throbber
Osswald, Menges
`Material Science of Polymers for Engineers
`
`MacNeil Exhibit 2178
`Yita v. MacNeil IP, IPR2020-01139, Page 1
`
`

`

`Yita v. MacNeil IP, IPR2020-01139, Page 2
`
`MacNeil Exhibit 2178
`
`MacNeil Exhibit 2178
`Yita v. MacNeil IP, IPR2020-01139, Page 2
`
`

`

`Tim A. Osswald
`Georg Menges
`
`Material Science
`of Polymers
`for Engineers
`
`3rd Edition
`
`Hanser Publishers, Munich
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
` Hanser Publications, Cincinnati
`
`MacNeil Exhibit 2178
`Yita v. MacNeil IP, IPR2020-01139, Page 3
`
`

`

`!e Author:
`Prof. Dr. Tim A. Osswald,
`University of Wisconsin-Madison, Polymer Processing Research Group,
`Department of Mechanical Engineering, 1513 University Avenue, Madison, USA
`
`Prof. Dr.-Ing. Georg Menges,
`Am Beulardstein 19, Aachen, Germany
`
`Distributed in North and South America by:
`Hanser Publications
`6915 Valley Avenue, Cincinnati, Ohio 45244-3029, USA
`Fax: (513) 527-8801
`Phone: (513) 527-8977
`www.hanserpublications.com
`
`Distributed in all other countries by
`Carl Hanser Verlag
`Postfach 86 04 20, 81631 München, Germany
`Fax: +49 (89) 98 48 09
`www.hanser.de
`
`!e use of general descriptive names, trademarks, etc., in this publication, even if the former are not
`especially identi"ed, is not to be taken as a sign that such names, as understood by the Trade Marks and
`Merchandise Marks Act, may accordingly be used freely by anyone.
`While the advice and information in this book are believed to be true and accurate at the date of going to
`press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors
`or omissions that may be made. !e publisher makes no warranty, express or implied, with respect to the
`material contained herein.
`
`Library of Congress Cataloging-in-Publication Data
`
`to follow
`
`Bibliogra"sche Information Der Deutschen Bibliothek
`Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliogra"e;
`detaillierte bibliogra"sche Daten sind im Internet über <http://dnb.d-nb.de> abru#ar.
`
`ISBN 978-1-56990-514-2
`E-Book-ISBN 9781569905241
`
`All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
`electronic or mechanical, including photocopying or by any information storage and retrieval system,
`without permission in writing from the publisher.
`
`© Carl Hanser Verlag, Munich 2010
`Production Management: Ste$en Jörg
`Coverconcept: Marc Müller-Bremer, www.rebranding.de, München
`Coverdesign: Stephan Rönigk
`Typeset, printed and bound by Kösel, Krugzell
`Printed in Germany
`
`MacNeil Exhibit 2178
`Yita v. MacNeil IP, IPR2020-01139, Page 4
`
`

`

`Preface to the
`First Edition
`
`This book is designed to provide a polymer materials science background to engi-
`neering students and practicing engineers. It is written on an intermediate level
`for students, and as an introduction to polymer materials science for engineers.
`The book presents enough information that, in conjunction with a good design
`background, it will enable the engineer to design polymer components.
`Materials Science of Polymers for Engineers is based on the German textbook, Werk-
`stoffkunde Kunststoffe (G. Menges, Hanser Publishers, 1989), and on lecture notes
`from polymer materials science courses taught at the Technical University of
`Aachen, Germany, and at the University of Wisconsin-Madison.
`The chapters on thermal and electrical properties are loose translations from Werk-
`stoffkunde Kunststoffe, and many figures throughout the manuscript were taken
`from this book. We have chosen a unified approach and have divided the book into
`three major sections: Basic Principles, Influence of Processing on Properties, and
`Engineering Design Properties. This approach is o!en referred to as the four P’s:
`polymer, processing, product and performance. The first section covers general
` topics such as historical background, basic material properties, molecular structure
`of polymers and thermal properties of polymers. The second section ties processing
`and design by discussing the effects of processing on properties of the final polymer
`component. Here, we introduce the reader to the rheology of polymer melts, mixing
`of polymer blends, development of anisotropy during processing and solidification
`processes. In essence, in this section we go from the melt (rheology) to the finished
`product (solidification). The third section covers the different properties that need to
`be considered when designing a polymer component, and analyzing its performance.
`These properties include mechanical properties, failure of polymers, electrical prop-
`erties, optical properties, acoustic properties, and permeability of polymers. The
`authors cannot acknowledge everyone who helped in one way or another in the prep-
`aration of this manuscript. We would like to thank the students of our polymer mate-
`rials science courses who in the past few years endured our experimenting and
`trying out of new ideas. The authors are grateful to the staff and faculty of the
`Mechanical Engineering Department at the University of Wisconsin-Madison, and
`the Institut für Kunststoffverarbeitung (IKV) at the Technical University of Aachen
`for their support while developing the courses which gave the base for this book. We
`
`MacNeil Exhibit 2178
`Yita v. MacNeil IP, IPR2020-01139, Page 5
`
`

`

`VI
`
`Preface to the First Edition
`
`are grateful to Richard Theriault for proofreading the entire manuscript. We also
`thank the following people who helped proofread or gave suggestions during the
`preparation of the book: Susanne Belovari, Bruce A. Davis, Jeffrey Giacomin, Paul J.
`Gramann, Matthew Kaegebein, Gwan-Wan Lai, Maria del Pilar Noriega E., Antoine C.
`Rios B., Linards U. Stradins and Ester M. Sun, Susanne Belovari and Andrea Jung-
`Mack are acknowledged for translating portions of Werkstoffkunde Kunststoffe from
`German to English. We also thank Tara Ruggiero for preparing the camera-ready
`manuscript. Many of the figures were taken from class notes of the mechanical engi-
`neering senior elective course Engineering Design with Polymers. Special thanks
`are offered to Lynda Litzkow, Philipp Ehrenstein and Bryan Hutchinson for the
`superb job of drawing those figures. Matthias Mahlke of Bayer AG in Leverkusen,
`Germany, Laura Dietsche, Joseph Dooley and Kevin Hughes of Dow Chemical in Mid-
`land, Michigan, and Mauricio DeGreif and Juan Diego Sierra of the ICIPC in Medellín,
`Colombia, are acknowledged for some of the figures. Thanks are due to Marcia
` San ders for copy editing the final manuscript. We are grateful to Wolfgang Glenz,
`Martha Kürzl, Ed Immergut and Carol Radtke of Hanser Publishers for their support
`throughout the development of this book. Above all, the authors thank their wives
`for their patience.
`Summer 1995
`Tim A. Osswald
`Madison, Wisconsin, USA
`
`Georg Menges
`Aachen, Germany
`
`MacNeil Exhibit 2178
`Yita v. MacNeil IP, IPR2020-01139, Page 6
`
`

`

`Preface to the
`Third Edition
`
`3 Zeilen Übersatz
`
`The first edition of this book was adopted by several universities in North and
`South America, Europe, and Asia as a textbook to introduce engineering students
`to the materials science of polymers. The book was also translated into Japanese in
`1998, Korean in 1999, and Spanish in 2008. The professors who taught with the
`first and second editions as well as their students liked the unified approach we
`took. The changes and additions that were introduced in this edition are based on
`suggestions from these professors and their students, as well as from our own
`experience using it as a class textbook.
`A!er two revisions and two decades of teaching it has become clear that sustaina-
`bility and profits are important when dealing with polymeric materials. Therefore
`the 4P’s of the first edition have expanded to the 6P’s in the third edition: polymer,
`processing, product, performace, post-consumer life, and profit. In the last 18
`years, this book has become a reference for many practicing engineers, most of
`whom were introduced to the book as students. The first and second editions were
`praised because of the vast number of graphs and data that can be used as refer-
`ences. We have further strengthened this attribute by expanding a comprehensive
`table in the appendix that contains material property graphs for several polymers.
`Furthermore, in this edition we added color to the figures and graphs, making the
`book more appealing to the reader.
`With this edition we owe our gratitude to Dr. Christine Strohm for editing the book
`and catching those small typos and inconsistencies in the text and equations. We
`thank Dr. Nadine Warkotsch and Steffen Joerg of Hanser Publishers for their coop-
`eration during the production of this book. We are grateful to Luz Mayed D.
`Nouguez and Tobias Mattner for the superb job drawing the figures, and to Tobias
`Mattner for his suggestions on how to make many of the figures more understand-
`able. A special thanks to Katerina Sánchez for the graphs related to recycling of
`plastics in Chapter 1 and to Nora Catalina Restrepo for generating the polymer
`statistic graphs in Chapter 2. My graduate students Roberto Monroy, Luisa López,
`Tom Mulholland, Jakob Onken, Camilo Pérez, Daniel Ramírez, Jochen Wellekoetter
`and Yuxiao Zhang, organized by William Aquite, supplied extra problems and solu-
`tions for the third edition; thank you. Special thanks to Diane for – as always –
`serving as a sounding board and advisor during this project.
`Spring 2012
`Tim A. Osswald
`Madison, Wisconsin, USA
`
`Georg Menges
`Aachen, Germany
`
`MacNeil Exhibit 2178
`Yita v. MacNeil IP, IPR2020-01139, Page 7
`
`

`

`Yita v. MacNeil IP, IPR2020-01139, Page 8
`
`MacNeil Exhibit 2178
`
`MacNeil Exhibit 2178
`Yita v. MacNeil IP, IPR2020-01139, Page 8
`
`

`

`Contents
`
`Preface to the First Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`V
`
`Preface to the Third Edition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII
`
`Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`!
`$.$ The % P’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`$.& General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`$.# Identification of Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`$.’ Sustainability – The %th P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`" Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`&.$ From Natural to Synthetic Rubber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`&.& Cellulose and the $$),))) Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`&.# Galalith – The Milk Stone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`&.’ Leo Baekeland and the Plastics Industry . . . . . . . . . . . . . . . . . . . . . . . . . .
`&.( Herman Mark and the American Polymer Education . . . . . . . . . . . . . . . .
`&.% Wallace Hume Carothers and Synthetic Polymers . . . . . . . . . . . . . . . . . . .
`&.*
` Polyethylene – A Product of Brain and Brawn . . . . . . . . . . . . . . . . . . . . . .
`&., The Super Fiber and the Woman Who Invented It . . . . . . . . . . . . . . . . . . .
`&.+ One Last Word – Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`# Structure of Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`#.$ Macromolecular Structure of Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`#.& Molecular Bonds and Inter-Molecular Attraction . . . . . . . . . . . . . . . . . . . .
`#.# Molecular Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`#
`#
`%
`$#
`$(
`&)
`
`&$
`&$
`&*
`#)
`#$
`#’
`#*
`#+
`’&
`’’
`’*
`
`’+
`’+
`()
`($
`
`MacNeil Exhibit 2178
`Yita v. MacNeil IP, IPR2020-01139, Page 9
`
`

`

`X
`
`Contents
`
`#.’ Conformation and Configuration of Polymer Molecules . . . . . . . . . . . . . .
`#.( Arrangement of Polymer Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`#.(.$ Thermoplastic Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`#.(.& Amorphous Thermoplastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`#.(.# Semi-Crystalline Thermoplastics . . . . . . . . . . . . . . . . . . . . . . . . . . .
`#.(.’ Thermosets and Cross-Linked Elastomers . . . . . . . . . . . . . . . . . . . .
`#.% Copolymers and Polymer Blends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`#.* Polymer Additives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`#.*.$ Flame Retardants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`#.*.& Stabilizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`#.*.# Antistatic Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`#.*.’ Fillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`#.*.( Blowing Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`$ Thermal Properties of Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`’.$ Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`’.$.$ Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`’.$.& Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`’.$.# Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`’.$.’ Thermal Diffusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`’.$.( Linear Coefficient of Thermal Expansion . . . . . . . . . . . . . . . . . . . .
`’.$.% Thermal Penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`’.$.* Glass Transition Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`’.$., Melting Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`’.& Measuring Thermal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`’.&.$ Differential Thermal Analysis (DTA) . . . . . . . . . . . . . . . . . . . . . . . .
`’.&.& Differential Scanning Calorimeter (DSC) . . . . . . . . . . . . . . . . . . . . .
`’.&.# Thermomechanical Analysis (TMA) . . . . . . . . . . . . . . . . . . . . . . . . .
`’.&.’ Thermogravimetry (TGA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`’.&.( Density Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`% Rheology of Polymer Melts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.$ Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.$.$ Continuum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.$.& The Generalized Newtonian Fluid . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.$.# Normal Stresses in Shear Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.$.’ Deborah Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`(%
`(+
`%)
`%)
`%&
`*&
`*#
`*(
`*(
`**
`*,
`*,
`*+
`,&
`
`,#
`,(
`,(
`+$
`+#
`+%
`+*
`+,
`++
`++
`++
`$))
`$)$
`$)#
`$)’
`$)(
`$)+
`
`$$$
`$$$
`$$$
`$$#
`$$(
`$$%
`
`MacNeil Exhibit 2178
`Yita v. MacNeil IP, IPR2020-01139, Page 10
`
`

`

`
`
`Contents
`
`XI
`
`(.& Viscous Flow Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.&.$ The Power Law Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.&.& The Bird-Carreau-Yasuda Model . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.&.# The Bingham Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.&.’ Elongational Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.&.( Rheology of Curing Thermosets . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.&.% Suspension Rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.# Simplified Flow Models Common in Polymer Processing . . . . . . . . . . . . .
`(.#.$ Simple Shear Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.#.& Pressure Flow Through a Slit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.#.# Pressure Flow through a Tube – Hagen-Poiseuille Flow . . . . . . . .
`(.#.’ Couette Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.’ Viscoelastic Flow Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.’.$ Differential Viscoelastic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.’.& Integral Viscoelastic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.( Rheometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.(.$ The Melt Flow Indexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.(.& The Capillary Viscometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.(.# Computing Viscosity Using the Bagley and
`Weissenberg-Rabinowitsch Equations . . . . . . . . . . . . . . . . . . . . . . .
`(.(.’ Viscosity Approximation Using the Representative
`Viscosity Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.(.( The Cone-Plate Rheometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.(.% The Couette Rheometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.(.* Extensional Rheometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`(.% Surface Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`Introduction to Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`&
`%.$ Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`%.$.$ The Plasticating Extruder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`%.$.$.$ The Solids Conveying Zone . . . . . . . . . . . . . . . . . . . . . . . . .
`%.$.$.& The Melting Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`%.$.$.# The Metering Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`%.$.& Extrusion Dies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`%.$.&.$ Sheeting Dies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`%.$.&.& Tubular Dies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`%.& Mixing Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`%.&.$ Distributive Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`%.&.$.$ Effect of Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`$$+
`$$+
`$&$
`$&&
`$&&
`$&(
`$&*
`$&+
`$&+
`$#)
`$#)
`$#$
`$#&
`$#&
`$#(
`$#,
`$#+
`$#+
`
`$’$
`
`$’&
`$’#
`$’’
`$’(
`$’,
`$(*
`
`$%#
`$%#
`$%%
`$%,
`$*$
`$*’
`$*(
`$*%
`$**
`$*+
`$,$
`$,&
`
`MacNeil Exhibit 2178
`Yita v. MacNeil IP, IPR2020-01139, Page 11
`
`

`

`XII
`
`Contents
`
`$,’
`%.&.& Dispersive Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`$,’
`%.&.&.$ Break-Up of Particulate Agglomerates . . . . . . . . . . . . . . . .
`$,%
`%.&.&.& Break-Up of Fluid Droplets . . . . . . . . . . . . . . . . . . . . . . . . . .
`$,+
`%.&.# Mixing Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`$+)
`%.&.#.$ Static Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`$+)
`%.&.#.& Banbury Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`$+&
`%.&.#.# Mixing in Single Screw Extruders . . . . . . . . . . . . . . . . . . .
`$+’
`%.&.#.’ Co-Kneader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`$+(
`%.&.#.( Twin Screw Extruders . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`$+,
`%.&.’ Energy Consumption During Mixing . . . . . . . . . . . . . . . . . . . . . . . .
`$++
`%.&.( Mixing Quality and Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`%.&.% Plasticization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &)$
`%.# Injection Molding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &)%
`%.#.$ The Injection Molding Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &)*
`%.#.& The Injection Molding Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . &$)
`%.#.&.$ The Plasticating and Injection Unit . . . . . . . . . . . . . . . . . . &$)
`%.#.&.& The Clamping Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`&$$
`%.#.&.# The Mold Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`&$#
`%.’ Special Injection Molding Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &$%
`%.’.$ Multi-Component Injection Molding . . . . . . . . . . . . . . . . . . . . . . . . &$%
`%.’.& Co-Injection Molding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`&$,
`%.’.# Gas-Assisted Injection Molding (GAIM) . . . . . . . . . . . . . . . . . . . . . .
`&$+
`%.’.’ Injection-Compression Molding . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`&&$
`%.’.( Reaction Injection Molding (RIM) . . . . . . . . . . . . . . . . . . . . . . . . . . &&&
`%.’.% Liquid Silicone Rubber Injection Molding . . . . . . . . . . . . . . . . . . . . &&(
`%.( Secondary Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &&%
`%.(.$ Fiber Spinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &&%
`%.(.& Film Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &&*
`%.(.&.$ Cast Film Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &&*
`%.(.&.& Film Blowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &&,
`%.(.# Blow Molding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &#)
`%.(.#.$ Extrusion Blow Molding . . . . . . . . . . . . . . . . . . . . . . . . . . . . &#)
`%.(.#.& Injection Blow Molding . . . . . . . . . . . . . . . . . . . . . . . . . . . . &#&
`%.(.#.# Thermoforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &##
`%.% Calendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &#(
`%.* Coating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &#,
`%., Compression Molding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &’)
`%.+ Foaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &’&
`%.$) Rotational Molding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &’’
`
`MacNeil Exhibit 2178
`Yita v. MacNeil IP, IPR2020-01139, Page 12
`
`

`

`
`
`Contents
`
`XIII
`
`%.$$ Computer Simulation in Polymer Processing . . . . . . . . . . . . . . . . . . . . . . . &’(
`%.$$.$ Mold Filling Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &’%
`%.$$.& Orientation Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &’,
`%.$$.# Shrinkage and Warpage Predictions . . . . . . . . . . . . . . . . . . . . . . . . &’+
`References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &%)
`
`’ Anisotropy Development During Processing . . . . . . . . . . . . . . . . . &%#
`*.$ Orientation in the Final Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &%#
`*.$.$ Processing Thermoplastic Polymers . . . . . . . . . . . . . . . . . . . . . . . . &%#
`*.$.& Processing Thermoset Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`&*$
`*.& Predicting Orientation in the Final Part . . . . . . . . . . . . . . . . . . . . . . . . . . . &*(
`*.&.$ Planar Orientation Distribution Function . . . . . . . . . . . . . . . . . . . . &*%
`*.&.& Single Particle Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &*,
`*.&.#
`Jeffery’s Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &*+
`*.&.’ Folgar-Tucker Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &,)
`*.&.( Tensor Representation of Fiber Orientation . . . . . . . . . . . . . . . . . .
`&,$
`*.&.(.$ Predicting Orientation in Complex Parts Using
`Computer Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &,&
`*.# Fiber Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &,*
`References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &+#
`
`( Solidification of Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &+(
`,.$ Solidification of Thermoplastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &+(
`,.$.$ Thermodynamics During Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . &+(
`,.$.& Morphological Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &++
`,.$.# Crystallization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #))
`,.$.’ Heat Transfer During Solidification . . . . . . . . . . . . . . . . . . . . . . . . . #)#
`,.& Solidification of Thermosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #)*
`,.&.$ Curing Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #),
`,.&.& Cure Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #)+
`,.&.# Heat Transfer During Cure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #$’
`,.# Residual Stresses and Warpage of Polymeric Parts . . . . . . . . . . . . . . . . . . #$%
`,.#.$ Residual Stress Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #$+
`,.#.$.$ Residual Stress Model Without Phase Change Effects . . . #&$
`,.#.$.& Model to Predict Residual Stresses with
`Phase Change Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #&&
`,.#.& Other Simple Models to Predict Residual Stresses and Warpage . #&’
`,.#.&.$ Uneven Mold Temperature . . . . . . . . . . . . . . . . . . . . . . . . . #&%
`,.#.&.& Residual Stress in a Thin Thermoset Part . . . . . . . . . . . . . #&*
`,.#.&.# Anisotropy Induced Curvature Change . . . . . . . . . . . . . . . #&,
`
`MacNeil Exhibit 2178
`Yita v. MacNeil IP, IPR2020-01139, Page 13
`
`

`

`XIV
`
`Contents
`
`,.#.# Predicting Warpage in Actual Parts . . . . . . . . . . . . . . . . . . . . . . . . . #&+
`References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ##%
`
`) Mechanical Behavior of Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . #’$
`+.$ Basic Concepts of Stress and Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #’$
`+.$.$ Plane Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #’&
`+.$.& Plane Strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #’#
`+.& Viscoelastic Behavior of Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #’#
`+.&.$ Stress Relaxation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #’’
`+.&.& Time-Temperature Superposition (WLF-Equation) . . . . . . . . . . . . . #’%
`+.&.# The Boltzmann Superposition Principle . . . . . . . . . . . . . . . . . . . . . #’*
`+.# Applying Linear Viscoelasticity to Describe the Behavior of Polymers . . #’,
`+.#.$ The Maxwell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #’+
`+.#.& Kelvin Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #()
`+.#.# Jeffrey Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #(&
`+.#.’ Standard Linear Solid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #(’
`+.#.( The Generalized Maxwell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . #(%
`+.’ The Short-Term Tensile Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #%$
`+.’.$ Rubber Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #%&
`+.’.& The Tensile Test and Thermoplastic Polymers . . . . . . . . . . . . . . . . #%*
`+.( Creep Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #*’
`+.(.$
`Isochronous and Isometric Creep Plots . . . . . . . . . . . . . . . . . . . . . . #*,
`+.% Dynamic Mechanical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #*+
`+.%.$ Torsion Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #*+
`+.%.& Sinusoidal Oscillatory Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #,#
` Effects of Structure and Composition on Mechanical Properties . . . . . . . #,(
`+.*.$ Amorphous Thermoplastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #,(
`+.*.& Semi-Crystalline Thermoplastics . . . . . . . . . . . . . . . . . . . . . . . . . . . #,,
`+.*.# Oriented Thermoplastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #+)
`+.*.’ Crosslinked Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #+(
`+., Mechanical Behavior of Filled and Reinforced Polymers . . . . . . . . . . . . . #+*
`+.,.$ Anisotropic Strain-Stress Relation . . . . . . . . . . . . . . . . . . . . . . . . . . #++
`+.,.& Aligned Fiber Reinforced Composite Laminates . . . . . . . . . . . . . . . ’))
`+.,.# Transformation of Fiber Reinforced Composite Laminate
`Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ’)&
`+.,.’ Reinforced Composite Laminates with a Fiber Orientation
`Distribution Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ’)’
`+.+ Strength Stability Under Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ’)(
`References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ’&$
`
`+.*
`
`MacNeil Exhibit 2178
`Yita v. MacNeil IP, IPR2020-01139, Page 14
`
`

`

`
`
`Contents
`
`XV
`
`!* Failure and Damage of Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ’&#
`$).$ Fracture Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ’&#
`$).$.$ Fracture Predictions Based on the Stress Intensity Factor . . . . . . ’&’
`$).$.& Fracture Predictions Based on an Energy Balance . . . . . . . . . . . . . ’&%
`$).$.# Linear Viscoelastic Fracture Predictions Based on J-Integrals . . . ’&,
`$).& Short-Term Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ’#)
`$).&.$ Brittle Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ’#)
`$).&.& Ductile Failure . . . . . . . . . . .

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket