throbber
Novel Strategies To Increase Read Length And Accuracy
`For DNA Sequencing By Synthesis
`
`Lin Yu
`
`Submitted in partial fulfillment of the
`requirements for the degree
`of Doctor of Philosophy
`in the Graduate School of Arts and Sciences
`
`COLUMBIA UNIVERSITY
`
`2010
`
`Page a
`
`Illumina Ex. 1093
`IPR Petition - USP 10,435,742
`
`

`

`
`
`
`
`UMI Number: 3428688
`
`
`
`
`
`
`All rights reserved
`
`INFORMATION TO ALL USERS
`The quality of this reproduction is dependent upon the quality of the copy submitted.
`
`In the unlikely event that the author did not send a complete manuscript
`and there are missing pages, these will be noted. Also, if material had to be removed,
`a note will indicate the deletion.
`
`
`
`
`
`
`
`
`UMI 3428688
`Copyright 2010 by ProQuest LLC.
`All rights reserved. This edition of the work is protected against
`unauthorized copying under Title 17, United States Code.
`
`
`
`
`
`
`
`
`ProQuest LLC
`789 East Eisenhower Parkway
`P.O. Box 1346
`Ann Arbor, MI 48106-1346
`
`
`
`
`Page b
`
`

`

`  
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`© 2010
`
`Lin Yu
`All Rights Reserved
`
`Page c
`
`Page c
`
`

`

`  
`
`ABSTRACT
`
`Novel Strategies To Increase Read Length And Accuracy
`For DNA Sequencing By Synthesis
`
`Lin Yu
`
`
`The completion of the Human Genome Project has increased the need for high-
`
`throughput DNA sequencing technologies aimed at uncovering the genomic
`
`contributions to diseases. The DNA sequencing by synthesis (SBS) approach has
`
`shown great promise as a new platform for decoding the genome. This thesis focuses
`
`on the development and improvement of a chip-based four-color DNA SBS platform
`
`using molecular engineering approaches. In this approach, four nucleotides (A, C, G,
`
`T) are modified as fluorescent nucleotide reversible terminators (CF-NRTs) by
`
`tethering a cleavable fluorophore to the base and capping the 3’-OH with a small
`
`chemically reversible moiety so that the nucleotide analogues are still recognizable as
`
`substrates by DNA polymerase. First, we explored the potential of using an azido
`
`modified group for nucleotide modification. Based on our established rationale for
`
`nucleotide reversible terminator (NRT) design, we synthesized a complete set of
`
`NRTs capped at the 3’ position with an azidomethyl group (3’-O-N3-dATP, 3’-O-N3-
`
`dCTP, 3’-O-N3-dGTP, 3’-O-N3-dTTP). Through testing and optimization, it was
`
`apparent that these NRTs were good substrates of a DNA polymerase. Afterwards, we
`
`worked out an optimum chemical cleavage condition to remove the azidomethyl
`
`group capping the 3’-OH of the nucleotide analogues under conditions that were
`
`Page d
`
`

`

`  
`
`compatible with DNA, allowing the next NRT to be incorporated in the subsequent
`
`polymerase reaction. We then designed and synthesized two sets of azido-modified
`
`CF-NRTs for applications in SBS. The four CF-NRTs of the first set (3’-N3-O-dNTP-
`
`azidomethylbenzoyl-fluorophores) were capped at the 3’-OH with an azidomethyl
`
`group identical to the NRTs and contained a substituted 2-azidomethylbenzoyl linker
`
`to tether a fluorophore. These CF-NRTs were used to produce four-color de novo
`
`DNA sequencing data on a chip based our sequencing by synthesis approach. After
`
`each round of sequencing, both the fluorophores linked to the CF-NRTs and the 3’-
`
`azidomethyl group on the DNA extension products generated by incorporating 3’-O-
`
`N3-dNTP-azidomethylbenzoyl-fluorophores were removed using a TCEP [Tris(2-
`
`carboxyethyl)phosphine] cleavage solution. This one-step dual-cleavage process for
`
`reinitiating the polymerase reaction increased the overall SBS efficiency. After
`
`confirming the feasibility of implementing azido-modified CF-NRTs in SBS, we
`
`synthesized a second set of CF-NRTs (3’-O-N3-dNTP-N3-fluorophores) to further
`
`improve and optimize the sequencing process. During the incorporation stage of SBS,
`
`a mixture of CF-NRTs and NRTs was used to simultaneously extend the primer
`
`strand of various target DNA linear templates. This approach led to a more efficient
`
`DNA polymerase reaction since the smaller 3’-O-N3-dNTPs were much easier to
`
`incorporate. Moreover primers extended with NRTs resembled nascent strands of
`
`DNA that had no traces of modification after cleavage of the 3’-azidomethyl capping
`
`group. After the incorporation reaction, two separate capping steps, first with 3’-O-
`
`N3-dNTPs and then with ddNTPs, were performed to synchronize all the templates on
`
`the surface. Without
`
`these precautionary synchronization procedures, mixed
`
`Page e
`
`

`

`  
`
`fluorescent signals would prevent the identification of the correctly incorporated
`
`nucleotide. Hence, we have successfully addressed one of the key drawbacks of SBS,
`
`which was the miscalling of the base due to lagging signals. In addition, since both
`
`3’-O-N3-dNTP-N3-fluorophores and 3’-O-N3-dNTPs were reversible terminators,
`
`which allow the sequencing of each base in a serial manner, they could accurately
`
`determine the homopolymeric regions of DNA. Finally, we developed a novel
`
`template walking strategy to increase read length for DNA SBS. The template
`
`walking method involved resetting the sequencing start site by extending the
`
`sequencing primer with three natural nucleotides and one NRT so that the polymerase
`
`reaction was temporarily paused when the NRT was incorporated. Upon restoring the
`
`3’-OH group of the NRT incorporated into the primer via cleavage, the next cycle of
`
`walking could be carried out until the entire preiously sequenced portion of the
`
`template was skipped. We have successfully demonstrated the integration of this
`
`template walking strategy into our four-color DNA SBS platform by performing one
`
`round of SBS, four cycles of template walking reactions, and then a second round of
`
`SBS. Through this effort, we were able to sequence a linear DNA template in its
`
`entirety, nearly doubling the read length of our previous sequencing results. We are
`
`also taking advantage of the massive throughput of a next generation sequencer that is
`
`based on our SBS technology to conduct digital gene expression study of Aplysia
`
`central nervous system in an ongoing project that explores the molecular mechanism
`
`of long-term memory formation.
`
`Page f
`
`

`

`Table of Contents
`
`
`  
`List  of  Figures.............................................................................................................................................ix  
`Acknowledgements..............................................................................................................................xvii  
`Abbreviations  and  Symbols...............................................................................................................xix  
`    Chapter  1:  Introduction  to  DNA  Sequencing  Technologies..............................................1  
`1.1  Introduction.............................................................................................................................1  
`1.2   Background  and  Significance........................................................................................2  
`1.2.1.   Sanger  dideoxynucleotide  sequencing............................................................6  
`1.2.2.   MALDI-­‐TOF  MS  based  DNA  sequencing..........................................................9  
`1.2.3.   Pyrosequencing......................................................................................................13  
`1.2.4.   DNA  sequencing  by  ligation..............................................................................15  
`1.2.5.   DNA  sequencing  by  engineered  nanopores...............................................17  
`1.3   Conclusion..........................................................................................................................19  
`1.4  References..............................................................................................................................20  
`Chapter  2:  Overview  of  DNA  Sequencing  by  Synthesis  Using  Cleavable  
`Fluorescent  Nucleotide  Reversible  Terminators...............................................................25  
`2.1  Introduction..........................................................................................................................25  
`i  
`
`  
`
`

`

`  
`
`2.2  General  Methodology  for  DNA  Sequencing  by  Synthesis  Using  Cleavable  
`Fluorescent  Nucleotide  Reversible  Terminators..........................................................26  
`2.3  Four  color  DNA  Sequencing  by  Synthesis  Using  Cleavable  Fluorescent  
`Nucleotide  Reversible  Terminators...................................................................................29  
`2.3.1.     Overview..................................................................................................................29  
`2.3.2.   Design,  synthesis,  and  characterization  of  cleavable  fluorescent  
`nucleotide  reversible  terminators.................................................................................32  
`2.3.3.   DNA  chip  construction........................................................................................35  
`2.3.4.   Four  color  sequencing  by  synthesis  using  cleavable  fluorescent  
`nucleotide  reversible  terminators.................................................................................37  
`2.4  References..............................................................................................................................40  
`Chapter  3:  Exploration  of  a  New  Chemical  Moiety  for  Nucleotide  Reversible  
`Terminator  Modification  in  DNA  Sequencing  by  Synthesis..........................................43  
`3.1  Introduction..........................................................................................................................43  
`3.2  Experimental  Rationale  and  Overview......................................................................44  
`3.3  Results  and  Discussion.....................................................................................................46  
`3.3.1.  Design  and  synthesis  of  3’-­‐O-­‐azidomethyl-­‐dUTP-­‐NH2,  a  model  NRT  
`compound.................................................................................................................................46  
`3.3.2.   Polymerase  
`reaction   using   3’-­‐O-­‐azidomethyl-­‐dUTP-­‐NH2   and  
`characterization  by  MALDI-­‐TOF  MS..............................................................................47  
`ii  
`
`  
`
`

`

`  
`
`3.3.3.  Cleavage  reaction  to  restore  3’-­‐OH  of  DNA  extension  product  and  its  
`optimization.............................................................................................................................50  
`3.3.4.  Design,  synthesis,  and  evaluation  of  a  complete  nucleotide  reversible  
`terminator  set:  3’-­‐O-­‐N3-­‐dNTPs........................................................................................52  
`3.3.5.  Continuous  polymerase  extension  using  3’-­‐O-­‐modified  NRTs  and  
`characterization  by  MALDI-­‐TOF  mass  spectrometry............................................54  
`3.4  Materials  and  Methods.....................................................................................................56  
`3.4.1.  Synthesis  of  3’-­‐O-­‐azidomethyl-­‐dUTP-­‐NH2,  a  model  NRT  compound..57  
`3.4.2.  
`Polymerase  
`reaction  
`using  
`3’-­‐O-­‐azidomethyl-­‐dUTP  
`and  
`characterization  by  MALDI-­‐TOF  MS..............................................................................57  
`3.4.3.  Cleavage  reaction  to  restore  3’-­‐OH  of  DNA  extension  product  and  its  
`optimization.............................................................................................................................58  
`3.4.4.  Design,  synthesis,  and  evaluation  of  a  complete  nucleotide  reversible  
`terminator  set:  3’-­‐O-­‐N3-­‐dNTPs........................................................................................58  
`3.4.5.  Continuous  polymerase  extension  using  3’-­‐O-­‐modified  NRTs  and  
`characterization  by  MALDI-­‐TOF  mass  spectrometry............................................60  
`3.5  Conclusion..............................................................................................................................61  
`3.6  References..............................................................................................................................61  
`Chapter  4:  Design,  Synthesis,  and  Evaluation  of  a  Novel  Class  of  Cleavable  
`Fluorescent  Nucleotide  Reversible  Terminators  Containing  Substituted  2-­‐
`Azidomethyl  Benzoic  Acid  Linker  for  DNA  Sequencing  by  Synthesis......................64  
`  
`iii  
`
`

`

`  
`
`  
`
`4.1  Introduction..........................................................................................................................64  
`4.2  Experimental  Rationale  and  Overview......................................................................65  
`4.3  Results  and  Discussion.....................................................................................................69  
`4.3.1.  Synthesis  of  3’-­‐O-­‐N3-­‐dNTP-­‐azidomethylbenzoyl-­‐fluorophores............69  
`4.3.2.  Polymerase  single  base  extension  and  subsequent  cleavage  reactions  
`of  3’-­‐O-­‐N3-­‐dUTP-­‐azidomethylbenzoyl-­‐NH2  in  solution  and  characterization  
`by  MALDI-­‐TOF  MS.................................................................................................................69  
`4.3.3.   Polymerase   extension   of   the   complete   set   of   3’-­‐O-­‐N3-­‐dNTP-­‐
`azidomethylbenzoyl-­‐fluorophores   as   reversible  
`fluorescent   nucleotide  
`terminators  in  solution  and  characterization  by  MALDI-­‐TOF  MS....................73  
`4.3.4.   Four-­‐color   DNA   sequencing   on   a   chip   using   3’-­‐O-­‐N3-­‐dNTP-­‐
`azidomethylbenzoyl-­‐fluorophores  (CF-­‐NRTs)  and  unlabeled  3′-­‐O-­‐N3-­‐dNTPs  
`(NRTs)........................................................................................................................................75  
`4.4  Materials  and  Methods.....................................................................................................80  
`4.4.1.  Synthesis  of  3’-­‐O-­‐N3-­‐dNTP-­‐azidomethylbenzoyl-­‐fluorophores............80  
`4.4.2.  Polymerase  single  base  extension  and  subsequent  cleavage  reactions  
`of  3’-­‐O-­‐N3-­‐dUTP-­‐azidomethylbenzoyl-­‐NH2  in  solution  and  characterization  
`by  MALDI-­‐TOF  MS.................................................................................................................81  
`4.4.3.   Polymerase   extension   of   the   complete   set   of   3’-­‐O-­‐N3-­‐dNTP-­‐
`azidomethylbenzoyl-­‐fluorophores   as   reversible  
`fluorescent   nucleotide  
`terminators  in  solution  and  characterization  by  MALDI-­‐TOF  MS....................82  
`iv  
`
`

`

`  
`
`4.4.4.   Four-­‐color   DNA   sequencing   on   a   chip   using   3’-­‐O-­‐N3-­‐dNTP-­‐
`azidomethylbenzoyl-­‐fluorophores  (CF-­‐NRTs)  and  unlabelled  3′-­‐O-­‐N3-­‐dNTPs  
`(NRTs)........................................................................................................................................83  
`4.5  Conclusion..............................................................................................................................84  
`4.6  References..............................................................................................................................86  
`Chapter  5:  Four-­‐color  DNA  Sequencing  by  Synthesis  (SBS)  Improvements  using  
`Cleavable  Fluorescent  Nucleotide  Reversible  Terminators..........................................88  
`5.1  Introduction..........................................................................................................................88  
`5.2  Experimental  Rationale  and  Overview......................................................................91  
`5.3  Results  and  Discussion.....................................................................................................93  
`5.3.1.  Design  and  synthesis  of  cleavable  fluorescent  nucleotide  reversible  
`terminators  and  3’-­‐O-­‐modified  NRTs  for  SBS...........................................................93  
`5.3.2.   Polymerase   extension   using   cleavable  
`fluorescent   nucleotide  
`reversible  terminators  in  solution  and  their  characterization  by  MALDI-­‐TOF  
`MS.................................................................................................................................................98  
`5.3.3.  Four-­‐color  DNA  sequencing  by  synthesis  on  a  chip  using  cleavable  
`fluorescent  nucleotide  reversible  terminators  and  3’-­‐O-­‐modified  NRTs......99  
`5.4  Materials  and  Methods...................................................................................................104  
`5.4.1.  Design  and  synthesis  of  cleavable  fluorescent  nucleotide  reversible  
`terminators  and  3’-­‐O-­‐modified  NRTs  for  SBS.........................................................104  
`v  
`
`  
`
`

`

`  
`
`fluorescent   nucleotide  
`5.4.2.   Polymerase   extension   using   cleavable  
`reversible  terminators  in  solution  and  their  characterization  by  MALDI-­‐TOF  
`MS...............................................................................................................................................105  
`5.4.3.  Construction  of  a  DNA  Immobilized  Chip  of  Multiple  Linear  Templates
`.....................................................................................................................................................106  
`5.4.4.  Four-­‐color  DNA  sequencing  by  synthesis  on  a  chip  using  cleavable  
`fluorescent  nucleotide  reversible  terminators  and  3’-­‐O-­‐modified  NRTs....107  
`5.5  Conclusion............................................................................................................................108  
`5.6  References............................................................................................................................113  
`Chapter  6:  Exploration  of  Novel  Primer  Resetting  Strategies  to  Extend  Read-­‐
`length  for  DNA  Sequencing  by  Synthesis............................................................................117  
`6.1  Introduction........................................................................................................................117  
`6.2  Experimental  Rationale  and  Overview....................................................................118  
`6.2.1.  Strategy  1:  template  “walking”  by  unlabeled  nucleotides.....................119  
`6.2.2.  Strategy  2:  template  “walking”  with  universal  bases..............................126  
`6.2.3.  Strategy  3:  multiple  primer  hybridization...................................................127  
`6.3  Results  and  Discussion...................................................................................................130  
`6.3.1.  Template  walking  using  three  natural  nucleotides  and  MALDI-­‐TOF  MS  
`characterization  of  walking  products.........................................................................131  
`6.3.2.  Template  walking  using  three  natural  nucleotides  and  one  NRT  for  
`four-­‐color  DNA  Sequencing  by  Synthesis..................................................................136  
`vi  
`
`  
`
`

`

`  
`
`6.4  Materials  and  Methods...................................................................................................142  
`6.4.1.  Template  walking  using  three  natural  nucleotides  and  MALDI-­‐TOF  MS  
`characterization  of  walking  products.........................................................................143  
`6.4.2.  Template  walking  using  three  natural  nucleotides  and  one  NRT  for  
`four-­‐color  DNA  Sequencing  by  Synthesis..................................................................145  
`6.5  Conclusion............................................................................................................................147  
`6.6  References............................................................................................................................149  
`Chapter  7:  Massively  Parallel  Monitoring  of  Gene  Expression  in  Aplysia  Central  
`Nervous  System  (CNS)  using  Four-­‐color  DNA  Sequencing  by  Synthesis..............150  
`7.1  Introduction........................................................................................................................150  
`7.2  Experimental  Rationale  and  Overview....................................................................153  
`7.3  Results  and  Discussion...................................................................................................155  
`7.4  Materials  and  Methods...................................................................................................159  
`7.4.1.  Gene  transcript  analysis  in   Aplysia  neuronal  cells  using  Illumina  
`Genome  Analyzer.................................................................................................................160  
`7.5  Conclusion............................................................................................................................160  
`7.6  References............................................................................................................................161  
`Chapter  8:  Summary  and  Future  Outlook...........................................................................163  
`8.1  Exploration  of  a  New  Chemical  Moiety  for  Nucleotide  Reversible  
`Terminator  Modification  in  DNA  Sequencing  by  Synthesis  1...........................163  
`vii  
`
`  
`
`

`

`  
`
`  
`
`  
`
`8.2  Design,  Synthesis,  and  Evaluation  of  a  Novel  Class  of  Cleavable  
`Fluorescent  Nucleotide  Reversible  Terminators  Containing  Substituted  2-­‐
`Azidomethyl  Benzoic  Acid  Linker  for  DNA  Sequencing  by  Synthesis  2........164  
`8.3  Four-­‐color  DNA  Sequencing  by  Synthesis  (SBS)  Improvements  Using  
`Cleavable  Fluorescent  Nucleotide  Reversible  Terminators  3...........................165  
`8.4  Exploration  of  Novel  Primer  Resetting  Strategies  to  Extend  Read  Length  
`for  DNA  Sequencing  by  Synthesis  4..............................................................................166  
`8.5  Future  Outlook  for  4-­‐color  DNA  Sequencing  by  Synthesis  using  CF-­‐NRTs  
`5,  6................................................................................................................................................166  
`8.6  References.......................................................................................................................168  
`
`viii  
`
`

`

`  
`
`List  of  Figures  
`
` Fig.  1.1.  Chemical  structures  of  2’-­‐deoxyribonucleotide  triphosphates.  Each  
`nucleotide  is  composed  of  a  base  (adenine,  guanine,  cytosine,  or  thymine),  a  
`sugar,  and  a  phosphate  group.............................................................................................3  
`Fig.  1.2.  (A)  A  cartoon  illustrating  the  double  helical  structure  of  DNA.  Each  
`strand  is  supported  by  the  sugar-­‐phosphate  backbone.  They  are  held  
`together  via  hydrogen  bonds  in  anti-­‐parallel  fashion  (the  5’  end  of  one  
`strand  aligns  with  the  3’  end  of  the  other  one).  (B)  A  figure  depicting  two  
`DNA  strands  held  together  by  hydrogen  bonds  between  paired  bases.  (C)  
`More  detailed  chemical  structure  showing  the  hydrogen  bonding  between  
`bases...............................................................................................................................................4  
`Fig.  1.3.  Scheme  of  DNA  polymerase  reaction.  DNA  synthesis  takes  place  via  the  
`addition  of  a  nucleotide  to  the  3’-­‐OH  end  of  a  DNA  primer  strand.  The  base-­‐
`pairing  between  the  incoming  nucleotide  and  the  DNA  template  strand  
`dictates  which  nucleotide  is  added.  DNA  polymerase  facilitates  the  addition  
`of  the  incoming  nucleotide  by  catalyzing  the  formation  of  a  phosphodiester  
`bond  between  the  terminal  3’-­‐OH  group  of  the  primer  strand  and  the  alpha  
`phosphorus  atom  of  the  nucleotide.  A  pyrophosphate  (PPi)  group  is  
`released  as  a  by-­‐product.......................................................................................................6  
`Fig.  1.4.  Chemical  structures  of  3’-­‐deoxyribonucleotide  (dNTP)  and  2’,  3’-­‐
`dideoxyribonucleotide  (ddNTP).  Since  ddNTPs  do  not  have  the  3’-­‐OH  group,  
`which  is  necessary  for  DNA  synthesis,  they  terminate  further  extension  of  
`the  DNA  strand  once  incorporated...................................................................................7  
`Fig.  1.5.  Sanger  dideoxy  chain-­‐termination  sequencing  method.  DNA  fragments  
`are  generated  by  extending  the  primer  with  a  mixture  of  dNTPs  and  
`ddNTPs.  Upon  incorporation  of  a  ddNTP,  the  DNA  strand  ceases  to  
`participate  in  polymerase  reaction  due  to  the  lack  of  the  3’-­‐OH  group.  Thus,  
`a  mixture  of  DNA  strands  with  different  length  complementary  to  the  
`template  DNA  is  produced.  To  determine  the  sequence  of  the  template,  
`these  DNA  fragments  are  separated  based  on  size  by  electrophoresis,  and  
`the  resulting  bands  of  DNA  are  detected  by  their  fluorescent  signals..............8  
`Fig.   1.6.   Matrix-­‐assisted  
`laser   desorption/ionization  
`time-­‐of-­‐flight   mass  
`spectrometry  (MALDI-­‐TOF  MS).  A  mixture  of  analyte  (e.g.  DNA  sequencing  
`fragments)  and  matrix  molecules  (blue)  are  spotted  on  the  sample  plate  and  
`allowed  to  co-­‐crystallize  prior  to  loading  into  the  vacuum  chamber.  After  UV  
`laser  irradiation,  the  desorbed  and  ionized  analyte  and  matrix  molecules  
`are  accelerated  under  a  constant  electric  voltage,  causing  them  to  fly  
`towards  the  detector.  The  charged  molecules  arrive  at  the  detector  at  
`different  times  based  on  their  masses.  Therefore,  the  masses  of  the  charged  
`particles  can  be  determined  from  their  time-­‐of-­‐flight..........................................11  
`ix  
`
`  
`
`

`

`  
`Fig.  1.7.  DNA  sequencing  using  MALDI-­‐TOF  MS.  (A)  Sanger  sequencing  fragments  
`generated  using  biotin-­‐labeled  ddNTPs.  (B)  Example  of  mass  sequencing  
`spectrum  using  biotin-­‐labeled  ddNTPs........................................................................13  
`Fig.  1.8.  General  scheme  of  pyrosequencing.  As  the  polymerase  catalyzes  the  
`incorporation  of  nucleotide(s)  into  a  growing  strand  of  DNA,  PPi  molecules  
`are  released  and  then  converted  to  ATPs  by  ATP-­‐sulfurylase.  The  ATPs  
`participate  in  the  luciferase  reaction  in  which  a  luciferin  molecule  
`is  
`oxidized  to  produce  oxyluciferin  and  light.  The  resulting  luminescence  can  
`be  registered  using  a  photon  detector..........................................................................15  
`Fig.  1.9.  Scheme  of  DNA  sequencing  by  ligation  using  degenerate  nonamers......16  
`Fig.  1.10.  3-­‐D  rendering  of  α-­‐hemolysin  structure...........................................................17  
`Fig.  1.11.  Scheme  for  DNA  sequencing  using  nanopore  and  theoretical  plot  of  
`translocation  time  versus  blockade  current  elicited  by  DNA  strand..............18  
`Fig.  2.1.    In  the  SBS  approach,  a  chip  is  constructed  with  immobilized  DNA  
`templates  that  are  able  to  self-­‐prime  for  initiating  the  polymerase  reaction.  
`Four  nucleotide  analogues  are  designed  such  that  each  is  labeled  with  a  
`unique  fluorescent  dye  on  the  specific  location  of  the  base,  and  a  small  
`chemical  group  (R)  to  cap  the  3'-­‐OH  group.    Upon  adding  the  four  nucleotide  
`analogues   and   DNA   polymerase,   only  
`the   nucleotide   analogue  
`complementary  to  the  next  nucleotide  on  the  template  is  incorporated  by  
`polymerase  on  each  spot  of  the  chip  (step  1).    After  removing  the  excess  
`reagents  and  washing  away  any  unincorporated  nucleotide  analogues,  a  4-­‐
`color  fluorescence  scanner  is  used  to  image  the  surface  of  the  chip,  and  the  
`unique  fluorescence  emission  from  the  specific  dye  on  the  nucleotide  
`analogues  on  each  spot  of  the  chip  will  yield  the  identity  of  the  nucleotide  
`(step  2).  After  imaging,  the  small  amount  of  unreacted  3'-­‐OH  group  on  the  
`self-­‐primed  template  moiety  will  be  capped  by  excess  3’-­‐O-­‐modified  
`nucleotide   reversible  
`terminators   and   DNA   polymerase  
`to   avoid  
`interference  with  the  next  round  of  synthesis  for  synchronization  (step  3).  
`The  dye  moiety  and  the  R  protecting  group  will  be  removed  to  generate  a  
`free  3'-­‐OH  group  with  high  yield  (step  4).  The  self-­‐primed  DNA  moiety  on  
`the  chip  at  this  s

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket