
`Street Hospital for Children. October 2018. Retrieved 2019-10-19.
`11. "Button Battery Statistics" (https://www.poison.org/battery/stats). www.poison.org. Retrieved
`2018-06-30.
`12. Litovitz, Toby; Whitaker, Nicole; Clark, Lynn; White, Nicole C.; Marsolek, Melinda (2010-06-01).
`"Emerging Battery-Ingestion Hazard: Clinical Implications" (http://pediatrics.aappublications.org/co
`ntent/125/6/1168). Pediatrics. 125 (6): 1168–1177. doi:10.1542/peds.2009-3037 (https://doi.org/10.
`1542%2Fpeds.2009-3037). ISSN 0031-4005 (https://www.worldcat.org/issn/0031-4005).
`PMID 20498173 (https://pubmed.ncbi.nlm.nih.gov/20498173).
`13. "Risk of swallowing deadly button batteries prompts new industry safety policy" (http://www.stuff.c
`o.nz/life-style/parenting/101091235/risk-of-swallowing-deadly-button-batteries-prompts-new-indust
`ry-safety-policy). Stuff. Retrieved 2018-04-07.
`14. Gartenberg, Chaim (2020-09-29). "Duracell's new coin batteries have a bitter coating that makes
`them taste terrible" (https://www.theverge.com/2020/9/29/21493443/duracell-new-coin-batteries-bit
`ter-coating-taste-terrible-child-protection). The Verge. Retrieved 2020-09-29.
`15. "EUBatteryDirective (2006/66/EC) Summary" (http://data.energizer.com/PDFs/eubattdirectivesum
`mary.pdf) (PDF). 8 December 2009. Eveready Battery Company, Inc. Archived (https://web.archiv
`e.org/web/20120710210826/http://data.energizer.com/PDFs/eubattdirectivesummary.pdf) (PDF)
`from the original on 10 July 2012. Retrieved 20 June 2013.148 Kb
`16. "Directive 2013/56/EU amending Directive 2006/66/EC" (http://eur-lex.europa.eu/legal-content/EN/
`ALL/?uri=CELEX:32013L0056) Archived (https://web.archive.org/web/20160304235055/http://eur-l
`ex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32013L0056) 2016-03-04 at the Wayback
`Machine, European Parliament & Council, 20 November 2013, Retrieved 7 April 2015
`17. Jatana, Kris R.; Rhoades, Keith; Milkovich, Scott; Jacobs, Ian N. (2016-11-09). "Basic mechanism
`of button battery ingestion injuries and novel mitigation strategies after diagnosis and removal".
`The Laryngoscope. 127 (6): 1276–1282. doi:10.1002/lary.26362 (https://doi.org/10.1002%2Flary.2
`6362). ISSN 0023-852X (https://www.worldcat.org/issn/0023-852X). PMID 27859311 (https://pubm
`ed.ncbi.nlm.nih.gov/27859311).
`
`10 of 12
`
`12/3/2020, 11:24 AM
`
`VARTA Ex. 2026 Page 10 of 12
`
`

`

`Button cell - Wikipedia
`
`https://en.wikipedia.org/wiki/Button_cell
`
`18. Anfang, Rachel R.; Jatana, Kris R.; Linn, Rebecca L.; Rhoades, Keith; Fry, Jared; Jacobs, Ian N.
`(2018-06-11). "pH-neutralizing esophageal irrigations as a novel mitigation strategy for button
`battery injury". The Laryngoscope. 129: 49–57. doi:10.1002/lary.27312 (https://doi.org/10.1002%2
`Flary.27312). ISSN 0023-852X (https://www.worldcat.org/issn/0023-852X). PMID 29889306 (http
`s://pubmed.ncbi.nlm.nih.gov/29889306).
`19. "Guideline" (https://www.poison.org/battery/guideline). www.poison.org. Retrieved 2018-06-30.
`20. Litovitz, Toby; Whitaker, Nicole; Clark, Lynn (2010-06-01). "Preventing Battery Ingestions: An
`Analysis of 8648 Cases" (http://pediatrics.aappublications.org/content/125/6/1178). Pediatrics. 125
`(6): 1178–1183. doi:10.1542/peds.2009-3038 (https://doi.org/10.1542%2Fpeds.2009-3038).
`ISSN 0031-4005 (https://www.worldcat.org/issn/0031-4005). PMID 20498172 (https://pubmed.ncb
`i.nlm.nih.gov/20498172).
`21. Jatana, Kris R.; Litovitz, Toby; Reilly, James S.; Koltai, Peter J.; Rider, Gene; Jacobs, Ian N.
`(2013-09-01). "Pediatric button battery injuries: 2013 task force update" (https://doi.org/10.1016%2
`Fj.ijporl.2013.06.006). International Journal of Pediatric Otorhinolaryngology. 77 (9): 1392–1399.
`doi:10.1016/j.ijporl.2013.06.006 (https://doi.org/10.1016%2Fj.ijporl.2013.06.006). ISSN 0165-5876
`(https://www.worldcat.org/issn/0165-5876). PMID 23896385 (https://pubmed.ncbi.nlm.nih.gov/238
`96385).
`
`IEC 60086-3: Primary batteries – Part 3: Watch batteries. International Electrotechnical
`Commission, Geneva, 1995. (also: BS EN 60086-3:1996)
`Sample of data sheets available from Energizer (http://data.energizer.com) : "CR2032 Technical
`Details" (http://data.energizer.com/PDFs/cr2032.pdf) (PDF). (56.2 KiB)
`"An Investigation of Alternatives to Miniature Batteries Containing Mercury" (http://www.sustainabl
`eproduction.org/downloads/MaineDEPButtonBatteryReportFinal12-17-04.pdf) (PDF). (440 KiB)
`
`Coin cell reference table (http://www.zbattery.com/Coin-Cell-Reference.html)
`Watch battery cross reference table (http://www.watchbattery.co.uk/Watch_Battery_Cross_Referen
`ce_Table.php)
`"IEC 60086-2 Primary batteries – Part 2: Physical and electrical specifications" (https://web.archiv
`e.org/web/20131102015107/http://image.sciencenet.cn/olddata/kexue.com.cn/bbs/upload/15791IE
`C60086-2_%7B10%5b1%5d%5b1%5d.1%7D(2001-10).pdf) (PDF). Archived from the original (htt
`p://image.sciencenet.cn/olddata/kexue.com.cn/bbs/upload/15791IEC60086-2_%7B10%5b1%5d%
`5b1%5d.1%7D(2001-10).pdf) (PDF) on 2013-11-02. (includes discharge characteristics)
`"DIRECTIVE 2006/66/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL" (http://eu
`r-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:266:0001:0014:en:PDF). (407 Kb) 6
`September 2006 (re recycling and disposal of batteries)
`
`Retrieved from "https://en.wikipedia.org/w/index.php?title=Button_cell&oldid=991953469"
`
`This page was last edited on 2 December 2020, at 18:17 (UTC).
`Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this
`site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation,
`
`11 of 12
`
`12/3/2020, 11:24 AM
`
`VARTA Ex. 2026 Page 11 of 12
`
`

`

`Button cell - Wikipedia
`
`https://en.wikipedia.org/wiki/Button_cell
`
`Inc., a non-profit organization.
`
`12 of 12
`
`12/3/2020, 11:24 AM
`
`VARTA Ex. 2026 Page 12 of 12
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket