throbber
(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`
`0301
`
`EX1008 (Part 2 of 3)
`Yita v. MacNeil
`IPR2020-01139
`
`

`

`5.1
`
`Introduction
`
`5.2 Overall Cooling Heat Balance
`
`285
`
`Once the part has been heated and formed to shape by contact with the cool mold
`surface, it must be cooled andrigidified. Then the part and its web must be separated
`by trimming. When thermoforming a reactive polymer such as thermosetting
`polyurethane or a crystallizing one such as nucleated CPET', the formed shapeis
`rigidified by holding it against a heated mold to continue the crosslinking reaction or
`crystallization.
`In most cases, rigidifying implies cooling while in contact with a
`colder mold, For automatic thin-gage formers, the molds are usually actively cooled
`with water flowing through channels. Free surfaces of medium- and heavy-gage sheet
`are frequently cooled with forced air, water mist or water spray, For amorphous
`polymers, cooling of the formed part against a near-isothermal mold rarely controls
`the overall thermoforming cycle. For crystalline and crystallizing polymers such as
`PET, PP and HDPE,the cooling cycle can be long and can govern overall cycle time.
`When the sheet has cooled sufficiently to retain its shape and, to a large extent,
`its dimension,
`it
`is stripped from the mold and transferred to a trimming station,
`where the web is separated from the product. Requisite holes, slots and cut-outs are
`drilled, milled or burned into the part at this time. Thin-gage roll-fed sheet can be
`either trimmed on the mold surface immediately after forming or on an in-line
`mechanical trimming press. Heavier-gage formed sheet is usually removed from the
`mold and manually or mechanically trimmed on a remote station. Trimmingis really
`a solid phase mechanical process of crack propagation by brittle or ductile fracture.
`Care is taken when trimming brittle polymers such as PS or PMMA to minimize
`microcracks, With brittle polymers,
`the very fine sander, saw or microcrack dust
`generated by mechanical fracture can be a serious problem, Other polymers such as
`PP and PET are quite tough and require special cutting dies. Dull steel-rule dies
`cause fibers or hairs at the cutting edge of thin-gage fiber-forming polymers such as
`PET and PP. Slowly crystallizing polymers pose registry problems when in-line
`trimming presses are used. The speed of trim cutting and the nature of the cutting
`surface control
`the rate of crack propagation through the plastic. There are no
`exhaustive studies of the unique trimming and cutting characteristics of thermo-
`formed polymers and so much information must be inferred from other sources
`including extensive studies on the machining ofplastics.
`
`5.2 Overall Cooling Heat Balance
`
`it is assumed to be at an
`Asa first approximation, as the sheet touches the mold,
`average, equilibrated temperature, T,,,,,, a8 described in Section 3.13. When the
`
`The unique processing conditions for crystallizing polyethylene terephthalate (CPET) are de-
`scribed in detail in Chapter 9, Advanced Thermoforming Processes.
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0302
`
`0302
`
`

`

`286
`
`Cooling and Trimming the Part
`
`{Refs. on p. 379]
`
`average sheet temperature reaches the set temperature, T,.,, as given in Table 2.5,
`the sheet
`is assumed to be sufficiently rigid ta be removed from the mold
`surface. Typically,
`the amorphous polymer set
`temperature is about 20°C or
`40°F below its glass transition temperature, T,. The crystalline polymer set temper-
`ature is about 20°C or 40°F below its melting temperature, T,,.;, During the
`cooling time,
`the mold temperature is assumed to be essentially constant at
`Tinota’ Lhe amount of heat to be removed by the coolant flowing through the mold
`is given as:
`
`WYtense =V*- PC,(Teguit — Tet)
`
`=V* ‘pc, AT =V* + pAH
`
`(5.1)
`
`where V* is the volumeofplastic, p is its density and c, is its heat capacity’. Heat
`is removed from the free sheet surface by convection to the environmental air. Heat
`is removed from the sheet surface against the mold surface by conduction through
`the mold to the coolant. The coolant fluid removes the heat by convection. The heat
`load at any point on the mold surface depends on the sheet thickness, t),.,), at that
`point, Sheet thickness, as noted in Chapter4, is not uniform across the mold surface.
`The heat load at any point is given as:
`
`local = Pp 3 Cy i‘ Local ; AT
`
`(5.2)
`
`This is the heat to be removed from a given region during the cooling portion of the
`total cycle, 8,,.;. The local heat flux thenis:
`(5.3)
`Moet =Go = PG Lica —
`The units on qj.,..; are kW/m? or Btu/ft?- h- °F. The total heat load during this time
`1S given as:
`
`AT
`Oca
`
`Be
`oc!
`
`Quota= ata dA
`
`The total heat load per unit time on a steady-state process is given as:
`
`Qhreaay state = Qioiat ” N
`
`(5.4)
`
`(5.5)
`
`where N is the number of parts produced per unit time. The units on Qyready stare ATE
`kW or Btu/h.
`At steady-state conditions, this energy is removed by the coolant system and by
`convection to the environmental air. Mold, coolant and air temperatures increase
`until the steady state is reached,
`
`'
`
`The last equality relates the amount of heal removed to the differential enthalpy, AH, of the
`polymer. This expression should be used if the polymer is crystalline and moJten during the
`forming step andis solidifying during the cooling step,
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0303
`
`0303
`
`

`

`5.3 Cooling the Formed Shape
`
`287
`
`5.3 Cooling the Formed Shape
`
`Consider a typical cooling step. The sheet of variable thickness but known tempera-
`ture is pressed against a slightly irregular surface of a mold, The properties of the
`mold material are known and uniform throughoutits volume, Chapter 6. Coolant of
`known properties fows through uniformly spaced channels in the mold, The free
`surface of the part is also cooled, At any instant, the temperature profile through the
`variouslayers of material is as shown in schematic in Fig. 5.1. The rate at which the
`energy is removed from the plastic to ambient air and coolant depends on the sum
`of resistances to heat transfer through each of these layers. Heat removal by the
`coolantis the primary way of cooling the formed part. Transfer to the environmental
`air is a secondary method but it can be quite important when trying to optimize cycle
`time. There are two aspects to heat removal from the formed polymer sheet to the
`coolant. The first deals with the overall heat transfer at steady state conditions. The
`second focuses on certain aspects ofcyclical transient heat transfer.
`
`Mold
`
`Surface Irreqularities
`
`Plastic Sheet
`
`Air Gap
`
`Coolant Film Resistance
`
`
`
`
`
`Free Surface Film Resistance
`
`To
`
`
`Ambient Environment
`
`
`
`Series Thermal Resistances
`
`Figure 5.1 Schematic of various thermalresistances for sheet cooling against thermoforming mold
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0304
`
`0304
`
`

`

`288
`
`Cooling and Trimming the Part
`
`[Refs. on p. 379]
`
`Battle
`
`Mold Insert
`
`Flow Channel
`
`Coolant
`
`SIAN _N 1]
`
`NARS
`
`|_t
`
`a
`
`teAoP
`
`WINES
`
`Figure 5.2 Typical serpentine coolant flow channel through thermoforming mold
`
`5.4 Steady State Heat Balance
`
`Consider the limiting case where all the energy is transferred directly to the mold and
`thence to the coolant. Typically, coolant lines are drilled or cast on a discrete, regular
`basis parallel to the mold surface (Fig. 5.2), Heat removal by coolant depends on
`convection heat transfer, or fluid motion'. The total amount of energy removed by
`the coolant embedded in the mold is given as:
`
`Q=UA AT
`
`(5.6)
`
`where U is the overall heat transfer coefficient, A is the coolant surface area and AT
`is the increase in coolant temperature between inlet and outlet portions of the flow
`channel. The overall heat transfer coefficient includes all flow resistances between the
`sheet and the coolant. It is usually written as:
`
`lU
`
`(5.7)
`7 XR,
`where R,represents the ith resistance to heat transfer. As seen in Fig.5.1, for flowing
`fluids, there is a convective film resistance at the conduit surface,
`|/xDh,, where nD
`is the circumference of the conduit. If the coolantfluid is not kept clean, the coolant
`channel can become coated with residue, thus increasing thermal resistance. This
`
`'
`
`This section deals only with the convection heat transfer coefficient of coolant flowing through
`lines in the mold. Section 6.4 considers coolant pressure drop-fiow rate relationships for the
`specification of coolant line size,
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0305
`
`0305
`
`

`

`Table 5.1 Fouling Factors for Coolant Lines'
`
`5.4 Steady State Heat Balance
`
`289
`
`Coolant
`
`Condition
`
`
`
`Fouling factor
`(Biu/ft-h-°F)~'
`Velocity <3 ft/s
`
`Velocity >43 ft/s
`
`0
`
`Treated make-up
`cooling tower water
`
`Treated make-up
`cooling tower water
`City water
`City water
`River water
`River water
`Treated boiler
`feedwater
`Treated boiler
`feedwater
`Industrial heat
`transfer oil
`Ethylene glycol
`Glycerine-water
`Brine
`Brine
`Steam
`
`Water < 125°F
`
`Water > 125°F
`
`Water < 125°F
`Water > 125°F
`Water < 125°F
`Water > 125°F
`Water < 125°F
`
`Water > 125°F
`
`Temperature < |25°F
`Temperature > 125°F
`
`0.001
`
`0.002
`
`0.001
`0.002
`0.001
`0.002
`0.0005
`
`0.001
`
`0.001
`
`0.001
`0.001
`0.001
`0.002
`
`' Information extracted from [|] by permission of copyright holder
`
`resistance is called a fouling factor, ff Fouling factors are given in Table 5.1 [1].
`The resistance through the mold depends on the relative shapes of the mold surface
`and the coolant channels, and is usually described as 1/Sk,,, where S is a shape factor
`and k,,
`is the thermal conductivity of the mold material. Since polymer sheet does
`not press tightly against the mold surface, there is a conductive resistance owing to
`trapped air,
`|/h,. Although there may be other thermal resistances, these are the
`primary ones. So the overall heat transfer coefficient, U,
`is written as:
`
`I
`|
`1
`7 sph sth F
`
`es
`
`1U
`
`Interfacial Resistance
`
`In most heat transfer processes, intimate or perfect contact between the hot and cold
`solids is assumed. Imperfect contact causes resistance to heat flow. Mold surface
`waviness and microscopic roughness or asperities reduce physical contact (Fig. 5.3).
`Increasing pressure against
`the sheet
`increases physical contact and reduces the
`resistance to heat transfer. In general, energy is transmitted across the interstices by
`a combination of:
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0306
`
`0306
`
`

`

`290
`
`Cooling and Trimming the Part
`
`[Refs. on p. 379]
`
`Cold, Rigid or Heavy-Gage Sheet
`
`Trapped Air
`
`Hot, Flexible or Thin-Gage Sheet
`
`Wiking
`
`AQYMREK
`
`Cold Mold
`
`Mold Asperities
`
`Hot Mold
`
`Figure 5.3 Interfacial resistance between sheet and thermoforming mold surface. Left shows sub-
`stantial thermal resistance owing to large air gap. Right shows reduced thermal resistance
`
`® Conduction at the asperities,
`« Conduction through the interstitia] fluid, and
`® Radiation.
`
`The resistance is thus a function of:
`
`e® The contacting material properties such as
`Relative hardness,
`Thermal conductivity,
`Surface roughness and
`Flatness,
`* The conductivity and pressure of the interstitial fluid, and
`« The pressure applied against the free surface of the sheet.
`
`The interface coefficient, h,, is a measure of thermal resistance across the gap.It is
`similar in concept to the confection heat transfer in that resistance to heat flow
`decreases with increasing value of h,. For perfect contact, h, 00,
`In thermoforming, the interstitial fluid is air, perhaps at a substantially reduced
`pressure. If the interface is a uniform air gap of 6= 0.025 cm or 0.010 in and air
`thermal conductivity is k,;,=0.029 W/m-°C or 0.0167 Btu/ft: h- °F, the value for
`h,
`is about 114 W/m?-°C or 20 Btu/ft?-h-°F. Contact heat transfer coefficient
`values between flowing polymer melts and mold surfaces of about h, = 568
`W/m?) °C or 100 Btu/ft?-h-°F have been reported in injection molding [2-4].
`Similar values are expected here. For two surfaces in contact, h, =h,,p", where p is
`the applied pressure and h,, depends on the relative waviness and roughness of the
`two surfaces, Table 5.2 [5]. As seen, n has a value of about 2/3 for both rigid-rigid
`and rigid-flexible material contact in vacuum. Values for h,, are typically 50 times
`greater in air than in hard vacuum.
`There are no available data for interfacial resistance during thermoforming of
`softened plastic sheet against various types of mold surfaces. For hot sheet pressed
`against a relatively smooth, heated mold surface at a relatively high differential
`pressure,
`it
`is expected that an appropriate value for h, would be about 4568
`W/m?:°C or 100 Btu/ft?-h:+°F. For rapidly cooling and rigidizing plastic sheet
`pressing against a highly textured, cold mold surface with a modest differential
`pressure, an appropriate value range for h, of 114 to 284 W/m*-°C or 20 to
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0307
`
`0307
`
`

`

`Table 5.2 Contact Resistance and Conductance [5] h,=h.,. p"
`(Units on h,=W/m?- °C or Btu/ft?- h- °F)
`(Units on p are MPa orIb,/in*)
`
`5.4 Steady State Heat Balance
`
`29]
`
`2/3
`
`Material
`contact
`
`Elastic deformation
`theory
`Hard-to-hard
`Hard-to-hard
`Hard-to-soft
`
`None
`
`Vacuum
`Air
`Vacuum
`
`Contact coefficient, h,.
`
`(W/m? - C)
`
`(Btu/ft? -h- °F)
`
`?
`
`;
`
`n
`
`2/3
`
`2/3
`1/6
`
`50 Btu/ft? - h - °F should be consideredfor first cooling time estimates. Section 5.6 on
`computer simulation of the cooling process explores the relative effect of interfacial
`resistance on time-dependent sheet cooling.
`
`Shape Factor
`
`For thin metal molds, heat is conducted very rapidly from the plastic to the coolant.
`Forrelatively thick molds of:
`
`Plaster,
`Wood,
`Epoxy,
`Glass fiber-reinforced unsaturated polyester resin (FRP),
`Pressed fiberboard, or
`Any other nonmetallic material,
`
`heat transfer is slowed by low mold material thermal conductivity. If the coolant
`system is considered to be coplanar with the mold surface (Fig. 5.4), the resistance to
`heat transfer per unit length (L= 1), across a mold D units thick is given as:
`D
`5.9
`Lee
`(3.9)
`k
`R,,
`1
`where k,, is the mold material thermal conductivity, Thermal conductivity values for
`many mold materials are given in Table 2.7, For round discrete conduits (Fig. 5.5)
`{6}, a shape factor, 8, is used:
`
`where § is given by:
`
`l
`Rea
`
`a.ee
`In or ak a
`D
`P
`
`(5.10)
`
`(5.11)
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0308
`
`0308
`
`

`

`[Refs. on p. 379]
`
`292
`
`Cooling and Trimming the Part
`
`
`
`Figure 5.4 Schematic of coplanar coolant flow channel and mold surface, concept frequently called
`flooded cooling
`
`Yy
`
`Coolant Channel
`
`P
`}-——__——+
`
`S ©
`
`HotSheet
`
`D
`
`Mold
`
`Figure 5.5 Geometric factors for mold shape factor analysis
`
`the thermal
`that
`is apparent
`It
`Figure 5.6 gives this equation in graphic form,
`resistance of the mold decreases with increasing value of S, which is achieved with
`many large-diameter coolant lines placed relatively close to the mold surface. The
`typical value range for S is 2<S<3. Example 5.1 illustrates the relative effects of
`these parameters on mold thermal resistance,
`
`Example 5.1 Shape Factors and Mold Thermal Resistance
`
`Determine the relative thermal resistances for the following two molds:
`
`Mald 1: Thin-walled aluminum mold with k,,= 131 Btu/ft h °F, having d= 1/2-in
`water lines on P= 2 in centers, with the centerline being D=1 in from the mold
`surface.
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0309
`
`0309
`
`

`

`5.4 Steady State Heat Balance
`
`293
`
`Mold 2: Thick-walled plaster mold with k,,= 1.0 Btu/ft h °F, having d= 1/2-in
`water lines on P= 4 in centers, with the centerline being D=2 in from the mold
`surface.
`
`Mold !
`
`Mold 2
`
`P/d=4, D/d =2. From Fig. 5.6, 8 = 2.
`I
`]
`
`P/d=8, D/d =4. From Fig. 5.6, 8 = 1.6.
`
`angi

`™ Sk, 1.6-1.0
`The plaster mold has more than 160 times the thermal resistance to heat
`transfer than the aluminum mold.
`
`= 0.625
`
`R
`
`Factor,S
`
`Shape
`
`Coolant Channel Spacing to Diameter Ratio, P/d
`
`Figure $.6 Effect of coolant line location on mold shape factor
`
`Convection Heat Transfer Coefficient
`
`roll-fed thin-gage thermoformers and on many
`The metal molds on automatic,
`heavy-gage forming operations are actively cooled, with water being the primary
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0310
`
`0310
`
`

`

`294
`
`Cooling and Trimming the Part
`
`(Refs. on p. 379]
`
`coolant. There is a thermal resistance between the cool bulk flowing fluid and the
`warmer tube wall (Fig. 5.1). The primary dimensionless group used in fluid mechan-
`ics is the Reynolds number, Re:
`
`Re=—
`
`(5.12)
`
`where D is the tube diameter, v is the fluid velocity, p is the density of the fluid and
`jt
`is its Newtonian viscosity [7]. The Reynolds number is the ratio of inertial to
`viscous forces for the fluid. Slowly moving fluids are laminar when Re < 2000.
`Convection heat transfer to slowly moving fluids is poor. Rapidly flowing fluids are
`fully turbulent when Re> 10,000 and heat
`transfer is very rapid. Example 5.2
`illustrates the interaction between flow rate and Reynolds number.
`
`Example 5.2 Water as Coolant—Flow Rates
`
`Consider 21°C or 70°F water flowing through 0.5-in or 1.27-cm diameter coolant
`channels. Determine the Reynolds number and the flow characteristic if the velocity
`is a) 0.52ft/s or 0.16 m/s and b) 2.6ft/s or 0.79 m/s. What are the volumetricflow
`rates at these velocities?
`
`The water density is 62.4 lb/ft*. The viscosity is 0.658 x 10~? Ib,,/ft+s. The
`Reynolds numberis:
`RS age e624 0.658 x 10- ip2 ts
`Dvp_0.5,
`| ft
`ft:
`
`For v = 0.52 ft/s: Re = 2050 and the water is laminar.
`For v= 2.6 ft/s: Re = 10,300 and the water is turbulent.
`The volumetric flow rate is given as:
`Zz
`3
`ya y=0.00136-y t= 0.612-y St
`4
`8
`min
`
`For v=0.52 ft/s, the flow rate is 0.32 GPM.
`For v=2.6 ft/s, the flow rate is 1.6 GPM.
`
`As discussed in Section 3.6, energy interchange between solid surfaces and
`flowing fluids is by convection. The proportionality between heat flux and thermal
`driving force is the convection heat transfer coefficient. The convection heat transfer
`coefficient is obtained from standard heat transfer theory and experiments. There are
`many methodsfor calculating values of h.. In general, however, the Chilton-Colburn
`analogy between resistance to fluid flow andresistance to thermal energy flow yields
`adequate results [8]. The analogy states:
`
`St - Pr2? =£/8
`
`(5.13)
`
`where St is the Stanton number, Pr is the Prandtl number andfis the coefficient of
`friction or friction factor. The Stanton and Prandtl numbers are:
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`0311
`
`0311
`
`

`

`5.4 Steady State Heat Balance
`
`295
`
`Table 5.3. Prandtl Number Values For Several Coolants
`[9,10]
`
`Coolant
`
`Temperature
`(°F)
`
`(Cc)
`
`Prandtl no.
`
`
`
`Air
`Air
`
`Steam
`Steam
`
`Water
`Water
`Water
`Water
`Water
`
`SAE 30 Oil
`SAE 30 Oil
`SAE 30 Oi
`SAE 30 Oil
`SAE 30 Oil
`SAE 30 Oil
`
`Glycerine
`Glycerine
`Glycerine
`Glycerine
`Glycerine
`Air
`Air
`Air
`
`Light Oi
`Light Oil
`Light Oil
`Light Oil
`
`0.72
`0.72
`
`0.96
`0.94
`
`13.7
`6.82
`4.52
`2.74
`1.88
`
`1170
`340
`122
`62
`35
`22
`
`31,000
`12,500
`5,400
`2,500
`1,600.
`0.72
`0.71
`0.685
`
`340
`62
`35
`22
`
`st=
`
`
`h
`
`pe,V
`
`fra
`a
`
`(5.14)
`
`(5.15)
`
`the
`transfer coefficient, p is the fluid density at
`where h is the convective heat
`appropriate temperature, c, is the fluid heat capacity, v is the average fluid velocity,
`v= /p, is the kinematic viscosity, and «=k/pc,, is the fluid thermal diffusivity. In
`essence, Pr is the ratio of inertial to thermal properties and St is the ratio of fluid to
`thermal resistances. Table 5.3 gives appropriate Prandt! number values for several
`coolants [9,10]. As examples, Pr 7 for room temperature water and Pr ~ 300 for
`
`(cid:926)(cid:3)(cid:1005)(cid:1013)(cid:1013)(cid:1010)(cid:3)(cid:18)(cid:258)(cid:396)(cid:367)(cid:3)(cid:44)(cid:258)(cid:374)(cid:400)(cid:286)(cid:396)(cid:3)(cid:115)(cid:286)(cid:396)(cid:367)(cid:258)(cid:336)(cid:856)(cid:3)(cid:4)(cid:367)(cid:367)(cid:3)(cid:396)(cid:349)(cid:336)(cid:346)(cid:410)(cid:400)(cid:3)(cid:396)(cid:286)(cid:400)(cid:286)(cid:396)(cid:448)(cid:286)(cid:282)(cid:856)(cid:3)
`© 1996 Carl Hanser Verlag. All rights reserved.
`(cid:69)(cid:381)(cid:3)(cid:437)(cid:374)(cid:258)(cid:437)(cid:410)(cid:346)(cid:381)(cid:396)(cid:349)(cid:460)(cid:286)(cid:282)(cid:3)(cid:282)(cid:349)(cid:400)(cid:272)(cid:367)(cid:381)(cid:400)(cid:437)(cid:396)(cid:286)(cid:3)(cid:381)(cid:396)(cid:3)(cid:396)(cid:286)(cid:393)(cid:396)(cid:381)(cid:282)(cid:437)(cid:272)(cid:410)(cid:349)(cid:381)(cid:374)(cid:854)(cid:3)(cid:367)(cid:349)(cid:272)(cid:286)(cid:374)(cid:400)(cid:286)(cid:282)(cid:3)(cid:410)(cid:381)(cid:3)(cid:393)(cid:437)(cid:396)(cid:272)(cid:346)(cid:258)(cid:400)(cid:286)(cid:396)(cid:3)(cid:381)(cid:374)(cid:367)(cid:455)(cid:856)
`No unauthorized disclosure or reproduction; licensed to purchaser only.
`
`031

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket