throbber
Journal of Electroanalytical Chemistry 837 (2019) 151-158
`7FJGE:C"F?"5C><IGF:E:CLIB<:C"4A>DBHIGL"0+/"#*()1$")-)N)-0
`
`•.kirtyst
`
`Contents lists available at ScienceDirect
` !"#$"#% &’%#% ()(’&(*&$ (# +,’$",$-’.$,#
`
`Journal of Electroanalytical Chemistry
`/!0."(& !1 2&$,#.!("(&3#’,(& 4$5’%#.3
`
`1 . Electra analytical
`Chemistry
`
`ELSEVI ER
`
`journal homepage: www.elsevier.com/locate/jelechem
` !"#$%& ’!()*%+), ---.)&/)01)#.2!(3&!2%4)3 )&)2’)(
`
`Laminated Lithium Ion Batteries with improved fast charging capability
`6(5’"(#$7 6’#4’05 8!" 9(##$.’$% :’#4 ’5;.!)$7 1(%# ,4(.<’"< ,(;(*’&’#3
`
`=(.#’" >.("?$"*$.<$.(@ @ =(74() +’"<4(@ A&$B("7$. -’"#$.(@ +$*(%#’(" /("?!:?%3(@
`Martin Frankenberger' Madhav Singh', Alexander Dintera, Sebastian Jankowksy',
`A&$B("7$. +,45’7#*@ C(.&DE$’"F G$##’"<$.(
`Alexander Schmide, Karl-Heinz Pettingera
`Versity of Applied Sciences Lanclshu4 Technology Center for Energy, Wiesenweg I, 94099 Ruhstorf, Germany
`( !"#$%&"’( )* +,,-"$. /0"$!0$& 12!.&34’5 6$03!)-)7( 8$!’$% *)% 9!$%7(5 :"$&$!;$7 <5 =>?== @43&’)%*5 A$%B2!(
`'Karlsruhe Institute of Technology (R7T), Institute for Applied Materials-Energy Storage Systems (IAM-ESS), 76344
`enstetn-Leopvldshoftn, Germany
`* C2%-&%43$ D!&’"’4’$ )* 6$03!)-)7( ECD6F5 D!&’"’4’$ *)% +,,-"$. G2’$%"2-&H9!$%7( /’)%27$ /(&’$B& ED+GH9//F5 IJK>> 977$!&’$"!H1$),)-.&32*$!5 A$%B2!(
`
`ARTICLE INFO
`A H I 8 6 2 8 J > K
`
`ABSTRACT
`A 9 + I H A I
`
`Keywords:
`C$(;)%.&L
`Lithium-ion battery
`6’#4’05D’!" *(##$.3
`Lamination
`6(5’"(#’!"
`Fast charging capability
`>(%# ,4(.<’"< ,(;(*’&’#3
`Fast discharge capability
`>(%# 7’%,4(.<$ ,(;(*’&’#3
`Cell ccoarresston
` $&& ,!5;.$%%’!"
`Enhanced cycling stability
`2"4(",$7 ,3,&’"< %#(*’&’#3
`
`The fast charge and discharge capability of lithium-ion batteries is improved by applying a lamination step
`I4$ 1(%# ,4(.<$ ("7 7’%,4(.<$ ,(;(*’&’#3 !1 &’#4’05D’!" *(##$.’$% ’% ’5;.!)$7 *3 (;;&3’"< ( &(5’"(#’!" %#$;
`during cell assembly. Electrode sheets and separator are laminated into one stack which improves the electro-
`70.’"< ,$&& (%%$5*&3L 2&$,#.!7$ %4$$#% ("7 %$;(.(#!. (.$ &(5’"(#$7 ’"#! !"$ %#(,? :4’,4 ’5;.!)$% #4$ $&$,#.!D
`chemical performance as well as the stack assembly process. The effect of non-laminated and laminated inter-
`,4$5’,(& ;$.1!.5(",$ (% :$&& (% #4$ %#(,? (%%$5*&3 ;.!,$%%L I4$ $M$,# !1 "!"D&(5’"(#$7 ("7 &(5’"(#$7 ’"#$.D
`faces on the reversible capacity during cycling axe studied thoroughly in half-cell and full-cell configurations.
`1(,$% !" #4$ .$)$.%’*&$ ,(;(,’#3 70.’"< ,3,&’"< (.$ %#07’$7 #4!.!0<4&3 ’" 4(&1D,$&& ("7 10&&D,$&& ,!"N<0.(#’!"%L
`The fully-laminated cells show a reduction in the capacity losses of 3%, 5% and 12% upon cycling at 2C, 3C and
`I4$ 10&&3D&(5’"(#$7 ,$&&% %4!: ( .$70,#’!" ’" #4$ ,(;(,’#3 &!%%$% !1 OP@ QP ("7 RSP 0;!" ,3,&’"< (# S @ O ("7
`5C-rate, respectively, while capacity losses of 6%, 11% and 23% axe observed in non-laminated cells at the same
`Q D.(#$@ .$%;$,#’)$&3@ :4’&$ ,(;(,’#3 &!%%$% !1 TP@ RRP ("7 SOP (.$ !*%$.)$7 ’" "!"D&(5’"(#$7 ,$&&% (# #4$ %(5$
`C-rates. A significant reduction in the capacity fading at high C-rates is observed upon lamination. Additional
` D.(#$%L A %’<"’N,("# .$70,#’!" ’" #4$ ,(;(,’#3 1(7’"< (# 4’<4 D.(#$% ’% !*%$.)$7 0;!" &(5’"(#’!"L A77’#’!"(&
`compression is applied on the cells to compare the effect of lamination and compression on the cell performance.
`,!5;.$%%’!" ’% (;;&’$7 !" #4$ ,$&&% #! ,!5;(.$ #4$ $M$,# !1 &(5’"(#’!" ("7 ,!5;.$%%’!" !" #4$ ,$&& ;$.1!.5(",$L
`The laminated cells show an improvement in the fast charging capability in cornparison to the non-laminated
`I4$ &(5’"(#$7 ,$&&% %4!: (" ’5;.!)$5$"# ’" #4$ 1(%# ,4(.<’"< ,(;(*’&’#3 ’" ,!5;(.’%!" #! #4$ "!"D&(5’"(#$7
`cells.
`,$&&%L
`
`1. Introduction
` ! "#$%&’()$*&#
`
`More than 40 years after production of the first commercial lithium
`=!.$ #4(" UV 3$(.% (1#$. ;.!70,#’!" !1 #4$ N.%# ,!55$.,’(& &’#4’05
`cell by Sanyo in 1970s, [-I ] the lithium-ion battery (LIB) technology has
`,$&& *3 +("3! ’" RWXV%@ YRZ #4$ &’#4’05D’!" *(##$.3 [689\ #$,4"!&!<3 4(%
`become a main contributor for the storage devices in the field of re-
`*$,!5$ ( 5(’" ,!"#.’*0#!. 1!. #4$ %#!.(<$ 7$)’,$% ’" #4$ N$&7 !1 .$D
`chargeable batteries. LIB technology needs further improvement in
`,4(.<$(*&$ *(##$.’$%L 689 #$,4"!&!<3 "$$7% 10.#4$. ’5;.!)$5$"# ’"
`terms of fast charging capability which can reduce the charging time
`#$.5% !1 1(%# ,4(.<’"< ,(;(*’&’#3 :4’,4 ,(" .$70,$ #4$ ,4(.<’"< #’5$
`from hours to minutes especially for the electric vehicle applications.
`1.!5 4!0.% #! 5’"0#$% $%;$,’(&&3 1!. #4$ $&$,#.’, )$4’,&$ (;;&’,(#’!"%L
`Enormous research is going on to improve the cell components such as
`2"!.5!0% .$%$(.,4 ’% <!’"< !" #! ’5;.!)$ #4$ ,$&& ,!5;!"$"#% %0,4 (%
`active materials, [2,A electrolyte, [4] separator [5,,.5] and manu-
`(,#’)$ 5(#$.’(&%@ YS@OZ $&$,#.!&3#$@ YUZ %$;(.(#!. YQ@TZ ("7 5("0D
`facturing steps [7] in order to increase the energy density, power
`1(,#0.’"< %#$;% YXZ ’" !.7$. #! ’",.$(%$ #4$ $"$.<3 7$"%’#3@ ;!:$.
`density, lifetime and reduce the cost. The performance of lithium-ion
`7$"%’#3@ &’1$#’5$ ("7 .$70,$ #4$ ,!%#L I4$ ;$.1!.5(",$ !1 &’#4’05D’!"
`battery electrodes has been improved by varying the thickness [f1,9]
`*(##$.3 $&$,#.!7$% 4(% *$$" ’5;.!)$7 *3 )(.3’"< #4$ #4’,?"$%% Y]@WZ
`and porosity of the electrodes [-I 0], controlling the stack pressure
`("7 ;!.!%’#3 !1 #4$ $&$,#.!7$% YRVZ@ ,!"#.!&&’"< #4$ %#(,? ;.$%%0.$
`[11-15] and tuning the lithium ion diffusion paths in electrodes via
`YRR^RQZ ("7 #0"’"< #4$ &’#4’05 ’!" 7’M0%’!" ;(#4% ’" $&$,#.!7$% )’(
`modified manufacturing processes, for example by controlling the
`5!7’N$7 5("01(,#0.’"< ;.!,$%%$%@ 1!. $B(5;&$ *3 ,!"#.!&&’"< #4$
`graphite particle orientation normal to the current collector surface
`<.(;4’#$ ;(.#’,&$ !.’$"#(#’!" "!.5(& #! #4$ ,0..$"# ,!&&$,#!. %0.1(,$
`during the coating step using a magnetic field, [1
`or via laser struc-
`70.’"< #4$ ,!(#’"< %#$; 0%’"< ( 5(<"$#’, N$&7@ YRTZ !. )’( &(%$. %#.0,D
`turing of graphite anodes, silicon/graphite anodes, NMC cathodes or
`#0.’"< !1 <.(;4’#$ ("!7$%@ %’&’,!"_<.(;4’#$ ("!7$%@ J= ,(#4!7$% !.
`IiMn204 cathodes []7-2'0'].
`6’="SKU ,(#4!7$% YRX^SVZL
`The laser structuring creates additional lithium ion diffusion path-
`I4$ &(%$. %#.0,#0.’"< ,.$(#$% (77’#’!"(& &’#4’05 ’!" 7’M0%’!" ;(#4D
`ways and increases the active surface area of thick NMC and graphite
`:(3% ("7 ’",.$(%$% #4$ (,#’)$ %0.1(,$ (.$( !1 #4’,? J= ("7 <.(;4’#$
`electrodes, thus enhances the discharge capacities at higher C-rates
`$&$,#.!7$%@ #40% $"4(",$% #4$ 7’%,4(.<$ ,(;(,’#’$% (# 4’<4$. D.(#$%
`[-1 7,-1 9] . Besides, LIB cycling stability and aging mechanism can also be
`YRX@RWZL 9$%’7$%@ 689 ,3,&’"< %#(*’&’#3 ("7 (<’"< 5$,4("’%5 ,(" (&%! *$
`
`improved by varying the stack pressure, [ I I - 1 5] which influences the
`’5;.!)$7 *3 )(.3’"< #4$ %#(,? ;.$%%0.$@ YRR^RQZ :4’,4 ’"‘0$",$% #4$
`distribution of solid electrolyte interface (SEI) or plated lithium de-
`7’%#.’*0#’!" !1 %!&’7 $&$,#.!&3#$ ’"#$.1(,$ [+28\ !. ;&(#$7 &’#4’05 7$D
`position on the graphite-separator interface [12,12,21]. It has been
`;!%’#’!" !" #4$ <.(;4’#$D%$;(.(#!. ’"#$.1(,$ YRS@RO@SRZL 8# 4(% *$$"
`reported that the high stack pressure causes the higher capacity fade, so
`.$;!.#$7 #4(# #4$ 4’<4 %#(,? ;.$%%0.$ ,(0%$% #4$ 4’<4$. ,(;(,’#3 1(7$@ %!
`lower stack pressure is required to extend the life time. In addition, the
`&!:$. %#(,? ;.$%%0.$ ’% .$a0’.$7 #! $B#$"7 #4$ &’1$ #’5$L 8" (77’#’!"@ #4$
`non-uniform surface of the electrodes also induces non-uniform pres-
`"!"D0"’1!.5 %0.1(,$ !1 #4$ $&$,#.!7$% (&%! ’"70,$% "!"D0"’1!.5 ;.$%D
`sure at the interfaces among different electrode layers and the ampli-
`%0.$ (# #4$ ’"#$.1(,$% (5!"< 7’M$.$"# $&$,#.!7$ &(3$.% ("7 #4$ (5;&’D
`tude of the pressure varies during charging and discharging [I ll
`#07$ !1 #4$ ;.$%%0.$ )(.’$% 70.’"< ,4(.<’"< ("7 7’%,4(.<’"< YRRZL
`Non-uniform space among the electrodes and separator results in
`J!"D0"’1!.5 %;(,$ (5!"< #4$ $&$,#.!7$% ("7 %$;(.(#!. .$%0&#% ’"
`longer diffusion paths at the interfaces in the cell stacks, as shown in
`&!"<$. 7’M0%’!" ;(#4% (# #4$ ’"#$.1(,$% ’" #4$ ,$&& %#(,?%@ (% %4!:" ’"
`schematic rig, i a. In this regard, lamination technique stabilizes the
`%,4$5(#’, >’<L R(L 8" #4’% .$<(.7@ &(5’"(#’!" #$,4"’a0$ %#(*’&’F$% #4$
`electrode-separator interfaces, which shortens the lithium diffusion
`$&$,#.!7$D%$;(.(#!. ’"#$.1(,$%@ :4’,4 %4!.#$"% #4$ &’#4’05 7’M0%’!"
`paths at the interfaces as well as stabilizing the active surface area of
`;(#4% (# #4$ ’"#$.1(,$% (% :$&& (% %#(*’&’F’"< #4$ (,#’)$ %0.1(,$ (.$( !1
`I b), and thus homo-
`the electrodes during cycling significantly (Fig,.
`#4$ $&$,#.!7$% 70.’"< ,3,&’"< %’<"’N,("#&3 [>’<L R*\@ ("7 #40% 4!5!D
`genize the liquid phase concentration [17] of the lithium ions on the
`<$"’F$ #4$ &’a0’7 ;4(%$ ,!",$"#.(#’!" YRXZ !1 #4$ &’#4’05 ’!"% !" #4$
`active material particle surface. The lamination technique provides the
`(,#’)$ 5(#$.’(& ;(.#’,&$ %0.1(,$L I4$ &(5’"(#’!" #$,4"’a0$ ;.!)’7$% #4$
`slight mobilization of the polymer binder chains both in the separator
`%&’<4# 5!*’&’F(#’!" !1 #4$ ;!&35$. *’"7$. ,4(’"% *!#4 ’" #4$ %$;(.(#!.
`and electrode by applying heat and pressure which interlinks the
`("7 $&$,#.!7$ *3 (;;&3’"< 4$(# ("7 ;.$%%0.$ :4’,4 ’"#$.&’"?% #4$
`electrode-separator interfaces and also maintains the surface porosity of
`$&$,#.!7$D%$;(.(#!. ’"#$.1(,$% ("7 (&%! 5(’"#(’"% #4$ %0.1(,$ ;!.!%’#3 !1
`the electrode and the separator. The necessity for mobilization of
`#4$ $&$,#.!7$ ("7 #4$ %$;(.(#!.L I4$ "$,$%%’#3 1!. 5!*’&’F(#’!" !1
`polymer binder chains in all components limits the choice of binder to
`;!&35$. *’"7$. ,4(’"% ’" (&& ,!5;!"$"#% &’5’#% #4$ ,4!’,$ !1 *’"7$. #!
`thermoplastic polymers with similar melting points. Heat-induced
`#4$.5!;&(%#’, ;!&35$.% :’#4 %’5’&(. 5$&#’"< ;!’"#%L E$(#D’"70,$7
`polymer chain mobilization must not exceed the melting temperature of
`;!&35$. ,4(’" 5!*’&’F(#’!" 50%# "!# $B,$$7 #4$ 5$&#’"< #$5;$.(#0.$ !1
`the polymer in order to prevent the production of a nonporous interface
`#4$ ;!&35$. ’" !.7$. #! ;.$)$"# #4$ ;.!70,#’!" !1 ( "!";!.!0% ’"#$.1(,$
`
`Corresponding author.
` !..$%;!"7’"< (0#4!.L
`E-mail address: martin-frankenberger@myturn.de
`Frankenberger).
`9HB2"- 2..%$&&L 5(.#’"D1.("?$"*$.<$.e53#05L7$ [=L >.("?$"*$.<$.\L
`
`hup6://ali.org/10.1016/j jp,lech ern, 2' 019.02.030
`4##;%b__7!’L!.<_RVLRVRT_cLc$&$,4$5LSVRWLVSLVOV
`Received 19 September 2018; Received in revised form 29 January 2019; Accepted 15 February 2019
`H$,$’)$7 RW +$;#$5*$. SVR]d H$,$’)$7 ’" .$)’%$7 1!.5 SW /("0(.3 SVRWd A,,$;#$7 RQ >$*.0(.3 SVRW
`Available online 17 February 2019
`2K:BC:;C>"FECBE>")/"6>;GJ:GL"*()1
`1572-6657/ © 2019 Elsevier B.V. All rights reserved.
`)-/*%..-/’"M"*()1"5CH>KB>G"3&9&"2CC"GB@AIH"G>H>GK>=&
`
`JLab/Cambridge, Exh. 1030, p. 1
`
`

`

`Frankenbager, a al
`GN P%2!W$![$%7$%5 $’ 2-N
`
`(a)
`
`Separator
`
`• — —
`
`•
`
`.
`
`
`
`• NMC
`
`Carbon Black
`4.10 Graphite
`
`(b)
`
`4
`
`14
`
`r. , •
`
`J0w7td of gatroanalytical Climb:try 837 (2019) 151-158
`/9=:806"93".621<:90806><5106"-4275;<:>"+(*"#’%&,$"&)&?&)+
`
`Fig. 1. Schematics of electrode-separator
`3*4! ! +,4$5(#’,% !1 $&$,#.!7$D%$;(.(#!.
`lamination technique (a) non-laminated
`&(5’"(#’!" #$,4"’a0$d
`[(\ "!"D&(5’"(#$7
`single cell stack (b) laminated single cell
`%’"<&$ ,$&& %#(,? [*\ &(5’"(#$7 %’"<&$ ,$&&
`stack.
`%#(,?L
`
`block.
`*&!,?L
`Lamination technique has been well known for some decades
`6(5’"(#’!" #$,4"’a0$ 4(% *$$" :$&& ?"!:" 1!. %!5$ 7$,(7$%
`[22,2A for the stacking process simplification which reduces the de-
`YSS@SOZ 1!. #4$ %#(,?’"< ;.!,$%% %’5;&’N,(#’!" :4’,4 .$70,$% #4$ 7$D
`fects occurring due to electrode misplacement at the anode-separator-
`1$,#% !,,0..’"< 70$ #! $&$,#.!7$ 5’%;&(,$5$"# (# #4$ ("!7$D%$;(.(#!.D
`cathode compound [21. Lamination technology connects the inter-
`,(#4!7$ ,!5;!0"7 YSUZL 6(5’"(#’!" #$,4"!&!<3 ,!""$,#% #4$ ’"#$.D
`layers, separator-cathode and separator-anode, physically by using a
`&(3$.%@ %$;(.(#!.D,(#4!7$ ("7 %$;(.(#!.D("!7$@ ;43%’,(&&3 *3 0%’"< (
`roller lamination machine and therefore, maximizes the physical and
`.!&&$. &(5’"(#’!" 5(,4’"$ ("7 #4$.$1!.$@ 5(B’5’F$% #4$ ;43%’,(& ("7
`ionic contacts as well as minimizing the voids at the interfaces (174g, ).
`’!"’, ,!"#(,#% (% :$&& (% 5’"’5’F’"< #4$ )!’7% (# #4$ ’"#$.1(,$% [>’<L R\L
`First time, the lamination technology was used in the assembly
`>’.%# #’5$@ #4$ &(5’"(#’!" #$,4"!&!<3 :(% 0%$7 ’" #4$ (%%$5*&3
`process during the lithium ion battery production in 1996 [22]. Later
`;.!,$%% 70.’"< #4$ &’#4’05 ’!" *(##$.3 ;.!70,#’!" ’" RWWT YSSZL 6(#$.
`specific roller lamination technique was reported as a binding tech-
`%;$,’N, .!&&$. &(5’"(#’!" #$,4"’a0$ :(% .$;!.#$7 (% ( *’"7’"< #$,4D
`nique to prevent the air bubbles and wrinkles within the laminated
`"’a0$ #! ;.$)$"# #4$ (’. *0**&$% ("7 :.’"?&$% :’#4’" #4$ &(5’"(#$7
`material for preparing the supercapacitor electrode on a current col-
`5(#$.’(& 1!. ;.$;(.’"< #4$ %0;$.,(;(,’#!. $&$,#.!7$ !" ( ,0..$"# ,!&D
`lector [2-5]. Winding and lamination technologies are typically used as
`&$,#!. YSQZL f’"7’"< ("7 &(5’"(#’!" #$,4"!&!<’$% (.$ #3;’,(&&3 0%$7 (%
`state-of-the-art technologies in industrial LIB production lines.
`%#(#$D!1D#4$D(.# #$,4"!&!<’$% ’" ’"70%#.’(& 689 ;.!70,#’!" &’"$%L
`The lamination technique is a simple and easy-to-apply technology,
`I4$ &(5’"(#’!" #$,4"’a0$ ’% ( %’5;&$ ("7 $(%3D#!D(;;&3 #$,4"!&!<3@
`which simplifies the stacking process by reducing the number of com-
`:4’,4 %’5;&’N$% #4$ %#(,?’"< ;.!,$%% *3 .$70,’"< #4$ "05*$. !1 ,!5D
`ponents. The lamination process enables fast assembly speeds up to
`;!"$"#%L I4$ &(5’"(#’!" ;.!,$%% $"(*&$% 1(%# (%%$5*&3 %;$$7% 0; #!
`100 mimin and therefore lowers the costs of the assembly process.
`RVV 5_5’" ("7 #4$.$1!.$ &!:$.% #4$ ,!%#% !1 #4$ (%%$5*&3 ;.!,$%%L
`Besides, the lamination technique improves the electrochemical per-
`9$%’7$%@ #4$ &(5’"(#’!" #$,4"’a0$ ’5;.!)$% #4$ $&$,#.!,4$5’,(& ;$.D
`formance of the cell, in terms of improving cycling stability, reducing
`1!.5(",$ !1 #4$ ,$&&@ ’" #$.5% !1 ’5;.!)’"< ,3,&’"< %#(*’&’#3@ .$70,’"<
`aging effects and stabilizing cell performance even in case of vacuum
`(<’"< $M$,#% ("7 %#(*’&’F’"< ,$&& ;$.1!.5(",$ $)$" ’" ,(%$ !1 )(,005
`reduction in the cell, in comparison to the above mentioned additional
`.$70,#’!" ’" #4$ ,$&&@ ’" ,!5;(.’%!" #! #4$ (*!)$ 5$"#’!"$7 (77’#’!"(&
`electrode modification technologies.
`$&$,#.!7$ 5!7’N,(#’!" #$,4"!&!<’$%L
`In this article, we present a detailed study of the electrode-separator
`8" #4’% (.#’,&$@ :$ ;.$%$"# ( 7$#(’&$7 %#073 !1 #4$ $&$,#.!7$D%$;(.(#!.
`lamination in full cell configuration at higher C-rates. This study will
`&(5’"(#’!" ’" 10&& ,$&& ,!"N<0.(#’!" (# 4’<4$. D.(#$%L I4’% %#073 :’&&
`reveal the significant improvement in the fast charging and discharging
`.$)$(& #4$ %’<"’N,("# ’5;.!)$5$"# ’" #4$ 1(%# ,4(.<’"< ("7 7’%,4(.<’"<
`capability of single cells after applying the lamination technique.
`,(;(*’&’#3 !1 %’"<&$ ,$&&% (1#$. (;;&3’"< #4$ &(5’"(#’!" #$,4"’a0$L
`
`2. Experimental
`+! ,-./%*0/#$12
`
`2.1. Materials
`MN<N G2’$%"2-&
`
`Commercially available battery grade cathode material LiNiv3Mnii
` !55$.,’(&&3 ()(’&(*&$ *(##$.3 <.(7$ ,(#4!7$ 5(#$.’(& 6’J’R_O="R_
`3Cows0 2 (NM-3102 h, BASF, Germany - former TODA AMERICA, USA)
`O !R_OKS [J=DORVS 4@ O+/P5 g$.5("3 ^ 1!.5$. 6QR+ +G9@D8+5 h+A\
`and anode material graphite (MAGE3, HITACHI CHEMICAL, Japan)
`("7 ("!7$ 5(#$.’(& <.(;4’#$ [=Ag2O@ SD6+8SD 8S9GD8+1@ /(;("\
`were used as active materials. Conductive carbon (Super C65, IMERYS,
`:$.$ 0%$7 (% (,#’)$ 5(#$.’(&%L !"70,#’)$ ,(.*!" [+0;$. TQ@ DG9@T/5
`Switzerland - former TDICAL, Switzerland), cathode conductive gra-
`+:’#F$.&("7 ^ 1!.5$. 6DG8+1@ +:’#F$.&("7\@ ,(#4!7$ ,!"70,#’)$ <.(D
`phite (ICS6L, MIRES) and anode conductive graphite (SFG6L, MERYS)
`;4’#$ [C+T6@ DG9@T/\ ("7 ("!7$ ,!"70,#’)$ <.(;4’#$ [+>gT6@ DG9@T/\
`were used as conductive additives. PVDF (Solefa 5130, SOLVAY, Italy)
`:$.$ 0%$7 (% ,!"70,#’)$ (77’#’)$%L Gi-> [+!&$1" QROV@ /Q1U+T@ 8#(&3\
`was used as binder. N-methyl-pyrrolidone (Overlock, Germany) was
`:(% 0%$7 (% *’"7$.L VD5$#43&D;3..!&’7!"$ [Q#$%-20W@ g$.5("3\ :(%
`used as solvent. 1 M LiPF6 - ethylene carbonate (EC): ethylmethylcar-
`0%$7 (% %!&)$"#L R = 6’G>T D $#43&$"$ ,(.*!"(#$ [2 \b $#43&5$#43&,(.D
`bonate (EMC) 3:7 w/w (Selectilyte LP57, BASF, Germany) and vinylene
`*!"(#$ [2= \ ObX ;_: [+$&$,#’&3#$ 6GQX@ O+/P@ g$.5("3\ ("7 )’"3&$"$
`carbonate (Vinylene Carbonate F, BASF, Germany) were used as elec-
`,(.*!"(#$ [i’"3&$"$ (.*!"(#$ 2@ O+/P@ g$.5("3\ :$.$ 0%$7 (% $&$,D
`trolyte. A laminate type aluminum pouch film (SHOWA DENKO
`#.!&3#$L A &(5’"(#$ #3;$ (&05’"05 ;!0,4 N&5 [/SQ:+ R9VCQ
`AMERICA, USA) was used as housing of pouch cells. Pure lithium and
`+G9@D8+@ h+A\ :(% 0%$7 (% 4!0%’"< !1 ;!0,4 ,$&&%L G0.$ &’#4’05 ("7
`glass microfibre filter (Glass Fibre Filter Grade 691, VWR-avantor, USA)
`<&(%% 5’,.!N*.$ N&#$. [g&(%% >’*.$ >’&#$. g.(7$ TWR@ U:@H2#2!’)%@ h+A\
`were used for T-cells (half-cell). A self-standing inorganic filled (Al2O5)
`:$.$ 0%$7 1!. ID,$&&% [4(&1D,$&&\L A %$&1D%#("7’"< ’"!.<("’, N&&$7 [A&SKO\
`separator film with a PVDF/HFP Copolymer as binding agent, was used
`%$;(.(#!. N&5 :’#4 ( Gi->_E>G !;!&35$. (% *’"7’"< (<$"#@ :(% 0%$7
`for the pouch cell (full-cell) configuration. All materials and substrates
`1!. #4$ ;!0,4 ,$&& [10&&D,$&&\ ,!"N<0.(#’!"L A&& 5(#$.’(&% ("7 %0*%#.(#$%
`were used as received.
`:$.$ 0%$7 (% .$,$’)$7L
`
`by mixing MAGE3 graphite (90 wt%), PVDF (7 wt%), Super C65 carbon
`*3 5’B’"< =Ag2O <.(;4’#$ [WV :#P\@ Gi-> [X :#P\@ +0;$. TQ ,(.*!"
`(2 wt%) and SFG6L graphite (1 wt%) with NMP to give a final solid
`[S :#P\ ("7 +>gT6 <.(;4’#$ [R :#P\ :’#4 J=G #! <’)$ ( N"(& %!&’7
`content of 50 wt%. The electrode slurries were prepared in a planetary
`,!"#$"# !1 QV :#PL I4$ $&$,#.!7$ %&0..’$% :$.$ ;.$;(.$7 ’" ( ;&("$#(.3
`mixer (DC-2, INOUE, Japan) and were single-side coated by a doctor-
`5’B$. [IjDS@ 8JKh2@ /(;("\ ("7 :$.$ %’"<&$D%’7$ ,!(#$7 *3 ( 7!,#!.D
`blade water in a roll-to-roll process coating machine. Electrodes were
`*&(7$ ,!(#$. ’" ( .!&&D#!D.!&& ;.!,$%% ,!(#’"< 5(,4’"$L 2&$,#.!7$% :$.$
`dried in-line in a two-step drying tunnel at the temperature range of
`7.’$7 ’"D&’"$ ’" ( #:!D%#$; 7.3’"< #0""$& (# #4$ #$5;$.(#0.$ .("<$ !1
`135-150 'C. Low electrode mass loadings were chosen to act as high
`ROQ^RQV k L 6!: $&$,#.!7$ 5(%% &!(7’"<% :$.$ ,4!%$" #! (,# (% 4’<4
`capacity and high power reference system [2,A. The averaged active
`,(;(,’#3 ("7 4’<4 ;!:$. .$1$.$",$ %3%#$5 YSTZL I4$ ()$.(<$7 (,#’)$
`mass loadings of cathode and anode electrodes were —6.9 mg-cm -2
`5(%% &!(7’"<% !1 ,(#4!7$ ("7 ("!7$ $&$,#.!7$% :$.$ lTLW 5<m,5nS
`(1.13 mAh-cm-2) and —3.4 mgcm —2 (1.28 mAh-cm- 2), respectively.
`[RLRO 5A4m,5nS\ ("7 lOLU 5<m,5nS [RLS] 5A4o,5nS\@ .$%;$,#’)$&3L
`The cathode and anode capacity balancing factor was 1:1.14 in the full
`I4$ ,(#4!7$ ("7 ("!7$ ,(;(,’#3 *(&(",’"< 1(,#!. :(% RbRLRU ’" #4$ 10&&
`cells. The electrodes in full cell configuration have mass in the range of
`,$&&%L I4$ $&$,#.!7$% ’" 10&& ,$&& ,!"N<0.(#’!" 4()$ 5(%% ’" #4$ .("<$ !1
`0.245-0.278 g of NMC and capacity in the range of 0.041-0.047 Ah.
`VLSUQ^VLSX] < !1 J= ("7 ,(;(,’#3 ’" #4$ .("<$ !1 VLVUR^VLVUX A4L
`
`2.3. Cell preparation
`MNKN 8$-- ,%$,2%2’")!
`
`The active areas of cathode and anode sheets were 5 x 8 cm2 and
`I4$ (,#’)$ (.$(% !1 ,(#4!7$ ("7 ("!7$ %4$$#% :$.$ Q p ] ,5S ("7
`5.4 x 8.4 cm2 within the pouch cell. Cathode, anode and separator
`QLU p ]LU ,5S :’#4’" #4$ ;!0,4 ,$&&L (#4!7$@ ("!7$ ("7 %$;(.(#!.
`were laminated to make a single stack by using a lamination machine
`:$.$ &(5’"(#$7 #! 5(?$ ( %’"<&$ %#(,? *3 0%’"< ( &(5’"(#’!" 5(,4’"$
`(BLE 282 D, MANZ ltnly - former ARCOTRONICS laxlia S.p.A., Italy) at
`[962 S]S -@ G+VY D’2-( ^ 1!.5$. +@8Q6@QVD8/ D’2-"2 /N,N+N@ 8#(&3\ (#
`the roll speed of 138 nymin-1, using a line force of 157 N-cm-1 in the
`#4$ .!&& %;$$7 !1 RLO] 5m5’"nR@ 0%’"< ( &’"$ 1!.,$ !1 RQX Jm,5nR ’" #4$
`temperature range 100-120 C.
`#$5;$.(#0.$ .("<$ RVV^RSV k L
`To analyze the effect of lamination on the electrochemical perfor-
`I! ("(&3F$ #4$ $M$,# !1 &(5’"(#’!" !" #4$ $&$,#.!,4$5’,(& ;$.1!.D
`mance of cathode and anode individually, cathode-separator stacks
`5(",$ !1 ,(#4!7$ ("7 ("!7$ ’"7’)’70(&&3@ ,(#4!7$D%$;(.(#!. %#(,?%
`were laminated by laminating a copper-separator-cathode stack, later
`:$.$ &(5’"(#$7 *3 &(5’"(#’"< ( ,!;;$.D%$;(.(#!.D,(#4!7$ %#(,?@ &(#$.
`the copper was replaced with the appropriate anode without any fur-
`#4$ ,!;;$. :(% .$;&(,$7 :’#4 #4$ (;;.!;.’(#$ ("!7$ :’#4!0# ("3 10.D
`ther lamination. Similarly, anode-separator stacks were laminated by
`#4$. &(5’"(#’!"L +’5’&(.&3@ ("!7$D%$;(.(#!. %#(,?% :$.$ &(5’"(#$7 *3
`laminating an aluminum-separator-anode stack, later the aluminum foil
`&(5’"(#’"< (" (&05’"05D%$;(.(#!.D("!7$ %#(,?@ &(#$. #4$ (&05’"05 1!’&
`was removed from the stack, and replaced with the appropriate cathode
`:(% .$5!)$7 1.!5 #4$ %#(,?@ ("7 .$;&(,$7 :’#4 #4$ (;;.!;.’(#$ ,(#4!7$
`without any further lamination. Nickel and aluminum tabs were welded
`:’#4!0# ("3 10.#4$. &(5’"(#’!"L J’,?$& ("7 (&05’"05 #(*% :$.$ :$&7$7
`onto the anode and cathode electrodes by ultrasonic welding. Pre-as-
`!"#! #4$ ("!7$ ("7 ,(#4!7$ $&$,#.!7$% *3 0&#.(%!"’, :$&7’"<L G.$D(%D
`sembled pouch cell stacks were dried at 110 'V for 12 h under vacuum.
`%$5*&$7 ;!0,4 ,$&& %#(,?% :$.$ 7.’$7 (# RRV k 1!. RS 4 0"7$. )(,005L
`The electrolyte amount of 500 µ1 for laminated cells and 750 µ1 for
`I4$ $&$,#.!&3#$ (5!0"# !1 QVV q& 1!. &(5’"(#$7 ,$&&% ("7 XQV q& 1!.
`partially laminated/non-laminated cells is used within an argon filled
`;(.#’(&&3 &(5’"(#$7_"!"D&(5’"(#$7 ,$&&% ’% 0%$7 :’#4’" (" (.<!" N&&$7
`glovebox (M1120, H2O and 0 2 content < 0.1 ppm, MBraun, Germany)
`<&!)$*!B [=9SV@ ESK ("7 KS ,!"#$"# r VLR ;;5@ GO%24!@ g$.5("3\
`and sealed under vacuum. The cells were kept at room temperature
`("7 %$(&$7 0"7$. )(,005L I4$ ,$&&% :$.$ ?$;# (# .!!5 #$5;$.(#0.$
`over night before starting the electrochemical characterization. To
`!)$. "’<4# *$1!.$ %#(.#’"< #4$ $&$,#.!,4$5’,(& ,4(.(,#$.’F(#’!"L I!
`study the effect of additional cell compression, gravimetric force was
`%#073 #4$ $M$,# !1 (77’#’!"(& ,$&& ,!5;.$%%’!"@ <.()’5$#.’, 1!.,$ :(%
`applied to the cells by compressing each pouch cell stack with a weight
`(;;&’$7 #! #4$ ,$&&% *3 ,!5;.$%%’"< $(,4 ;!0,4 ,$&& %#(,? :’#4 ( :$’<4#
`of —2.5 kg on top, while placing a polystyrol plate between the cell and
`!1 lSLQ ?< !" #!;@ :4’&$ ;&(,’"< ( ;!&3%#3.!& ;&(#$ *$#:$$" #4$ ,$&& ("7
`applied weight for homogeneous force distribution along the active
`(;;&’$7 :$’<4# 1!. 4!5!<$"$!0% 1!.,$ 7’%#.’*0#’!" (&!"< #4$ (,#’)$
`single cell area.
`%’"<&$ ,$&& (.$(L
`For half-cell measurements, the electrodes were punched into cir-
`>!. 4(&1D,$&& 5$(%0.$5$"#%@ #4$ $&$,#.!7$% :$.$ ;0",4$7 ’"#! ,’.D
`cular disks of 10 mm diameter and dried at 110 'V under vacuum for
`,0&(. 7’%?% !1 RV 55 7’(5$#$. ("7 7.’$7 (# RRV k 0"7$. )(,005 1!.
`12 h. Half-cell measurements were carried out in three electrode geo-
`RS 4L E(&1D,$&& 5$(%0.$5$"#% :$.$ ,(..’$7 !0# ’" #4.$$ $&$,#.!7$ <$!D
`metry using a Swagelok type T-cell setup, assembled in an Argon filled
`5$#.3 0%’"< ( +:(<$&!? #3;$ ID,$&& %$#0;@ (%%$5*&$7 ’" (" A.<!" N&&$7
`glovebox. Lithium metal was used as reference and counter electrode.
`<&!)$*!BL 6’#4’05 5$#(& :(% 0%$7 (% .$1$.$",$ ("7 ,!0"#$. $&$,#.!7$L
`LP57 was used as electrolyte for NMC half-cell measurements. A mix-
`6GQX :(% 0%$7 (% $&$,#.!&3#$ 1!. J= 4(&1D,$&& 5$(%0.$5$"#%L A 5’BD
`ture of LP57 (98 wt%) and vinylene carbonate (2 wt%) was used as
`#0.$ !1 6GQX [W] :#P\ ("7 )’"3&$"$ ,(.*!"(#$ [S :#P\ :(% 0%$7 (%
`electrolyte for graphite half-cell measurements and for all full cell
`$&$,#.!&3#$ 1!. <.(;4’#$ 4(&1D,$&& 5$(%0.$5$"#% ("7 1!. (&& 10&& ,$&&
`measurements. Half-cells were kept at mom temperature over night
`5$(%0.$5$"#%L E(&1D,$&&% :$.$ ?$;# (# .!!5 #$5;$.(#0.$ !)$. "’<4#
`before starting the electrochemical characterization.
`*$1!.$ %#(.#’"< #4$ $&$,#.!,4$5’,(& ,4(.(,#$.’F(#’!"L
`
`2.2. Electrode/separator preparation
`MNMN 9-$0’%).$X&$,2%2’)% ,%$,2%2’")!
`
`The cathode was prepared by mixing NMC (93 wt%), PVDF (3 wt
`I4$ ,(#4!7$ :(% ;.$;(.$7 *3 5’B’"< J= [WO :#P\@ Gi-> [O :#
`%), Super C65 carbon (3 wt%) and KS6L graphite (1 wt%) with NMP
`P\@ +0;$. TQ ,(.*!" [O :#P\ ("7 C+T6 <.(;4’#$ [R :#P\ :’#4 J=G
`solvent to have a final solid content of 60 wt%. The anode was prepared
`%!&)$"# #! 4()$ ( N"(& %!&’7 ,!"#$"# !1 TV :#PL I4$ ("!7$ :(% ;.$;(.$7
`
`Electrochemical characterization was done with a battery tester
`2&$,#.!,4$5’,(& ,4(.(,#$.’F(#’!" :(% 7!"$ :’#4 ( *(##$.3 #$%#$.
`(CTS-LAB, BaSyTec, Germany), using galvanostatic
`(CC) and
`[ I+D6A9@ O2/(6$0@ g$.5("3\@ 0%’"<
`<(&)("!%#(#’,
`[ \
`("7
`
`2.4. Cell characteritation
`MN>N 8$-- 032%20’$%"Z2’")!
`
`)-*
`152
`
`JLab/Cambridge, Exh. 1030, p. 2
`
`

`

`M. Franlcenberger, et al.
`GN P%2!W$![$%7$%5 $’ 2-N
`
`Journal of Electroanalytical Chemistry 837 (2019) 151-158
`/9=:806"93".621<:90806><5106"-4275;<:>"+(*"#’%&,$"&)&?&)+
`
`potentiostatic (CV) modes for charging step and CC-mode for discharge
`;!#$"#’!%#(#’, [ i\ 5!7$% 1!. ,4(.<’"< %#$; ("7 D5!7$ 1!. 7’%,4(.<$
`step. For full cell measurements, the voltage ranges were adjusted to
`%#$;L >!. 10&& ,$&& 5$(%0.$5$"#%@ #4$ )!&#(<$ .("<$% :$.$ (7c0%#$7 #!
`3.0 V-4.2 V, for NMC half-cell measurements the voltage ranges were
`OLV i^ULS i@ 1!. J= 4(&1D,$&& 5$(%0.$5$"#% #4$ )!&#(<$ .("<$% :$.$
`adjusted to 3.0 V-4.3 V, for graphite half-cell measurements the voltage
`(7c0%#$7 #! OLV i^ULO i@ 1!. <.(;4’#$ 4(&1D,$&& 5$(%0.$5$"#% #4$ )!&#(<$
`ranges were adjusted to 0.02 V-1.5 V. CV charging steps were con-
`.("<$% :$.$ (7c0%#$7 #! VLVS i^RLQ iL i ,4(.<’"< %#$;% :$.$ ,!"D
`tinued until the charging current dropped below 0.05C rate. For the full
`#’"0$7 0"#’& #4$ ,4(.<’"< ,0..$"# 7.!;;$7 *$&!: VLVQ .(#$L >!. #4$ 10&&
`cell experiments, formation was done by applying two cycles at 0.1C,
`,$&& $B;$.’5$"#%@ 1!.5(#’!" :(% 7!"$ *3 (;;&3’"< #:! ,3,&$% (# VLR @
`calculated from the NMC weight and the theoretical NMC capacity of
`,(&,0&(#$7 1.!5 #4$ J= :$’<4# ("7 #4$ #4$!.$#’,(& J= ,(;(,’#3 !1
`168 mAlrg -1. For the further cycling process, C-rates were calculated
`RT] 5A4m<nRL >!. #4$ 10.#4$. ,3,&’"< ;.!,$%%@ D.(#$% :$.$ ,(&,0&(#$7
`according to the measured nominal capacity of each cell, which is the
`(,,!.7’"< #! #4$ 5$(%0.$7 "!5’"(& ,(;(,’#3 !1 $(,4 ,$&&@ :4’,4 ’% #4$
`discharge capacity of the second formation cycle (see supplementary
`7’%,4(.<$ ,(;(,’#3 !1 #4$ %$,!"7 1!.5(#’!" ,3,&$ [%$$ %0;;&$5$"#(.3
`information). For half-cell experiments, the C-rate currents were cal-
`’"1!.5(#’!"\L >!. 4(&1D,$&& $B;$.’5$"#%@ #4$ D.(#$ ,0..$"#% :$.$ ,(&D
`culated to fit to the theoretical capacity of the active material weight
`,0&(#$7 #! N# #! #4$ #4$!.$#’,(& ,(;(,’#3 !1 #4$ (,#’)$ 5(#$.’(& :$’<4#
`:’#4’" #4$ %(5;&$%@ 0%’"< ( #4$!.$#’,(& J= ,(;(,’#3 !1 RT] 5A4m<nR
`within the samples, using a theoretical NMC capacity of 168 mAlrg
`and a theoretical graphite capacity of 372 mAlrg
`("7 ( #4$!.$#’,(& <.(;4’#$ ,(;(,’#3 !1 OXS 5A4m<nRL
`Non-laminated single cell components were prepared for cross-sec-
`J!"D&(5’"(#$7 %’"<&$ ,$&& ,!5;!"$"#% :$.$ ;.$;(.$7 1!. ,.!%%D%$,D
`tion images with a handheld punch (clearance 4 µm, NOGAMI, Japan).
`#’!" ’5(<$% :’#4 ( 4("74$&7 ;0",4 [,&$(.(",$ U q5@ VQA+GD@ /(;("\L
`Argon ion cutting (EM TIC 3X, Leica, Germany) was used for the la-
`A.<!" ’!" ,0##’"< [2= I8 Oj@ 6$’,(@ g$.5("3\ :(% 0%$7 1!. #4$ &(D
`minated electrode-separator stack. A field emission scanning electron
`5’"(#$7 $&$,#.!7$D%$;(.(#!. %#(,?L A N$&7 $5’%%’!" %,(""’"< $&$,#.!"
`microscope (FE-SEM) (Merlin Compact, Zeiss, Germany) with energy
`5’,.!%,!;$ [>2D+2=\ [=$.&’" !5;(,#@ Y$"&&@ g$.5("3\ :’#4 $"$.<3
`dispersive X-ray spectroscopy (EDX) was used to take cross-section
`7’%;$.%’)$ jD.(3 %;$,#.!%,!;3 [2-j\ :(% 0%$7 #! #(?$ ,.!%%D%$,#’!"
`images and EDX element mapping images of a laminated single cell
`’5(<$% ("7 2-j $&$5$"# 5(;;’"< ’5(<$% !1 ( &(5’"(#$7 %’"<&$ ,$&&
`stack.
`%#(,?L
`Porosities of separator and electrode layers were calculated by
`G!.!%’#’$% !1 %$;(.(#!. ("7 $&$,#.!7$ &(3$.% :$.$ ,(&,0&(#$7 *3
`comparing their real volume with the minimal component volume
`,!5;(.’"< #4$’. .$(& )!&05$ :’#4 #4$ 5’"’5(& ,!5;!"$"# )!&05$
`given by the sample weight, using the theoretical densities of the
`<’)$" *3 #4$ %(5;&$ :$’<4#@ 0%’"< #4$ #4$!.$#’,(& 7$"%’#’$% !1 #4$
`components.
`,!5;!"$"#%L
`
`Porosity
`!)+),%-.
`
`pores
`*)+$,
`
`real
`+$"&
`
`real —
`+$"&
`
`components,minimal
`#)’*)($(-, ’%(%’"&
`
`real
`+$"&
`
`(1)
`[R\
`
`For impedance spectroscopy analysis, full cells were charged to
`>!. ’5;$7(",$ %;$,#.!%,!;3 ("(&3%’%@ 10&& ,$&&% :$.$ ,4(.<$7 #!
`3.6 V at 0.1C rate directly after formation. Impedance measurements
`OLT i (# VLR .(#$ 7’.$,#&3 (1#$. 1!.5(#’!"L 85;$7(",$ 5$(%0.$5$"#%
`were carried out in a climate chamber (INCU-Line ® IL 68R, VWR-
`:$.$ ,(..’$7 !0# ’" ( ,&’5(#$ ,4(5*$. [8J hD6’"$" 86 T]H@ U:@H
`avantor, USA) at 25 °C. After connecting
`to the potentiostat
`2#2!’)%@ h+A\ (# SQ k L A1#$.
`,!""$,#’"< #! #4$ ;!#$"#’!%#(#
`(PGSTAT204, Metrohm Autolab, Netherlands), the cells rested for 2 h at
`[Gg+IAISVU@ G$’%)3B +4’)-2[@ J$#4$.&("7%\@ #4$ ,$&&% .$%#$7 1!. S 4 (#
`25 °C prior to the measurement. Impedance analysis was done in po-
`SQ k ;.’!. #! #4$ 5$(%0.$5$"#L 85;$7(",$ ("(&3%’% :(% 7!"$ ’" ;!D
`tentiostatic mode in the frequency range of 50 kHz-10 mHz using an
`#$"#’!%#(#’, 5!7$ ’" #4$ 1.$a0$",3 .("<$ !1 QV ?EF^RV 5EF 0%’"< ("
`amplitude of 10 mV. Data fitting was performed using Z-fit.
`(5;&’#07$ !1 RV 5iL -(#( N##’"< :(% ;$.1!.5$7 0%’"< YDN#L
`
`3. Results and discussion
`5! 6/7(2$7 1#’ ’*7)(77*&#
`
`3.1. Morphological characterization
`KN<N G)%,3)-)7"02- 032%20’$%"Z2’")!
`
`Fig. 2 shows the cross-section SEM images of the non-laminated
`>’<L S %4!:% #4$ ,.!%%D%$,#’!" +2= ’5(<$% !1 #4$ "!"D&(5’"(#$7
`single cell components NMC cathode, self-standing inorganic filled se-
`%’"<&$ ,$&& ,!5;!"$"#% J= ,(#4!7$@ %$&1D%#("7’"< ’"!.<("’, N&&$7 %$D
`parator film and graphite anode.
`;(.(#!. N&5 ("7 <.(;4’#$ ("!7$L
`Cross-section SEM and EDX images of a laminated single cell stack,
` .!%%D%$,#’!" +2= ("7 2-j ’5(<$% !1 ( &(5’"(#$7 %’"<&$ ,$&& %#(,?@
`containing NMC cathode, self-standing inorganic filled (Al2O3) se-
`,!"#(’"’"< J= ,(#4!7$@ %$&1D%#("7’"< ’"!.<("’, N&&$7 [A&SKO\ %$D
`parator film and graphite anode, are shown in Fig. 3.
`;(.(#!. N&5 ("7 <.(;4’#$ ("!7$@ (.$ %4!:" ’" >’<L OL
`The cross-section images of interfacial linking with both electrodes
`I4$ ,.!%%D%$,#’!" ’5(<$% !1 ’"#$.1(,’(& &’"?’"< :’#4 *!#4 $&$,#.!7$%
`clearly show the correspondence with the schematics, as shown in
`,&$(.&3 %4!: #4$ ,!..$%;!"7$",$ :’#4 #4$ %,4$5(#’,%@ (% %4!:" ’"
`Fig. 1. No remaining voids are visible at the interfaces (cathode/se-
`>’<L RL J! .$5(’"’"< )!’7% (.$ )’%’*&$ (# #4$ ’"#$.1(,$% [,(#4!7$_%$D
`parator and anode/separator interfaces) while the separator surface
`;(.(#!. ("7 ("!7$_%$;(.(#!. ’"#$.1(,$%\ :4’&$ #4$ %$;(.(#!. %0.1(,$
`clings to NMC surface particles at the cathode side and to graphite
`,&’"<% #! J= %0.1(,$ ;(.#’,&$% (# #4$ ,(#4!7$ %’7$ ("7 #! <.(;4’#$
`surface particles at the anode side. The high magnification image,
`%0.1(,$ ;(.#’,&$% (# #4$ ("!7$ %’7$L I4$ 4’<4 5(<"’N,(#’!" ’5(<$@
`Fig. 3b and Fig. 3c, show that NMC/graphite particles and separator
`>’<L O* ("7 >’<L O,@ %4!: #4(# J= _<.(;4’#$ ;(.#’,&$% ("7 %$;(.(#!.
`adhere perfectly after lamination. It could be mentioned that no da-
`(74$.$ ;$.1$,#&3 (1#$. &(5’"(#’!"L 8# ,!0&7 *$ 5$"#’!"$7 #4(# "! 7(D
`maging of active materials were found during the lamination process. In
`5(<’"< !1 (,#’)$ 5(#$.’(&% :$.$ 1!0"7 70.’"< #4$ &(5’"(#’!" ;.!,$%%L 8"
`addition, lamination provides stabilized interfaces which minimize the
`(77’#’!"@ &(5’"(#’!" ;.!)’7$% %#(*’&’F$7 ’"#$.1(,$% :4’,4 5’"’5’F$ #4$
`interfacial resistances and reduce the capacity fading upon increasing
`’"#$.1(,’(& .$%’%#(",$% ("7 .$70,$ #4$ ,(;(,’#3 1(7’"< 0;!" ’",.$(%’"<
`the C-rates. The EDX image proves that the electrode and separator
`#4$ D.(#$%L I4$ 2-j ’5(<$ ;.!)$% #4(# #4$ $&$,#.!7$ ("7 %$;(.(#!.
`interface is well contacted. The EDX mapping shows the homogeneous
`’"#$.1(,$ ’% :$&& ,!"#(,#$7L I4$ 2-j 5(;;’"< %4!:% #4$ 4!5!<$"$!0%
`distribution of alumina in the separator (Fig. 3d).
`7’%#.’*0#’!" !1 (&05’"( ’" #4$ %$;(.(#!. [>’<L O7\L
`The overall pore volume within the active area of anode layer, se-
`I4$ !)$.(&& ;!.$ )!&05$ :’#4’" #4$ (,#’)$ (.$( !1 ("!7$ &(3$.@ %$D
`parator and cathode layer in the single cell stack is reduced by -66%
`;(.(#!. ("7 ,(#4!7$ &(3$. ’" #4$ %’"<&$ ,$&& %#(,? ’% .$70,$7 *3 lTTP
`upon lamination. Therefore, the overall porosity of the cathode-
`0;!" &(5’"(#’!"L I4$.$1!.$@
`#4$ !)$.(&& ;!.!%’#3 !1
`#4$ ,(#4!7$D
`
`separator-anode stack decreases from -54% down to -30%. The S

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket