throbber
SILICATE TECHNOLOGY 4/91
`
`Scientific technical journal for glass, enamel, ceramic, and binder
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`CONTENTS
`
`Dusdorf, W.; Al-Hamdan, K.; Nölle, G.
`Characterization and stabilization of the brown glass chromophore
`with a focus on cullet use
`
`Ljubtschev, L.; Jordanov, G.; Liptschev, S.; Georgiev, D.
`Viscosity characteristics of basalt glasses for the isolation of continuous filaments
`
`Leiterer, M.; Wittkopf, H.
`Gas chromatographic water desorption investigations on silicate glass
`fracture planes
`
`Schnabel, H.-D.; Dusdorf, W.
`Joining of silicon nitride via oxynitride glasses
`
`Rönsch, E.; Scheler, H.; Kirsten, B.; Henneberg, E.
`On the impact of display conditions and output kieselsol on the properties
`of isolated SiO2 products
`
`Nitzsche, R.; Boden, G.
`Surface modification and characterization of silicon nitride fine-grained
`powders
`
`Ulbricht, J.; Bach, U.; Kloß, G.
`Production and properties of carbon-containing refractory products
`
`
`
`
`
`
`
`
`
`
`
`
`
`pg. 112
`
`pg. 115
`
`pg. 117
`
`pg. 122
`
`pg. 126
`
`pg. 129
`
`pg. 133
`
`
`
`
`
`
`
`Setting:
`Photo setting Voigt,
`Friedrichstraße 231, W-1000 Berlin 61, phone 2513281
`
`
`
`Orders can be submitted to the following institutions:
`
`
`
`Publisher:
`Verlag für Bauwesen GmbH.
`Französische Straße 13/14, Berlin, O-1086;
`telegraphic address: Bauwesenverlag Berlin; Telex
`number: 112229 Trave
`
`Editorial Board:
`Editor in Chief: Bauing. [Civil Eng.] Bernd Schröder;
`Editorial Assistant: Heidemarie Albrecht
`Phone: 20341259
`
`Manufacturer:
`Markus Hoeft
`
`Editorial Advisory Board:
`Acting Chairman: Dr. H.-D. Witzke, Berlin; Doz. [Lecturer]
`Dr. I. Berger. Weimar; Obering. G. Bornschein, Dessau; Dr.-
`Ing. [doctorate in eng.] B. Butterling, Colditz; Dipl.-Chem.
`[degree in chem.] K. Gerth, Jena; Doz. Dr. W. Götz, Jena;
`Dipl.-Ing. [degree in eng.] W. Graf, Meißen; Prof. Dr. Dr. D.
`Hülsenberg, Ilmenau; Dipl.-Ing. F. Kerbe, Hermsdorf; Dr. J.
`Klein, Weißwasser; Dr. H. Marusch, Torgau: Dipl.-Ing. H.
`Reinhardt, Meißen; Dipl.-Ing. K. D. Rotter, Berlin; Prof. Dr.
`W. Schulle, Freiberg; Prof. J. Stark, Weimar: Obering. Dr. F.
`Weihrauch, Freiberg; Prof. Dr. W. Wieker, Berlin
`
`
`Silicate Technology 42 (1991), Issue 4
`
`
`
`
`
`Printing:
`Druckhaus Mitte GmbH
`Reinhold-Huhn-Straße 18-25, Berlin, O-1086
`
`Article number: 23637
`
`Manner of publication and pricing:
`Monthly;
`Annual purchase price DM 120.00 including VAT,
`Single issue price DM 10.00
`The purchase prices do not include packaging and shipping.
`The subscription price is valid for a minimum subscription
`period of one year. Subscriptions can only be cancelled on
`December 31 with a notice of 4 weeks.
`
`Advertisement management:
`Verlag für Bauwesen GmbH:
`Französische Straße 13/14. Berlin, O-1086;
`Phone 20341256
`
`Domestic
`Verlag für Bauwesen GmbH
`Postfach 1232
`Französische Straße 13/14
`O-1086 Berlin
`
`Switzerland
`Verlagsauslieferung Wissenschaft der Freihofer AG,
`Weinbergstraße 109, CH-8033 Zurich
`
`Western countries
`Gebrüder Petermann GmbH und Co. KG
`Kurfürstenstraße 111, W-1000 Berlin 30
`
`East European countries
`Kubon & Sagner
`Buchexport - Import GmbH
`Postfach 340108
`Heßstraße 39-41, W-8000 Munich 34
`
`Copyright:
`This magazine and all individual contributions and
`illustrations contained herein are protected by copyright.
`Any exploitation outside the narrow limits of the
`Urhebergesetz [German Copyright Act] is not permitted
`and is punishable without the consent of the publisher.
`This applies in particular to duplications, translations,
`microfilming, and inputting and processing in electronic
`systems.
`
`109
`
`
`
`O-I Glass, Inc.
`Exhibit 1014
`Page 001
`
`

`

`Characterization and stabilization of the brown glass chromophore
`with a focus on cullet use1)
`Wolfgang Dusdorf, Khaled Al-Hamdan, Günther Nölle
`Bergakademie Freiberg, Department of Process Engineering and Silicate Technology, Scientific Area of Glass and Enamel
`Technology
`
`Amber yellow glasses are melted under reducing conditions,
`usually with the addition of carbon powder. The formation of
`the brown glass or amber chromophore is strongly dependent
`on the redox state of the mixture or the silicate melt. Sufficient
`concentrations of Fe3+ ions and sulfide ions for the formation of
`the amber chromophore [Fe3+S2]- in the glass melt can also form
`without carbon powder addition to the mixture, if the raw
`materials
`themselves have a high content of reducing
`components (usually carbonaceous admixtures, e.g. glass sand,
`limescale). In the knowledge of these components that can be
`determined with a relatively simple chemical analytical method
`(determination of the chemical oxygen requirement of the raw
`materials, referred to as a CSB or COD value), a mixture offset
`correction must be carried out with regard to the carbon powder
`addition in order to realize a constant redox state in the mixture
`or the mixture melt. If this change is not made, then a
`destabilization of the brown glass color in the oxidizing
`direction (weak brown coloring or olive-brown coloring) and
`reducing direction (over-reduction, FeS rejects, gray coloring as
`borderline case) is to be expected.
`In Table 1, CSB values (expressed as ppmC) for some raw
`materials, including their fluctuation range for various
`
`Table 1 CSB values [ppmC]
`
`
`
`Literature
`[1]
`
`Typical values
`[ppmC]
`
`Fluctuation range of the
`delivery [ppmC]
`
`Sand
`
`- Type 3
`
`- Type 4
`Limestone
`(storage
`facility)
`
`- Rüdersdorf
`
`- Bernburg
`
`- Ammern
`
`- Herbsleben
`
`150
`
`
`
`100 to
`
`1,270
`
`
`
`
`
`
`
`4,200
`
`
`
`
`
`
`
`
`
`
`
`150
`
`940
`
`
`
`
`
`1,125
`
`1,800
`
`3,340
`
`9,000
`
`30
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`1,600 to
`
`2,200
`
`
`
`
`
`5,600 to
`
`10,600
`
`
`
`
`
`deliveries to a container glass operation, are listed. As a test
`substance for the usability of the determination procedure,
`analytically pure calcium carbonate was included in the table.
`The given values of the raw materials clearly show large
`changes within a raw material and in comparison to other
`storage facilities, and the reducing agent (carbon powder)
`itself has quality fluctuations. There is a direct connection
`between the CSB value and the loss on ignition of the sand
`(Table 2).
`In numerous publications [2, 3], a concept was proposed to
`determine a so-called mixture redox or glass redox number,
`which essentially means that a factor is assigned to the
`oxidizing and reducing components of the raw materials
`(positive and negative redox factors). The mass of each mixture
`component is multiplied by its redox factor, and the sum is
`reported as the mixture redox number and continuously
`monitored during the operating procedure.
`The role of the cullets was initially neglected in such
`calculations, and later a revised redox factor for cullets was
`used. Our own investigations with green and semi-white cullet
`additions of up to 70 mass % (based on the total quantity)
`allowed the conclusion that the total glass (mixture + cullets) is
`pushed in the oxidizing direction by the added cullets (Table 3).
`The influence is discernible, but difficult to quantify. Because
`the cullets used were themselves melted in an oxidizing
`manner, at least the tendency of the shifting of the redox state
`in the total glass appears logical.
`In addition to holding constant the redox state mixture/melt, an
`Fe203 concentration of about 0.25 mass % and a sufficient
`sulfide concentration are necessary in order to form a certain
`chromophore concentration in the brown glass, which usually
`results from the sulfate quantity added to the mixture under
`reducing conditions. However, the refining behavior is also
`significantly influenced by the redox conditions in the melt
`(equation (1)):
`
`3 Na2SO4 + Na2S ⇆ 4 Na2O + 4 SO2.
`
`(1)
`
`- CaCO3 [p. A.]
`
`Soda
`
`75
`
`110
`
`94 to
`
`150
`
`Carbon powder
`
`650,000
`
`617,400
`
`433,000 to
`
`755,190
`
`Table 2 Sand qualities
`
`
`
`Sand 1
`
`Sand 2
`
`Sand 3
`
`CSB [ppmC]
`
`Loss on ignition [%]
`
`45
`
`45
`
`462
`
`0.10
`
`0.08
`
`0.39
`
`Table 3 Cullet addition/Redox state
`
`Cullet addition [mass %]
`
`20
`
`30
`
`40
`
`50
`
`75
`
`112
`
`
`
`
`FeO/Fe2O3 tot.
`
`green
`
`semi-white
`
`0.80
`
`0.76
`
`0.74
`
`0.66
`
`0.60
`
`0.65
`
`0.58
`
`0.57
`
`0.55
`
`0.51
`
`The equation given applies to colorless, semi-white, and
`colored, in particular amber yellow glasses, so that, under
`reducing conditions, glasses with extremely low total sulfur
`contents (< 0.1% SO3) can be melted.
`
`Brown glass color - time and temperature dependence
`
`Of particular interest is the question of the extent to which
`the amber yellow color is influenced depending on the
`melting
`time and melting
`temperature. Because
`the
`manufacture of brown glasses is done today using mixed
`cullets, this question should be considered particularly in the
`context of the cullets.
`With increasing melting temperature (1350  1500°C) and
`longer melting times (4  24 h), a clear color lightening from
`dark brown to semi-white was proven under laboratory melting
`
`
`
`
`
`
`
`
`
`1) Presentation at the 15th Glass Technology Conference from
`November 19-21, 1990, in Berlin
`
`conditions on an offset of a container glass manufacturer using
`operational raw materials. With regard to melting times, the
`tendency to discoloration increases particularly at high melting
`
`Silicate Technology 42 (1991), Issue 4
`
`
`
`O-I Glass, Inc.
`Exhibit 1014
`Page 002
`
`

`

`y
`
`Parameters: Melting temperature and melting
`duration
`
`in the direction of the arrow,
`increase in the melting duration
`
`1350°C
`
`1450°C
`
`°C
`
`1400°C
`
`red
`
`x
`
`
`
`1 Color locations of brown glasses
`
`Table 4 Redox state, total sulfur content, and bubble count
`
`
`
`FeO/Fe2O3 tot.
`
`SO3 [mass %]
`
`Bubble count
`[in 0.1 cm3]
`
`
`
`temperatures. Figure 1 shows the tendencies of the color
`location shift depending on melting temperature and melting
`time. While at the extremely low melting temperature of
`1350°C,
`the chromophore concentration
`is significantly
`elevated depending on the time (color deepening), the position
`of the color location at a melting temperature of 1400°C should
`be considered virtually independent of melting time. A
`significant reduction in the chromophore concentration is
`observed at a melting temperature of 1500°C depending on the
`melting time, i.e. in the latter case, the color location migrates
`into the vicinity of the uncolored point.
`Based on the selected operating offset, it is concluded from the
`laboratory glass melts that a good brown color is achievable at
`1400°C or at shorter dwell times at 1450°C. In the range of 1400
`to 1450°C, a significant decrease in the bubbling of the melted
`glasses is also observed. Table 4 shows a compilation of the
`ratio FeO/Fe2O3 total as an expression of the redox state of the
`melted glasses, the total sulfur content of the glasses (expressed
`as % SO3), and the bubble count in the glass samples. The
`values given after the forward slash correspond to a test series
`in which a mixed cullet addition (66% green/34% brown) was
`added to the operational brown glass mixture in the amount of
`34% (≙ 39% in relation to the net glass).
`For the cullet-free and the cullet-heavy brown glass offset, the
`same tendencies result with respect to the redox state of the
`melted glasses as well as for the SO3 content. To an extent, the
`glass melted under reducing conditions is depleted in oxygen
`and absorbs oxygen from the gaseous phase into the glass melt,
`which can be proven by the decreasing values FeO/Fe2O3 total.
`The absorbed oxygen oxidizes the sulfide sulfur in the amber
`chromophore, whereby a lightening of the brown glass color is
`caused. Wright [4] showed the lightening of the amber yellow
`color on a production tub if the glass stood under the influence
`of a slightly oxidizing furnace atmosphere or was in a
`stagnating zone of the tub for a rather long time due to a
`production interruption. Table 4 further shows the “refining
`agent effect” of the cullets as well as the significant reduction
`in the SO3 content of the glass melts between 1400 and 1450°C.
`The increased release of SO3 in the refining phase, could also
`be the cause for a destruction of the brown glass chromophore
`according to equation (2):
`
`1350°C/ 4 h
`
`0.68/0.76
`
`1350°C/ 8 h
`
`0.65/0.67
`
`1350°C/ 24 h
`
`0.59/0.55
`
`1400°C/4 h
`
`1400°C/ 8 h
`
`1400°C/ 24 h
`
`
`
`
`
`
`
`1450°C/4 h
`
`0.60/0.56
`
`1450C°/ 8 h
`
`0.55/0.52
`
`0.19/0.19
`
`0.25/0.16
`
`0.20/0.30
`
`0.17/0.17
`
`0.16/0.21
`
`0.10/0.07
`
`0.08/0.05
`
`0.01/0.03
`
`0.04/0.04
`
`135/124
`
`627/ 3
`
`13/ 0
`
`206/ 3
`
`103/ 22
`
`6/ 0
`
`0/ 4
`
`0/ 8
`
`5/ 4
`
`2 NaFeS2 + 12 SO3 ⇆ Fe2O3 + Na2O + 16 SO2.
`
`(2)
`
`1450°C/24 h
`
`0.17/0.13
`
`A sequence according to equation (2) would explain the
`tendencies in the FeO/Fe2O3 tot. ratio according to Table 4.
`
`
`
`Relation of brown glass color to analysis values of raw
`materials
`
`For the glass technician, the interesting question is undoubtedly
`the connection between the analysis values of the raw materials
`of the mixture, the analyzed glass composition (SO3-, S2-
`
`content, Fe concentration, Fe2+/Fe3+tot.ratio) and the brown color
`of the glass obtained as a result of this interaction.
`Shimono [5] attempted to enable a relation between the
`concentration of the metal ions in the glass (preferably the iron
`ions), the melting temperature, the furnace atmosphere, etc., and
`the brown glass color. The basis was the concentration values
`of the individual coloring components as well as the
`transmission curves of the colored glasses. As the outcome of
`these investigations, it was concluded that the coloring of the
`brown glass is caused by a colloidal brown glass chromophore
`[FeS2]- and Fe3+ ions, and the concentration of the brown
`chromophore should be proportionate to the product [Fe3+] ‧ [S2-
`]. Based upon Shimono, we attempted to find a quantitative
`correlation between chemical-analytical values of the raw
`materials and the glass or glass color using the spectrometric
`multi-component analysis (MCA; method of partial least
`
`Silicate Technology 42 (1991) Issue 4
`
`
`
`
`
`
`
`
`squares). With the assistance of 17 combinations of the
`influencing parameters and the accompanying extinction values
`of the brown glass samples selected for the investigation, a
`model structure was tested with a computer program, which led
`to very large residual scattering values in most combinations.
`Conforming to Shimono, however, it was determined that in
`essence - if no additionally coloring components such as
`Cr3+/Cr6+ are present - the brown glass color can be
`characterized by the influencing parameters [Fe2O3] ‧ [SO3] and
`[FeO] and is thus quantifiable. In the following example, a
`brown glass of an operational base offset (BV without cullets)
`is compared to a brown glass that has been corrected by tripling
`the carbon quantity in the offset (BV 30 B/3 C) on a comparable
`hue after addition of 30 mass % container glass cullets (Table
`5).
`In Table 6, the product from Fe2O3 concentration and total
`sulfur content (expressed as mass % SO3) are compared to the
`results of a color location determination. Despite the severe
`change of the mixture due to the 30% cullet addition, the carbon
`correction caused an equivalent hue in the mixture, which
`correlates with the same product values [Fe2O3] [SO]3].
`In Figure 2, an attempt is made to determine the influence of the
`variable parameters of cullet addition and carbon addition to the
`mixture with regard to an equivalent hue. From a glass A with
`a desired brown coloration, Fe2O3 and SO3 contents are
`
`113
`
`
`
`O-I Glass, Inc.
`Exhibit 1014
`Page 003
`
`

`

`and Fe2+. On the basis of transmission curves, the extinction
`coefficients were determined for the specified chromophores
`depending upon the wavelength. For the real case of the brown
`glasses that generally contain chromium oxide due to green
`cullet addition, the extinction coefficient of the Cr3+ ions was
`additionally input in the calculation program. With the
`assistance of a program written in BASIC, the glass samples
`were tested for conformity of the measured and calculated
`transmission curves. This was generally good for good brown
`glasses, but there were always differences when the glasses
`were colored dark brown or gray brown. For chromium-
`containing brown glasses, a linear dependency between the
`measured and the calculated Fe3+ and Cr3+ concentrations can
`be proven. The actual amber chromophores [FeS2]- shows no
`linear dependence.
`Despite the conformity of the transmission curves, however,
`the calculated concentrations of the chromophores always
`showed smaller values than the concentrations expected
`according
`to the chemical-analytical values from the
`mixture. This confirms the assumption of Moore [6] that the
`color carrier of the glass may only be formed from a part of
`the total iron content, while the remaining iron is present in
`a non-colored or only weakly colored state (e.g. Fe3+) and,
`according to Karlson [7], different coordination numbers of
`the iron also contribute to this. This is equally true for the
`chromium ion, because the calculated concentration was
`smaller than measured. In principle, it can be assessed that
`the determination of
`the chromophore concentration
`according to the applied calculation process is suitable for
`characterization of the brown glass color and also addresses
`the cullet problem.
`Literature
`
`[1] Manring, W. H.; Davis, R. E.: Monitoring of the redox conditions
`in the glass melt. — In: Glass Industry 59 (1978) 5. - pg. 13 to 30.
`[2] Manring, W. H.; Billings, D. D.; Conroy, A. R.: Reduced sulfur
`compounds as melting and refiaids [sic] for flint soda-lime glasses.
`— In: Glass Industry (1967) 7. - pg. 374 to 380.
`[3] Manring, W. H.; Diken, G. M.: A practical approach to evaluating
`redox phenomena involved in the melting, fining of soda-lime
`glasses. — In: J. of Non-Crystalline Solids (1980) 38/39. — pg.
`813.
`[4] Wright, R. D.: Batch redox and colour control. — In: Glass
`Technology — Sheffield 29 (1988) 3. - pg. 91 to 93.
`[5] Shimono, F.: A calculation method to predict the colour of glass.
`— In: Glass (1983) 2. - pg. 61 to 63.
`[6] Moore, J.; Kumar, S.: Magnetic studies an glasses containing iron
`in relation to their colour and constitution. — In: J. Soc. Glas.
`Technology 35 (1951). - pg. 58 to 92.
`[7] Karlson, K.: Absorption of iron in amber glass. — In: Glas-
`technische Tidschrift 24 (1969). — pg. 13.
`SiA 90/8/32
`Received: August 27, 1990
`
`Silicate Technology 42 (1991), Issue 4
`
`
`
`Cullet
`proportion
`
`Increasing
`
`B'
`
`Δa
`
`B
`
`A Δb
`
`Increasing carbon powder
`addition
`
`G
`
`[ ] = Content of components in mass
`- % ]
`
`XA
`
`XB
`
`[Fe2O3] x [SO3] from glass
`analysis
`
`
`
`yB
`
`yA
`
`[Fe2O3] x [SO3] from raw materials analysis
`
` Diagram of offset correction for brown glass
`
`
`
` 2
`
`
`
`Table 5 Extinction values of the samples BV and BV/30 B/3 C
`
`
`Wavelength [nm]
`
`400
`
`450
`
`500
`
`550
`
`600
`
`650
`
`700
`
`
`
`BV
`
`1.4209
`
`1.1164
`
`0.5472
`
`0.2538
`
`0.1580
`
`0.1398
`
`0.1351
`
`BV/30 B/3 C
`
`1.3929
`
`1.1043
`
`0.5550
`
`0.2594
`
`0.1584
`
`0.1330
`
`0.1201
`
`Table 6 Chemical composition and color location
`
`
`
`
`
`Color coordinates
`
`[Fe2O3] ‧ [SO3]
`
`x
`
`y
`

`
`𝑝𝐸
`
`Glass BV
`Glass BV/30 B/3 C
`
`0.03094
`0.03028
`
`0.6192 0.3795 598 0.995
`0.6192 0.3786 598 0.995
`
`x, y

`𝑝𝐸
`
`- Color coordinates
`- Dominant wavelength
`- Spectral saturation
`
`
`
`
`
`
`
`
`determined from raw material and glass analysis data, which
`produce the coordinates xA and yA. A straight line G running
`parallel to the ordinate through the points xA and A describes an
`equivalent coloring of the glasses. Here, it is assumed that the
`SO3 content introduced into the glass composition over the SO3
`content of the raw materials is always greater.
`If one melts a glass B with a changed mixture offset (increased
`carbon addition), then one must increase the cullet proportion
`by a sum ∆𝛼 in order to obtain at point B' color location that
`is comparable to the sample A (formation of an equivalent
`chromophore concentration). If the mesh lines corresponding
`to the underlying offset (carbon and cullet change) and the
`required raw material and glass data are known to the
`calculator, changes in the offset can be corrected relatively
`quickly.
`A computer-supported determination of the chromophore
`concentration from transmission curves of known glass samples
`also appears possible. In the case of known concentration of the
`coloring metal ions, the color of a glass could be pre-calculated
`in order to be able to carry out a mixture correction under
`industrial conditions. The basis for this was the assumption of
`Shimono [5] that the amber yellow color essentially consists of
`the two chromophores [FeS2]- (given as product [Fe3+] ‧ [SO3])
`
`114
`
`
`
`
`
`O-I Glass, Inc.
`Exhibit 1014
`Page 004
`
`

`

`DEC _
`
`'I‘ION OF I
`
`S DOING
`
`1, JAMES DOING, pursuant to 28 U.S.C. § 1746, hereby declare as follows:
`
`1.
`
`2.
`
`I am a Freelance Vendor at TransPerfeet, Inc.
`
`I submit this declaration to certify the accuracy of the English translation of the
`
`“Charakterisierung und Stabilisierung des Braunglasehromophors unter dem Aspekt des
`
`Scherbeneinsatzes, by Dusdorf et a1.” under 37 C.F.R. § 1.68.
`
`3.
`
`My statements are based on personal knowledge and my review of the “the
`
`Dusdorf article” and its German-to-English translation. If called as a witness about the facts
`
`contained in these statements, I could testify competently based on such personal knowledge and
`
`the investigation I have conducted.
`
`4.
`
`5.
`
`Attached as Exhibit A is a true and accurate copy of “the Dusdorf article”
`
`Attached as Exhibit B is a true and accurate copy of an English translation of
`
`“the Dusdorf article” under 37 C.F.R. § 1.68.
`
`Exhibit B is a true and accurate translation from German into English of Exhibit
`
`6.
`
`A.
`
`'3'.
`
`All statements made herein of my own knowledge are true, and all statements
`
`made on information and belief are believed to be true. Further, I am aware that these statements
`
`are made with the knowledge that willful false statements and the like so made are punishable by
`
`fine or imprisonment, or both, under 18 U.S.C. § 1001. I declare under penalty of perjury that to
`
`the best of my knowledge, the foregoing is true and correct.
`
`8.
`
`I also understand that by submitting this declaration I may be asked to appear for
`
`a deposition asking me questions limited to the material in my declaration. With my signature
`
`below, I agree to make reasonable efforts to make myself available for such a deposition at a
`
`reasonable place in the United States and time of my choosing.
`
`*llllk
`
`I declare under penalty of perjury that the foregoing is true and correct to the best
`
`of my knowledge. Executed on May 4, 2020 in MADISON, WI.
`
`AMES DOING
`
`O-I Glass, Inc.
`Exhibit 1014
`Page 005
`
`O-I Glass, Inc.
`Exhibit 1014
`Page 005
`
`

`

`SILIKATTECHNIK (cid:9)
`
`4/91
`
`Wissenschaftlich-technische Zeitschrift für Glas, Email, Keramik und Bindemittel
`
`INHALT
`
`Dusdorf, W.; Al-Hamdan, K.; Nölle, G.
`Charakterisierung und Stabilisierung des Braunglaschromophors
`unter dem Aspekt des Scherbeneinsatzes (cid:9)
`
`Ljubtschev, L.; Jordanov, G.; Liptschev, S.; Georgiev, D.
`Viskositätscharakteristik von Basaltgläsern für die Gewinnung von Endlosfasern
`
`Leiterer, M.; Wittkopf, H.
`Gaschromatographische Wasserdesorptionsuntersuchungen
`an Silikatglasbruchflächen
`
`Schnabel, H.-D.; Dusdorf, W.
`Fügen von Siliziumnitrid über Oxynitridgläser
`
`Rönsch, E.; Scheler, H.; Kirsten, B.; Henneberg, E.
`Zum Einfluß von Darstellungsbedingungen und des Ausgangskieselsols
`auf die Eigenschaften gewonnener Si02-Produkte
`
`Nitzsche, R.; Boden, G.
`Oberflächenmodifizierung und -charakterisierung
`von Siliziumnitridfeinstpulvern
`
`Ulbricht, J.; Bach, U.; Kloß, G.
`Herstellung und Eigenschaften kohlenstoffhaltiger Feuerfesterzeugnisse
`
`S. 112
`
`S. 115
`
`S. 117
`
`S. 122
`
`S. 126
`
`S. 129
`
`S. 133
`
`Verlag:
`Verlag für Bauwesen GmbH,
`Französische Straße 13/14. Berlin, 0-1086;
`Telegrammadresse: Bauwesenverlag Berlin;
`Telexanschluß: 11 22 29 Trave
`
`Redaktion:
`Verantw. Redakteur: Bauing. Bernd Schröder;
`Redaktionelle Mitarbeiterin: Heidemarie Albrecht
`Telefon: 203 41259
`
`Hersteller:
`Markus Hoeft
`
`Redaktionsbeirat:
`amt. Vorsitzender: Dr. H.-D. Witzke, Berlin; Doz. Dr. /.
`Berger, Weimar; Obering. G. Bornschein, Dessau; Dr.-
`Ing. B. Butterling, Colditz; Dipl.-Chem. K. Gerth, Jena;
`Doz. Dr. W. Götz, Jena; Dipl.-Ing. W. Graf, Meißen;
`Prof. Dr. Dr. D. Hülsenberg, Ilmenau; Dipl.-Ing. F. Kerbe,
`Hermsdorf; Dr. J. Klein, Weißwasser; Dr. H. Marusch,
`Torgau; Dipl.-Ing. H. Reinhardt, Meißen; Dipl.-Ing. K. D.
`Rotter, Berlin; Prof. Dr. W. Schalle. Freiberg; Prof. J.
`Stark, Weimar; Obering. Dr. F. Weihrauch, Freiberg; Prof.
`Dr. W. Wieker, Berlin
`
`1.6
`
`Satz:
`Fotosatz Voigt.
`Friedrichstraße 231, W-1000 Berlin 61, Telefon 251 32 81
`
`Druck:
`Druckhaus Mitte GmbH
`Reinhold-Huhn-Straße 18-25, Berlin, 0-1086
`
`Artikelnummer: 23637
`
`Erscheinungsweise und Preise:
`monatlich;
`Jahresbezugspreis DM 120,— incl. Mwst.,
`Einzelheftpreis DM 10,—
`Die Bezugspreise gelten ausschließlich Verpackung und
`Versand.
`Der Abonnementpreis gilt bei einer Mindestbezugszeit
`von einem Jahr. Abonnementskündigungen nur zum
`31. Dezember bei einer Kündigungsfrist von 4 Wochen.
`
`Anzeigenverwaltung:
`Verlag für Bauwesen GmbH;
`Französische Straße 13/14, Berlin, 0-1086;
`Telefon 20 3412 56
`
`Bestellungen nehmen entgegen
`
`Inland
`Verlag für Bauwesen GmbH
`Postfach 12 32
`Französische Straße 13/14
`0-1086 Berlin
`
`Schweiz
`Verlagsauslieferung Wissenschaft der Freihofer AG,
`Weinbergstraße 109, CH-8033 Zürich
`
`Westliches Ausland
`Gebrüder Petermann GmbH und Co. KG
`Kurfürstenstraße 111. W-1000 Berlin 30
`
`Osteuropäische Länder
`Kubon & Sagner
`Buchexport — Import GmbH
`Postfach 34 01 08
`Heßstraße 39-41, W-8001) München 34
`
`Copyright:
`Die Zeitschrift und alle in ihr enthaltenen einzelnen Bei-
`träge und Abbildungen sind urheberrechtlich geschützt.
`Jede Verwertung außerhalb der engen Grenzen des Ur-
`hebergesetzes ist ohne Zustimmung des Verlages unzulässig
`und strafbar. Das gilt insbesondere für Vervielfältigungen,
`Übersetzungen, Mikroverfilmungen und die Einspeiche-
`rung sowie Verarbeitung in elektronischen Systemen.
`
`Silikattechnik 42 (1991) Heft 4
`
`109
`
`O-I Glass, Inc.
`Exhibit 1014
`Page 006
`
`(cid:9)
`

`

`Charakterisierung und Stabilisierung des Braunglaschromophors
`unter dem Aspekt des Scherbeneinsatzes-9
`Wolfgang Dusdorf, Khaled Al-Hamdan, Günther Nölle
`Bergakademie Freiberg, Fachbereich Verfahrenstechnik und Silikattechnik, Wissenschaftsbereich Glas- und Emailtechnik
`
`Kohlegelbe Gläser werden unter reduzierenden Bedingungen,
`meist unter Zusatz von Kohlepulver, erschmolzen. Die Aus-
`bildung des Braunglas- oder Amberchromophors ist stark vom
`Redoxzustarid des Gemenges bzw. der Silikatschmelze abhän-
`gig. Ausreichende Konzentrationen an Fe3+-Ionen und Sulfid-
`ionen zur Ausbildung des Amberchromophors [Fe3+S2]- in
`der Glasschmelze können sich auch ohne Kohlepulverzusatz
`zum Gemenge ausbilden, wenn die Rohstoffe selbst über
`einen hohen Gehalt an reduzierenden Bestandteilen (meist
`kohlige Beimengungen, z. B. Glassand, Kalkstein) verfügen.
`Bei Kenntnis dieser mit einem relativ einfachen chemisch-ana-
`lytischen Verfahren bestimmbaren Bestandteile (Bestimmung
`des chemischen Sauerstoffbedarfs der Rohstoffe, als CSB-
`bzw. COD-Wert bezeichnet) muß eine Gemengeversatzkor-
`rektur hinsichtlich des Kohlepulverzusatzes zur Realisierung
`eines konstanten Redoxzustandes im Gemenge bzw. der Ge-
`mengeschmelze erfolgen. Erfolgt diese Änderung nicht, so ist
`eine Destabilisierung der Braunglasfarbe in oxydierender
`Richtung (schwache Braunfärbung bzw. olivbraune Färbung)
`und reduzierender Richtung (Überreduktion, FeS-Ausschei-
`dung, Graufärbung als Grenzfall) zu erwarten.
`In Tabelle 1 sind CSB-Werte (ausgedrückt als ppmC) für
`einige Rohstoffe inklusive ihrer Schwankungsbreite für ver-
`
`Tabelle 1 CSB-Werte [ppmC]
`
`Literatur [1] Übliche Werte
`[ppmC]
`
`Schwankungsbreite der
`Anlieferung [ppmC]
`
`Sand
`— Sorte 3
`— Sorte 4
`Kalkstein
`(Lagerstätte)
`— Rüdersdorf
`— Bernburg
`— Ammern
`— Herbsleben
`— CaCO3 p. A.
`Soda
`Kohlepulver
`
`150
`
`4 200
`
`75
`650 000
`
`Tabelle 2 Sandqualitäten
`
`150
`940
`
`1 125
`1 800
`3 340
`9 000
`30
`110
`617 400
`
`100 bis (cid:9)
`
`1 270
`
`1 600 bis (cid:9)
`
`2 200
`
`5 600 bis (cid:9) 10 600
`
`150
`94 bis (cid:9)
`433 000 bis 755 190
`
`CSB [ppmC]
`
`Glühverlust [%]
`
`Sand 1
`Sand 2
`Sand 3
`
`45
`45
`462
`
`0,10
`0,08
`0,39
`
`
`
`Tabelle 3 Scherbenzusatz/Redoxzustand
`
`Scherbenzusatz [Masse-%]
`
`FeO/Fe203ges,
`grün (cid:9)
`halbweiß
`
`20
`30
`40
`50
`75
`
`0,80
`0,76
`0,74
`0,66
`0,60
`
`0,65
`0,58
`0,57
`0,55
`0,51
`
`schiedene Lieferungen an einen Behälterglasbetrieb aufge-
`führt. Als Testsubstanz für die Brauchbarkeit des Bestim-
`mungsverfahrens wurde analysenreines Kalziumkarbonat in
`die Tabelle einbezogen.
`Die aufgeführten Werte der Rohstoffe lassen große Änderun-
`gen innerhalb eines Rohstoffes und im Vergleich mit anderen
`Lagerstätten deutlich erkennen, wobei auch das Reduktions-
`mittel (Kohlepulver) selbst Qualitätsschwankungen aufweist.
`Zwischen CSB-Wert und dem Glühverlust des Sandes besteht
`ein direkter Zusammenhang (Tabelle 2).
`In zahlreichen Publikationen [2, 3] wurde zur Ermittlung einer
`sogenannten Gemerigeredox- oder Glasredoxzahl ein Konzept
`vorgeschlagen, das im wesentlichen darin besteht, daß den
`oxydierenden und reduzierenden Bestandteilen der Rohstoffe
`ein Faktor zugeordnet wird (positive und negative Redoxfak-
`toren). Die Masse jedes Gemengebestandteiles wird mit
`seinem Redoxfaktor multipliziert und die Summe als Gemen-
`geredoxzahl ausgewiesen sowie während des Betriebsablaufs
`ständig überwacht.
`Zunächst wurde die Rolle der Scherben bei derartigen Berech-
`nungen vernachlässigt, später ein revidierter Redoxfaktor für
`Scherben eingesetzt. Eigene Untersuchungen mit grünen und
`halbweißen Scherbenzusätzen bis zu 70 Masse-% (bezogen auf
`das Gesamtgemenge) erbrachten die Aussage, daß durch die
`zugegebenen Scherben das Gesamtglas (Gemenge + Scher-
`ben) in oxydierende Richtung abgedrängt wird (Tabelle 3).
`Der Einfluß ist erkennbar, aber schwer quantifizierbar. Da die
`eingesetzten Scherben selbst oxydierend erschmolzen wurden,
`erscheint zumindest die Tendenz der Verschiebung des Re-
`doxzustandes im Gesamtglas logisch.
`Neben der Konstanthaltung des Redoxzustandes Gemenge/
`Schmelze sind zur Ausbildung einer bestimmten Chromopho-
`renkonzentration im Braunglas eine Fe203-Konzentration von
`etwa 0,25 Masse-% und eine ausreichende Sulfidkonzentra-
`tion notwendig, die sich meist unter reduzierenden Bedingun-
`gen aus der dem Gemenge zugegebenen Sulfatmenge ergibt.
`Aber auch das Läuterverhalten wird über die Redoxbedingun-
`gen in der Schmelze entscheidend beeinflußt (Gleichung (1)):
`
`3 Na2SO4 Na2S <=> 4 Na20 + 4 SO2. (cid:9)
`
`(1)
`
`Die angegebene Gleichung gilt für farblose, halbweiße und ge-
`färbte, insbesondere kohlegelbe Gläser gleichermaßen, so daß
`unter reduzierenden Bedingungen Gläser mit extrem niedri-
`gen Gesamtschwefelgehalten (< 0,1 % SO3) erschmolzen wer-
`den können.
`
`Braunglasfarbe - Zeit- und Temperaturabhängigkeit
`Von besonderem Interesse ist die Fragestellung, inwieweit
`die Kohlegelbfarbe in Abhängigkeit von Schmelzzeit und
`Schmelztemperatur beeinflußt wird. Da die Herstellung von
`braunen Gläsern heutzutage unter Einsatz von Mischscherben
`erfolgt, ist die aufgeworfene Fragestellung besonders im Zu-
`sammenhang mit den Scherben zu sehen.
`Mit steigender Schmelztemperatur (1350 —> 1500°C) und län-
`geren Schmelzzeiten (4 —> 24 h) konnte unter Laborschmelz-
`bedingungen an einem Versatz eines Behälterglasherstellers
`
`1) Vortrag anläßlich der 15. Glastechnikertagung vom 19. bis 21.
`November 1990 in Berlin
`
`112
`
`Silikattechnik 42 (1991) Heft 4
`
`O-I Glass, Inc.
`Exhibit 1014
`Page 007
`
`(cid:9)
`

`

`unter Einsatz betrieblicher Rohstoffe eine deutliche Farbauf-
`hellung von dunkelbraun bis halbweiß nachgewiesen werden.
`Hinsichtlich der Schmelzzeiten verstärkt sich die Tendenz der
`Entfärbung besonders bei hohen Schmelztemperaturen. In
`Bild 1 sind die Tendenzen der Farbortverlagerung in Abhän-
`gigkeit von Schmelztemperatur und Schmelzdauer ersichtlich.
`Während sich bei der extrem niedrigen Schmelztemperatur
`von 1350°C die Chromophorenkonzentration in Abhängigkeit
`von der Zeit deutlich erhöht (Farbvertiefung), ist die Lage des
`Farbortes bei einer Schmelztemperatur von 1400°C als nahezu
`schmelzzeitunabhängig zu betrachten. Eine deutliche Vermin-
`derung der Chromophorenkonzentration ist bei einer
`Schmelztemperatur von 1500°C in Abhängigkeit von der
`Schmelzzeit zu beobachten, d.

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket