`
`Scientific technical journal for glass, enamel, ceramic, and binder
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`CONTENTS
`
`Dusdorf, W.; Al-Hamdan, K.; Nölle, G.
`Characterization and stabilization of the brown glass chromophore
`with a focus on cullet use
`
`Ljubtschev, L.; Jordanov, G.; Liptschev, S.; Georgiev, D.
`Viscosity characteristics of basalt glasses for the isolation of continuous filaments
`
`Leiterer, M.; Wittkopf, H.
`Gas chromatographic water desorption investigations on silicate glass
`fracture planes
`
`Schnabel, H.-D.; Dusdorf, W.
`Joining of silicon nitride via oxynitride glasses
`
`Rönsch, E.; Scheler, H.; Kirsten, B.; Henneberg, E.
`On the impact of display conditions and output kieselsol on the properties
`of isolated SiO2 products
`
`Nitzsche, R.; Boden, G.
`Surface modification and characterization of silicon nitride fine-grained
`powders
`
`Ulbricht, J.; Bach, U.; Kloß, G.
`Production and properties of carbon-containing refractory products
`
`
`
`
`
`
`
`
`
`
`
`
`
`pg. 112
`
`pg. 115
`
`pg. 117
`
`pg. 122
`
`pg. 126
`
`pg. 129
`
`pg. 133
`
`
`
`
`
`
`
`Setting:
`Photo setting Voigt,
`Friedrichstraße 231, W-1000 Berlin 61, phone 2513281
`
`
`
`Orders can be submitted to the following institutions:
`
`
`
`Publisher:
`Verlag für Bauwesen GmbH.
`Französische Straße 13/14, Berlin, O-1086;
`telegraphic address: Bauwesenverlag Berlin; Telex
`number: 112229 Trave
`
`Editorial Board:
`Editor in Chief: Bauing. [Civil Eng.] Bernd Schröder;
`Editorial Assistant: Heidemarie Albrecht
`Phone: 20341259
`
`Manufacturer:
`Markus Hoeft
`
`Editorial Advisory Board:
`Acting Chairman: Dr. H.-D. Witzke, Berlin; Doz. [Lecturer]
`Dr. I. Berger. Weimar; Obering. G. Bornschein, Dessau; Dr.-
`Ing. [doctorate in eng.] B. Butterling, Colditz; Dipl.-Chem.
`[degree in chem.] K. Gerth, Jena; Doz. Dr. W. Götz, Jena;
`Dipl.-Ing. [degree in eng.] W. Graf, Meißen; Prof. Dr. Dr. D.
`Hülsenberg, Ilmenau; Dipl.-Ing. F. Kerbe, Hermsdorf; Dr. J.
`Klein, Weißwasser; Dr. H. Marusch, Torgau: Dipl.-Ing. H.
`Reinhardt, Meißen; Dipl.-Ing. K. D. Rotter, Berlin; Prof. Dr.
`W. Schulle, Freiberg; Prof. J. Stark, Weimar: Obering. Dr. F.
`Weihrauch, Freiberg; Prof. Dr. W. Wieker, Berlin
`
`
`Silicate Technology 42 (1991), Issue 4
`
`
`
`
`
`Printing:
`Druckhaus Mitte GmbH
`Reinhold-Huhn-Straße 18-25, Berlin, O-1086
`
`Article number: 23637
`
`Manner of publication and pricing:
`Monthly;
`Annual purchase price DM 120.00 including VAT,
`Single issue price DM 10.00
`The purchase prices do not include packaging and shipping.
`The subscription price is valid for a minimum subscription
`period of one year. Subscriptions can only be cancelled on
`December 31 with a notice of 4 weeks.
`
`Advertisement management:
`Verlag für Bauwesen GmbH:
`Französische Straße 13/14. Berlin, O-1086;
`Phone 20341256
`
`Domestic
`Verlag für Bauwesen GmbH
`Postfach 1232
`Französische Straße 13/14
`O-1086 Berlin
`
`Switzerland
`Verlagsauslieferung Wissenschaft der Freihofer AG,
`Weinbergstraße 109, CH-8033 Zurich
`
`Western countries
`Gebrüder Petermann GmbH und Co. KG
`Kurfürstenstraße 111, W-1000 Berlin 30
`
`East European countries
`Kubon & Sagner
`Buchexport - Import GmbH
`Postfach 340108
`Heßstraße 39-41, W-8000 Munich 34
`
`Copyright:
`This magazine and all individual contributions and
`illustrations contained herein are protected by copyright.
`Any exploitation outside the narrow limits of the
`Urhebergesetz [German Copyright Act] is not permitted
`and is punishable without the consent of the publisher.
`This applies in particular to duplications, translations,
`microfilming, and inputting and processing in electronic
`systems.
`
`109
`
`
`
`O-I Glass, Inc.
`Exhibit 1014
`Page 001
`
`
`
`Characterization and stabilization of the brown glass chromophore
`with a focus on cullet use1)
`Wolfgang Dusdorf, Khaled Al-Hamdan, Günther Nölle
`Bergakademie Freiberg, Department of Process Engineering and Silicate Technology, Scientific Area of Glass and Enamel
`Technology
`
`Amber yellow glasses are melted under reducing conditions,
`usually with the addition of carbon powder. The formation of
`the brown glass or amber chromophore is strongly dependent
`on the redox state of the mixture or the silicate melt. Sufficient
`concentrations of Fe3+ ions and sulfide ions for the formation of
`the amber chromophore [Fe3+S2]- in the glass melt can also form
`without carbon powder addition to the mixture, if the raw
`materials
`themselves have a high content of reducing
`components (usually carbonaceous admixtures, e.g. glass sand,
`limescale). In the knowledge of these components that can be
`determined with a relatively simple chemical analytical method
`(determination of the chemical oxygen requirement of the raw
`materials, referred to as a CSB or COD value), a mixture offset
`correction must be carried out with regard to the carbon powder
`addition in order to realize a constant redox state in the mixture
`or the mixture melt. If this change is not made, then a
`destabilization of the brown glass color in the oxidizing
`direction (weak brown coloring or olive-brown coloring) and
`reducing direction (over-reduction, FeS rejects, gray coloring as
`borderline case) is to be expected.
`In Table 1, CSB values (expressed as ppmC) for some raw
`materials, including their fluctuation range for various
`
`Table 1 CSB values [ppmC]
`
`
`
`Literature
`[1]
`
`Typical values
`[ppmC]
`
`Fluctuation range of the
`delivery [ppmC]
`
`Sand
`
`- Type 3
`
`- Type 4
`Limestone
`(storage
`facility)
`
`- Rüdersdorf
`
`- Bernburg
`
`- Ammern
`
`- Herbsleben
`
`150
`
`
`
`100 to
`
`1,270
`
`
`
`
`
`
`
`4,200
`
`
`
`
`
`
`
`
`
`
`
`150
`
`940
`
`
`
`
`
`1,125
`
`1,800
`
`3,340
`
`9,000
`
`30
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`1,600 to
`
`2,200
`
`
`
`
`
`5,600 to
`
`10,600
`
`
`
`
`
`deliveries to a container glass operation, are listed. As a test
`substance for the usability of the determination procedure,
`analytically pure calcium carbonate was included in the table.
`The given values of the raw materials clearly show large
`changes within a raw material and in comparison to other
`storage facilities, and the reducing agent (carbon powder)
`itself has quality fluctuations. There is a direct connection
`between the CSB value and the loss on ignition of the sand
`(Table 2).
`In numerous publications [2, 3], a concept was proposed to
`determine a so-called mixture redox or glass redox number,
`which essentially means that a factor is assigned to the
`oxidizing and reducing components of the raw materials
`(positive and negative redox factors). The mass of each mixture
`component is multiplied by its redox factor, and the sum is
`reported as the mixture redox number and continuously
`monitored during the operating procedure.
`The role of the cullets was initially neglected in such
`calculations, and later a revised redox factor for cullets was
`used. Our own investigations with green and semi-white cullet
`additions of up to 70 mass % (based on the total quantity)
`allowed the conclusion that the total glass (mixture + cullets) is
`pushed in the oxidizing direction by the added cullets (Table 3).
`The influence is discernible, but difficult to quantify. Because
`the cullets used were themselves melted in an oxidizing
`manner, at least the tendency of the shifting of the redox state
`in the total glass appears logical.
`In addition to holding constant the redox state mixture/melt, an
`Fe203 concentration of about 0.25 mass % and a sufficient
`sulfide concentration are necessary in order to form a certain
`chromophore concentration in the brown glass, which usually
`results from the sulfate quantity added to the mixture under
`reducing conditions. However, the refining behavior is also
`significantly influenced by the redox conditions in the melt
`(equation (1)):
`
`3 Na2SO4 + Na2S ⇆ 4 Na2O + 4 SO2.
`
`(1)
`
`- CaCO3 [p. A.]
`
`Soda
`
`75
`
`110
`
`94 to
`
`150
`
`Carbon powder
`
`650,000
`
`617,400
`
`433,000 to
`
`755,190
`
`Table 2 Sand qualities
`
`
`
`Sand 1
`
`Sand 2
`
`Sand 3
`
`CSB [ppmC]
`
`Loss on ignition [%]
`
`45
`
`45
`
`462
`
`0.10
`
`0.08
`
`0.39
`
`Table 3 Cullet addition/Redox state
`
`Cullet addition [mass %]
`
`20
`
`30
`
`40
`
`50
`
`75
`
`112
`
`
`
`
`FeO/Fe2O3 tot.
`
`green
`
`semi-white
`
`0.80
`
`0.76
`
`0.74
`
`0.66
`
`0.60
`
`0.65
`
`0.58
`
`0.57
`
`0.55
`
`0.51
`
`The equation given applies to colorless, semi-white, and
`colored, in particular amber yellow glasses, so that, under
`reducing conditions, glasses with extremely low total sulfur
`contents (< 0.1% SO3) can be melted.
`
`Brown glass color - time and temperature dependence
`
`Of particular interest is the question of the extent to which
`the amber yellow color is influenced depending on the
`melting
`time and melting
`temperature. Because
`the
`manufacture of brown glasses is done today using mixed
`cullets, this question should be considered particularly in the
`context of the cullets.
`With increasing melting temperature (1350 1500°C) and
`longer melting times (4 24 h), a clear color lightening from
`dark brown to semi-white was proven under laboratory melting
`
`
`
`
`
`
`
`
`
`1) Presentation at the 15th Glass Technology Conference from
`November 19-21, 1990, in Berlin
`
`conditions on an offset of a container glass manufacturer using
`operational raw materials. With regard to melting times, the
`tendency to discoloration increases particularly at high melting
`
`Silicate Technology 42 (1991), Issue 4
`
`
`
`O-I Glass, Inc.
`Exhibit 1014
`Page 002
`
`
`
`y
`
`Parameters: Melting temperature and melting
`duration
`
`in the direction of the arrow,
`increase in the melting duration
`
`1350°C
`
`1450°C
`
`°C
`
`1400°C
`
`red
`
`x
`
`
`
`1 Color locations of brown glasses
`
`Table 4 Redox state, total sulfur content, and bubble count
`
`
`
`FeO/Fe2O3 tot.
`
`SO3 [mass %]
`
`Bubble count
`[in 0.1 cm3]
`
`
`
`temperatures. Figure 1 shows the tendencies of the color
`location shift depending on melting temperature and melting
`time. While at the extremely low melting temperature of
`1350°C,
`the chromophore concentration
`is significantly
`elevated depending on the time (color deepening), the position
`of the color location at a melting temperature of 1400°C should
`be considered virtually independent of melting time. A
`significant reduction in the chromophore concentration is
`observed at a melting temperature of 1500°C depending on the
`melting time, i.e. in the latter case, the color location migrates
`into the vicinity of the uncolored point.
`Based on the selected operating offset, it is concluded from the
`laboratory glass melts that a good brown color is achievable at
`1400°C or at shorter dwell times at 1450°C. In the range of 1400
`to 1450°C, a significant decrease in the bubbling of the melted
`glasses is also observed. Table 4 shows a compilation of the
`ratio FeO/Fe2O3 total as an expression of the redox state of the
`melted glasses, the total sulfur content of the glasses (expressed
`as % SO3), and the bubble count in the glass samples. The
`values given after the forward slash correspond to a test series
`in which a mixed cullet addition (66% green/34% brown) was
`added to the operational brown glass mixture in the amount of
`34% (≙ 39% in relation to the net glass).
`For the cullet-free and the cullet-heavy brown glass offset, the
`same tendencies result with respect to the redox state of the
`melted glasses as well as for the SO3 content. To an extent, the
`glass melted under reducing conditions is depleted in oxygen
`and absorbs oxygen from the gaseous phase into the glass melt,
`which can be proven by the decreasing values FeO/Fe2O3 total.
`The absorbed oxygen oxidizes the sulfide sulfur in the amber
`chromophore, whereby a lightening of the brown glass color is
`caused. Wright [4] showed the lightening of the amber yellow
`color on a production tub if the glass stood under the influence
`of a slightly oxidizing furnace atmosphere or was in a
`stagnating zone of the tub for a rather long time due to a
`production interruption. Table 4 further shows the “refining
`agent effect” of the cullets as well as the significant reduction
`in the SO3 content of the glass melts between 1400 and 1450°C.
`The increased release of SO3 in the refining phase, could also
`be the cause for a destruction of the brown glass chromophore
`according to equation (2):
`
`1350°C/ 4 h
`
`0.68/0.76
`
`1350°C/ 8 h
`
`0.65/0.67
`
`1350°C/ 24 h
`
`0.59/0.55
`
`1400°C/4 h
`
`1400°C/ 8 h
`
`1400°C/ 24 h
`
`
`
`
`
`
`
`1450°C/4 h
`
`0.60/0.56
`
`1450C°/ 8 h
`
`0.55/0.52
`
`0.19/0.19
`
`0.25/0.16
`
`0.20/0.30
`
`0.17/0.17
`
`0.16/0.21
`
`0.10/0.07
`
`0.08/0.05
`
`0.01/0.03
`
`0.04/0.04
`
`135/124
`
`627/ 3
`
`13/ 0
`
`206/ 3
`
`103/ 22
`
`6/ 0
`
`0/ 4
`
`0/ 8
`
`5/ 4
`
`2 NaFeS2 + 12 SO3 ⇆ Fe2O3 + Na2O + 16 SO2.
`
`(2)
`
`1450°C/24 h
`
`0.17/0.13
`
`A sequence according to equation (2) would explain the
`tendencies in the FeO/Fe2O3 tot. ratio according to Table 4.
`
`
`
`Relation of brown glass color to analysis values of raw
`materials
`
`For the glass technician, the interesting question is undoubtedly
`the connection between the analysis values of the raw materials
`of the mixture, the analyzed glass composition (SO3-, S2-
`
`content, Fe concentration, Fe2+/Fe3+tot.ratio) and the brown color
`of the glass obtained as a result of this interaction.
`Shimono [5] attempted to enable a relation between the
`concentration of the metal ions in the glass (preferably the iron
`ions), the melting temperature, the furnace atmosphere, etc., and
`the brown glass color. The basis was the concentration values
`of the individual coloring components as well as the
`transmission curves of the colored glasses. As the outcome of
`these investigations, it was concluded that the coloring of the
`brown glass is caused by a colloidal brown glass chromophore
`[FeS2]- and Fe3+ ions, and the concentration of the brown
`chromophore should be proportionate to the product [Fe3+] ‧ [S2-
`]. Based upon Shimono, we attempted to find a quantitative
`correlation between chemical-analytical values of the raw
`materials and the glass or glass color using the spectrometric
`multi-component analysis (MCA; method of partial least
`
`Silicate Technology 42 (1991) Issue 4
`
`
`
`
`
`
`
`
`squares). With the assistance of 17 combinations of the
`influencing parameters and the accompanying extinction values
`of the brown glass samples selected for the investigation, a
`model structure was tested with a computer program, which led
`to very large residual scattering values in most combinations.
`Conforming to Shimono, however, it was determined that in
`essence - if no additionally coloring components such as
`Cr3+/Cr6+ are present - the brown glass color can be
`characterized by the influencing parameters [Fe2O3] ‧ [SO3] and
`[FeO] and is thus quantifiable. In the following example, a
`brown glass of an operational base offset (BV without cullets)
`is compared to a brown glass that has been corrected by tripling
`the carbon quantity in the offset (BV 30 B/3 C) on a comparable
`hue after addition of 30 mass % container glass cullets (Table
`5).
`In Table 6, the product from Fe2O3 concentration and total
`sulfur content (expressed as mass % SO3) are compared to the
`results of a color location determination. Despite the severe
`change of the mixture due to the 30% cullet addition, the carbon
`correction caused an equivalent hue in the mixture, which
`correlates with the same product values [Fe2O3] [SO]3].
`In Figure 2, an attempt is made to determine the influence of the
`variable parameters of cullet addition and carbon addition to the
`mixture with regard to an equivalent hue. From a glass A with
`a desired brown coloration, Fe2O3 and SO3 contents are
`
`113
`
`
`
`O-I Glass, Inc.
`Exhibit 1014
`Page 003
`
`
`
`and Fe2+. On the basis of transmission curves, the extinction
`coefficients were determined for the specified chromophores
`depending upon the wavelength. For the real case of the brown
`glasses that generally contain chromium oxide due to green
`cullet addition, the extinction coefficient of the Cr3+ ions was
`additionally input in the calculation program. With the
`assistance of a program written in BASIC, the glass samples
`were tested for conformity of the measured and calculated
`transmission curves. This was generally good for good brown
`glasses, but there were always differences when the glasses
`were colored dark brown or gray brown. For chromium-
`containing brown glasses, a linear dependency between the
`measured and the calculated Fe3+ and Cr3+ concentrations can
`be proven. The actual amber chromophores [FeS2]- shows no
`linear dependence.
`Despite the conformity of the transmission curves, however,
`the calculated concentrations of the chromophores always
`showed smaller values than the concentrations expected
`according
`to the chemical-analytical values from the
`mixture. This confirms the assumption of Moore [6] that the
`color carrier of the glass may only be formed from a part of
`the total iron content, while the remaining iron is present in
`a non-colored or only weakly colored state (e.g. Fe3+) and,
`according to Karlson [7], different coordination numbers of
`the iron also contribute to this. This is equally true for the
`chromium ion, because the calculated concentration was
`smaller than measured. In principle, it can be assessed that
`the determination of
`the chromophore concentration
`according to the applied calculation process is suitable for
`characterization of the brown glass color and also addresses
`the cullet problem.
`Literature
`
`[1] Manring, W. H.; Davis, R. E.: Monitoring of the redox conditions
`in the glass melt. — In: Glass Industry 59 (1978) 5. - pg. 13 to 30.
`[2] Manring, W. H.; Billings, D. D.; Conroy, A. R.: Reduced sulfur
`compounds as melting and refiaids [sic] for flint soda-lime glasses.
`— In: Glass Industry (1967) 7. - pg. 374 to 380.
`[3] Manring, W. H.; Diken, G. M.: A practical approach to evaluating
`redox phenomena involved in the melting, fining of soda-lime
`glasses. — In: J. of Non-Crystalline Solids (1980) 38/39. — pg.
`813.
`[4] Wright, R. D.: Batch redox and colour control. — In: Glass
`Technology — Sheffield 29 (1988) 3. - pg. 91 to 93.
`[5] Shimono, F.: A calculation method to predict the colour of glass.
`— In: Glass (1983) 2. - pg. 61 to 63.
`[6] Moore, J.; Kumar, S.: Magnetic studies an glasses containing iron
`in relation to their colour and constitution. — In: J. Soc. Glas.
`Technology 35 (1951). - pg. 58 to 92.
`[7] Karlson, K.: Absorption of iron in amber glass. — In: Glas-
`technische Tidschrift 24 (1969). — pg. 13.
`SiA 90/8/32
`Received: August 27, 1990
`
`Silicate Technology 42 (1991), Issue 4
`
`
`
`Cullet
`proportion
`
`Increasing
`
`B'
`
`Δa
`
`B
`
`A Δb
`
`Increasing carbon powder
`addition
`
`G
`
`[ ] = Content of components in mass
`- % ]
`
`XA
`
`XB
`
`[Fe2O3] x [SO3] from glass
`analysis
`
`
`
`yB
`
`yA
`
`[Fe2O3] x [SO3] from raw materials analysis
`
` Diagram of offset correction for brown glass
`
`
`
` 2
`
`
`
`Table 5 Extinction values of the samples BV and BV/30 B/3 C
`
`
`Wavelength [nm]
`
`400
`
`450
`
`500
`
`550
`
`600
`
`650
`
`700
`
`
`
`BV
`
`1.4209
`
`1.1164
`
`0.5472
`
`0.2538
`
`0.1580
`
`0.1398
`
`0.1351
`
`BV/30 B/3 C
`
`1.3929
`
`1.1043
`
`0.5550
`
`0.2594
`
`0.1584
`
`0.1330
`
`0.1201
`
`Table 6 Chemical composition and color location
`
`
`
`
`
`Color coordinates
`
`[Fe2O3] ‧ [SO3]
`
`x
`
`y
`
`λ
`
`𝑝𝐸
`
`Glass BV
`Glass BV/30 B/3 C
`
`0.03094
`0.03028
`
`0.6192 0.3795 598 0.995
`0.6192 0.3786 598 0.995
`
`x, y
`λ
`𝑝𝐸
`
`- Color coordinates
`- Dominant wavelength
`- Spectral saturation
`
`
`
`
`
`
`
`
`determined from raw material and glass analysis data, which
`produce the coordinates xA and yA. A straight line G running
`parallel to the ordinate through the points xA and A describes an
`equivalent coloring of the glasses. Here, it is assumed that the
`SO3 content introduced into the glass composition over the SO3
`content of the raw materials is always greater.
`If one melts a glass B with a changed mixture offset (increased
`carbon addition), then one must increase the cullet proportion
`by a sum ∆𝛼 in order to obtain at point B' color location that
`is comparable to the sample A (formation of an equivalent
`chromophore concentration). If the mesh lines corresponding
`to the underlying offset (carbon and cullet change) and the
`required raw material and glass data are known to the
`calculator, changes in the offset can be corrected relatively
`quickly.
`A computer-supported determination of the chromophore
`concentration from transmission curves of known glass samples
`also appears possible. In the case of known concentration of the
`coloring metal ions, the color of a glass could be pre-calculated
`in order to be able to carry out a mixture correction under
`industrial conditions. The basis for this was the assumption of
`Shimono [5] that the amber yellow color essentially consists of
`the two chromophores [FeS2]- (given as product [Fe3+] ‧ [SO3])
`
`114
`
`
`
`
`
`O-I Glass, Inc.
`Exhibit 1014
`Page 004
`
`
`
`DEC _
`
`'I‘ION OF I
`
`S DOING
`
`1, JAMES DOING, pursuant to 28 U.S.C. § 1746, hereby declare as follows:
`
`1.
`
`2.
`
`I am a Freelance Vendor at TransPerfeet, Inc.
`
`I submit this declaration to certify the accuracy of the English translation of the
`
`“Charakterisierung und Stabilisierung des Braunglasehromophors unter dem Aspekt des
`
`Scherbeneinsatzes, by Dusdorf et a1.” under 37 C.F.R. § 1.68.
`
`3.
`
`My statements are based on personal knowledge and my review of the “the
`
`Dusdorf article” and its German-to-English translation. If called as a witness about the facts
`
`contained in these statements, I could testify competently based on such personal knowledge and
`
`the investigation I have conducted.
`
`4.
`
`5.
`
`Attached as Exhibit A is a true and accurate copy of “the Dusdorf article”
`
`Attached as Exhibit B is a true and accurate copy of an English translation of
`
`“the Dusdorf article” under 37 C.F.R. § 1.68.
`
`Exhibit B is a true and accurate translation from German into English of Exhibit
`
`6.
`
`A.
`
`'3'.
`
`All statements made herein of my own knowledge are true, and all statements
`
`made on information and belief are believed to be true. Further, I am aware that these statements
`
`are made with the knowledge that willful false statements and the like so made are punishable by
`
`fine or imprisonment, or both, under 18 U.S.C. § 1001. I declare under penalty of perjury that to
`
`the best of my knowledge, the foregoing is true and correct.
`
`8.
`
`I also understand that by submitting this declaration I may be asked to appear for
`
`a deposition asking me questions limited to the material in my declaration. With my signature
`
`below, I agree to make reasonable efforts to make myself available for such a deposition at a
`
`reasonable place in the United States and time of my choosing.
`
`*llllk
`
`I declare under penalty of perjury that the foregoing is true and correct to the best
`
`of my knowledge. Executed on May 4, 2020 in MADISON, WI.
`
`AMES DOING
`
`O-I Glass, Inc.
`Exhibit 1014
`Page 005
`
`O-I Glass, Inc.
`Exhibit 1014
`Page 005
`
`
`
`SILIKATTECHNIK (cid:9)
`
`4/91
`
`Wissenschaftlich-technische Zeitschrift für Glas, Email, Keramik und Bindemittel
`
`INHALT
`
`Dusdorf, W.; Al-Hamdan, K.; Nölle, G.
`Charakterisierung und Stabilisierung des Braunglaschromophors
`unter dem Aspekt des Scherbeneinsatzes (cid:9)
`
`Ljubtschev, L.; Jordanov, G.; Liptschev, S.; Georgiev, D.
`Viskositätscharakteristik von Basaltgläsern für die Gewinnung von Endlosfasern
`
`Leiterer, M.; Wittkopf, H.
`Gaschromatographische Wasserdesorptionsuntersuchungen
`an Silikatglasbruchflächen
`
`Schnabel, H.-D.; Dusdorf, W.
`Fügen von Siliziumnitrid über Oxynitridgläser
`
`Rönsch, E.; Scheler, H.; Kirsten, B.; Henneberg, E.
`Zum Einfluß von Darstellungsbedingungen und des Ausgangskieselsols
`auf die Eigenschaften gewonnener Si02-Produkte
`
`Nitzsche, R.; Boden, G.
`Oberflächenmodifizierung und -charakterisierung
`von Siliziumnitridfeinstpulvern
`
`Ulbricht, J.; Bach, U.; Kloß, G.
`Herstellung und Eigenschaften kohlenstoffhaltiger Feuerfesterzeugnisse
`
`S. 112
`
`S. 115
`
`S. 117
`
`S. 122
`
`S. 126
`
`S. 129
`
`S. 133
`
`Verlag:
`Verlag für Bauwesen GmbH,
`Französische Straße 13/14. Berlin, 0-1086;
`Telegrammadresse: Bauwesenverlag Berlin;
`Telexanschluß: 11 22 29 Trave
`
`Redaktion:
`Verantw. Redakteur: Bauing. Bernd Schröder;
`Redaktionelle Mitarbeiterin: Heidemarie Albrecht
`Telefon: 203 41259
`
`Hersteller:
`Markus Hoeft
`
`Redaktionsbeirat:
`amt. Vorsitzender: Dr. H.-D. Witzke, Berlin; Doz. Dr. /.
`Berger, Weimar; Obering. G. Bornschein, Dessau; Dr.-
`Ing. B. Butterling, Colditz; Dipl.-Chem. K. Gerth, Jena;
`Doz. Dr. W. Götz, Jena; Dipl.-Ing. W. Graf, Meißen;
`Prof. Dr. Dr. D. Hülsenberg, Ilmenau; Dipl.-Ing. F. Kerbe,
`Hermsdorf; Dr. J. Klein, Weißwasser; Dr. H. Marusch,
`Torgau; Dipl.-Ing. H. Reinhardt, Meißen; Dipl.-Ing. K. D.
`Rotter, Berlin; Prof. Dr. W. Schalle. Freiberg; Prof. J.
`Stark, Weimar; Obering. Dr. F. Weihrauch, Freiberg; Prof.
`Dr. W. Wieker, Berlin
`
`1.6
`
`Satz:
`Fotosatz Voigt.
`Friedrichstraße 231, W-1000 Berlin 61, Telefon 251 32 81
`
`Druck:
`Druckhaus Mitte GmbH
`Reinhold-Huhn-Straße 18-25, Berlin, 0-1086
`
`Artikelnummer: 23637
`
`Erscheinungsweise und Preise:
`monatlich;
`Jahresbezugspreis DM 120,— incl. Mwst.,
`Einzelheftpreis DM 10,—
`Die Bezugspreise gelten ausschließlich Verpackung und
`Versand.
`Der Abonnementpreis gilt bei einer Mindestbezugszeit
`von einem Jahr. Abonnementskündigungen nur zum
`31. Dezember bei einer Kündigungsfrist von 4 Wochen.
`
`Anzeigenverwaltung:
`Verlag für Bauwesen GmbH;
`Französische Straße 13/14, Berlin, 0-1086;
`Telefon 20 3412 56
`
`Bestellungen nehmen entgegen
`
`Inland
`Verlag für Bauwesen GmbH
`Postfach 12 32
`Französische Straße 13/14
`0-1086 Berlin
`
`Schweiz
`Verlagsauslieferung Wissenschaft der Freihofer AG,
`Weinbergstraße 109, CH-8033 Zürich
`
`Westliches Ausland
`Gebrüder Petermann GmbH und Co. KG
`Kurfürstenstraße 111. W-1000 Berlin 30
`
`Osteuropäische Länder
`Kubon & Sagner
`Buchexport — Import GmbH
`Postfach 34 01 08
`Heßstraße 39-41, W-8001) München 34
`
`Copyright:
`Die Zeitschrift und alle in ihr enthaltenen einzelnen Bei-
`träge und Abbildungen sind urheberrechtlich geschützt.
`Jede Verwertung außerhalb der engen Grenzen des Ur-
`hebergesetzes ist ohne Zustimmung des Verlages unzulässig
`und strafbar. Das gilt insbesondere für Vervielfältigungen,
`Übersetzungen, Mikroverfilmungen und die Einspeiche-
`rung sowie Verarbeitung in elektronischen Systemen.
`
`Silikattechnik 42 (1991) Heft 4
`
`109
`
`O-I Glass, Inc.
`Exhibit 1014
`Page 006
`
`(cid:9)
`
`
`Charakterisierung und Stabilisierung des Braunglaschromophors
`unter dem Aspekt des Scherbeneinsatzes-9
`Wolfgang Dusdorf, Khaled Al-Hamdan, Günther Nölle
`Bergakademie Freiberg, Fachbereich Verfahrenstechnik und Silikattechnik, Wissenschaftsbereich Glas- und Emailtechnik
`
`Kohlegelbe Gläser werden unter reduzierenden Bedingungen,
`meist unter Zusatz von Kohlepulver, erschmolzen. Die Aus-
`bildung des Braunglas- oder Amberchromophors ist stark vom
`Redoxzustarid des Gemenges bzw. der Silikatschmelze abhän-
`gig. Ausreichende Konzentrationen an Fe3+-Ionen und Sulfid-
`ionen zur Ausbildung des Amberchromophors [Fe3+S2]- in
`der Glasschmelze können sich auch ohne Kohlepulverzusatz
`zum Gemenge ausbilden, wenn die Rohstoffe selbst über
`einen hohen Gehalt an reduzierenden Bestandteilen (meist
`kohlige Beimengungen, z. B. Glassand, Kalkstein) verfügen.
`Bei Kenntnis dieser mit einem relativ einfachen chemisch-ana-
`lytischen Verfahren bestimmbaren Bestandteile (Bestimmung
`des chemischen Sauerstoffbedarfs der Rohstoffe, als CSB-
`bzw. COD-Wert bezeichnet) muß eine Gemengeversatzkor-
`rektur hinsichtlich des Kohlepulverzusatzes zur Realisierung
`eines konstanten Redoxzustandes im Gemenge bzw. der Ge-
`mengeschmelze erfolgen. Erfolgt diese Änderung nicht, so ist
`eine Destabilisierung der Braunglasfarbe in oxydierender
`Richtung (schwache Braunfärbung bzw. olivbraune Färbung)
`und reduzierender Richtung (Überreduktion, FeS-Ausschei-
`dung, Graufärbung als Grenzfall) zu erwarten.
`In Tabelle 1 sind CSB-Werte (ausgedrückt als ppmC) für
`einige Rohstoffe inklusive ihrer Schwankungsbreite für ver-
`
`Tabelle 1 CSB-Werte [ppmC]
`
`Literatur [1] Übliche Werte
`[ppmC]
`
`Schwankungsbreite der
`Anlieferung [ppmC]
`
`Sand
`— Sorte 3
`— Sorte 4
`Kalkstein
`(Lagerstätte)
`— Rüdersdorf
`— Bernburg
`— Ammern
`— Herbsleben
`— CaCO3 p. A.
`Soda
`Kohlepulver
`
`150
`
`4 200
`
`75
`650 000
`
`Tabelle 2 Sandqualitäten
`
`150
`940
`
`1 125
`1 800
`3 340
`9 000
`30
`110
`617 400
`
`100 bis (cid:9)
`
`1 270
`
`1 600 bis (cid:9)
`
`2 200
`
`5 600 bis (cid:9) 10 600
`
`150
`94 bis (cid:9)
`433 000 bis 755 190
`
`CSB [ppmC]
`
`Glühverlust [%]
`
`Sand 1
`Sand 2
`Sand 3
`
`45
`45
`462
`
`0,10
`0,08
`0,39
`
`
`
`Tabelle 3 Scherbenzusatz/Redoxzustand
`
`Scherbenzusatz [Masse-%]
`
`FeO/Fe203ges,
`grün (cid:9)
`halbweiß
`
`20
`30
`40
`50
`75
`
`0,80
`0,76
`0,74
`0,66
`0,60
`
`0,65
`0,58
`0,57
`0,55
`0,51
`
`schiedene Lieferungen an einen Behälterglasbetrieb aufge-
`führt. Als Testsubstanz für die Brauchbarkeit des Bestim-
`mungsverfahrens wurde analysenreines Kalziumkarbonat in
`die Tabelle einbezogen.
`Die aufgeführten Werte der Rohstoffe lassen große Änderun-
`gen innerhalb eines Rohstoffes und im Vergleich mit anderen
`Lagerstätten deutlich erkennen, wobei auch das Reduktions-
`mittel (Kohlepulver) selbst Qualitätsschwankungen aufweist.
`Zwischen CSB-Wert und dem Glühverlust des Sandes besteht
`ein direkter Zusammenhang (Tabelle 2).
`In zahlreichen Publikationen [2, 3] wurde zur Ermittlung einer
`sogenannten Gemerigeredox- oder Glasredoxzahl ein Konzept
`vorgeschlagen, das im wesentlichen darin besteht, daß den
`oxydierenden und reduzierenden Bestandteilen der Rohstoffe
`ein Faktor zugeordnet wird (positive und negative Redoxfak-
`toren). Die Masse jedes Gemengebestandteiles wird mit
`seinem Redoxfaktor multipliziert und die Summe als Gemen-
`geredoxzahl ausgewiesen sowie während des Betriebsablaufs
`ständig überwacht.
`Zunächst wurde die Rolle der Scherben bei derartigen Berech-
`nungen vernachlässigt, später ein revidierter Redoxfaktor für
`Scherben eingesetzt. Eigene Untersuchungen mit grünen und
`halbweißen Scherbenzusätzen bis zu 70 Masse-% (bezogen auf
`das Gesamtgemenge) erbrachten die Aussage, daß durch die
`zugegebenen Scherben das Gesamtglas (Gemenge + Scher-
`ben) in oxydierende Richtung abgedrängt wird (Tabelle 3).
`Der Einfluß ist erkennbar, aber schwer quantifizierbar. Da die
`eingesetzten Scherben selbst oxydierend erschmolzen wurden,
`erscheint zumindest die Tendenz der Verschiebung des Re-
`doxzustandes im Gesamtglas logisch.
`Neben der Konstanthaltung des Redoxzustandes Gemenge/
`Schmelze sind zur Ausbildung einer bestimmten Chromopho-
`renkonzentration im Braunglas eine Fe203-Konzentration von
`etwa 0,25 Masse-% und eine ausreichende Sulfidkonzentra-
`tion notwendig, die sich meist unter reduzierenden Bedingun-
`gen aus der dem Gemenge zugegebenen Sulfatmenge ergibt.
`Aber auch das Läuterverhalten wird über die Redoxbedingun-
`gen in der Schmelze entscheidend beeinflußt (Gleichung (1)):
`
`3 Na2SO4 Na2S <=> 4 Na20 + 4 SO2. (cid:9)
`
`(1)
`
`Die angegebene Gleichung gilt für farblose, halbweiße und ge-
`färbte, insbesondere kohlegelbe Gläser gleichermaßen, so daß
`unter reduzierenden Bedingungen Gläser mit extrem niedri-
`gen Gesamtschwefelgehalten (< 0,1 % SO3) erschmolzen wer-
`den können.
`
`Braunglasfarbe - Zeit- und Temperaturabhängigkeit
`Von besonderem Interesse ist die Fragestellung, inwieweit
`die Kohlegelbfarbe in Abhängigkeit von Schmelzzeit und
`Schmelztemperatur beeinflußt wird. Da die Herstellung von
`braunen Gläsern heutzutage unter Einsatz von Mischscherben
`erfolgt, ist die aufgeworfene Fragestellung besonders im Zu-
`sammenhang mit den Scherben zu sehen.
`Mit steigender Schmelztemperatur (1350 —> 1500°C) und län-
`geren Schmelzzeiten (4 —> 24 h) konnte unter Laborschmelz-
`bedingungen an einem Versatz eines Behälterglasherstellers
`
`1) Vortrag anläßlich der 15. Glastechnikertagung vom 19. bis 21.
`November 1990 in Berlin
`
`112
`
`Silikattechnik 42 (1991) Heft 4
`
`O-I Glass, Inc.
`Exhibit 1014
`Page 007
`
`(cid:9)
`
`
`unter Einsatz betrieblicher Rohstoffe eine deutliche Farbauf-
`hellung von dunkelbraun bis halbweiß nachgewiesen werden.
`Hinsichtlich der Schmelzzeiten verstärkt sich die Tendenz der
`Entfärbung besonders bei hohen Schmelztemperaturen. In
`Bild 1 sind die Tendenzen der Farbortverlagerung in Abhän-
`gigkeit von Schmelztemperatur und Schmelzdauer ersichtlich.
`Während sich bei der extrem niedrigen Schmelztemperatur
`von 1350°C die Chromophorenkonzentration in Abhängigkeit
`von der Zeit deutlich erhöht (Farbvertiefung), ist die Lage des
`Farbortes bei einer Schmelztemperatur von 1400°C als nahezu
`schmelzzeitunabhängig zu betrachten. Eine deutliche Vermin-
`derung der Chromophorenkonzentration ist bei einer
`Schmelztemperatur von 1500°C in Abhängigkeit von der
`Schmelzzeit zu beobachten, d.