throbber
JEDEC
`STANDARD
`
`GRAPHICS DOUBLE DATA RATE
`(GDDR5X) SGRAM STANDARD
`
`Des m arais LLP
`
`JESD232A
`
`(Revision of JESD232, November 2015)
`
`AUGUST 2016
`
`JEDEC SOLID STATE TECHNOLOGY ASSOCIATION
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:19 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2017, 0001
`
`

`

`NOTICE
`
`JEDEC standards and publications contain material that has been prepared, reviewed, and
`approved through the JEDEC Board of Directors level and subsequently reviewed and approved
`by the JEDEC legal counsel.
`
`JEDEC standards and publications are designed to serve the public interest through eliminating
`misunderstandings between manufacturers and purchasers, facilitating interchangeability and
`improvement of products, and assisting the purchaser in selecting and obtaining with minimum
`delay the proper product for use by those other than JEDEC members, whether the standard is to
`be used either domestically or internationally.
`
`JEDEC standards and publications are adopted without regard to whether or not their adoption
`may involve patents or articles, materials, or processes. By such action JEDEC does not assume
`any liability to any patent owner, nor does it assume any obligation whatever to parties adopting
`the JEDEC standards or publications.
`
`The information included in JEDEC standards and publications represents a sound approach to
`product specification and application, principally from the solid state device manufacturer
`viewpoint. Within the JEDEC organization there are procedures whereby a JEDEC standard or
`publication may be further processed and ultimately become an ANSI standard.
`
`No claims to be in conformance with this standard may be made unless all requirements stated
`in the standard are met.
`
`Des m arais LLP
`
`Inquiries, comments, and suggestions relative to the content of this JEDEC standard or
`publication should be addressed to JEDEC at the address below, or call (703) 907-7559 or
`www.jedec.org
`
`Published by
`©JEDEC Solid State Technology Association 2016
`3103 North 10th Street
`Suite 240 South
`Arlington, VA 22201-2107
`
`This document may be downloaded free of charge; however JEDEC retains the
`copyright on this material. By downloading this file the individual agrees not to
`charge for or resell the resulting material.
`
`PRICE: Please refer to www.jedec.org
`
`Printed in the U.S.A.
`All rights reserved
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:19 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2017, 0002
`
`

`

`PLEASE!
`
`DON'T VIOLATE
`THE
`LAW!
`
`This document is copyrighted by the JEDEC Solid State Technology Association
`and may not be reproduced without permission.
`
`Organizations may obtain permission to reproduce a limited number of copies
`through entering into a license agreement. For information, contact:
`
`Des m arais LLP
`
`JEDEC Solid State Technology Association
`3103 North 10th Street, Suite 240S
`Arlington, Virginia 22201
`or call (703) 907-7559
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:19 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2017, 0003
`
`

`

`Des m arais LLP
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:19 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2017, 0004
`
`

`

`JEDEC Standard No. 232A
`
`Contents
`
`3
`
`SCOPE .................................................................................................................................................................. 1
`1
`2 GDDR5X SGRAM STANDARD OVERVIEW .............................................................................................2
`2.1
` Features ......................................................................................................................................................2
`FUNCTIONAL DESCRIPTION .......................................................................................................................3
`3.1
` Functional Overview ................................................................................................................................3
`3.2
` Signal State Terminology .........................................................................................................................4
`3.3
` Clocking .....................................................................................................................................................4
`3.4
` Addressing .................................................................................................................................................7
`3.5
` Bank Groups ............................................................................................................................................10
`3.6
` Address Bus Inversion (ABI) .................................................................................................................12
`3.7
` Read and Write Data Bus Inversion (DBI) ..........................................................................................13
`3.8
` Error Detection Code (EDC) ................................................................................................................. 15
`3.9
` VREFC and VREFD ............................................................................................................................... 19
`3.10 Temperature Sensor ................................................................................................................................22
`3.11 Duty Cycle Corrector ..............................................................................................................................23
`4 MODE REGISTERS ........................................................................................................................................ 24
`4.1
` Mode Register 0 .......................................................................................................................................26
`4.2
` Mode Register 1 .......................................................................................................................................28
`4.3
` Mode Register 2 .......................................................................................................................................30
`4.4
` Mode Register 3 .......................................................................................................................................32
`4.5
` Mode Register 4 .......................................................................................................................................33
`4.6
` Mode Register 5 ...................................................................................................................................... 35
`4.7
` Mode Register 6 ...................................................................................................................................... 36
`4.8
` Mode Register 7 .......................................................................................................................................37
`4.9
` Mode Register 8 .......................................................................................................................................39
`4.10 Mode Register 9 .......................................................................................................................................40
`4.11 Mode Register 10 .....................................................................................................................................40
`4.12 Mode Register 11 .....................................................................................................................................41
`4.13 Mode Register 12 to 14 ...........................................................................................................................41
`4.14 Mode Register 15 .....................................................................................................................................42
`5 DEVICE INITIALIZATION ...........................................................................................................................43
`5.1
` Power-up Sequence ................................................................................................................................43
`5.2
` Initialization with Stable Power ........................................................................................................... 45
`5.3
` Vendor ID ................................................................................................................................................ 46
`6 TRAINING .........................................................................................................................................................48
`6.1
` Interface Training Sequence ...................................................................................................................48
`6.2
` Address Training ....................................................................................................................................49
`6.3
` WCK2CK Training ..................................................................................................................................50
`6.3.1
` WCK Alignment at Pin Mode ............................................................................................................53
`6.3.2
` WCK Auto Synchronization ...............................................................................................................53
`6.3.3
` WCK2CK Training Examples .............................................................................................................53
`6.3.4
` Read and Write Latencies ...................................................................................................................55
`6.4
` READ Training........................................................................................................................................ 56
`6.4.1
` LDFF Command ...................................................................................................................................57
`6.4.2
` RDTR Command ..................................................................................................................................60
`6.5
` WRITE Training ......................................................................................................................................61
`6.5.1
` WRTR Command .................................................................................................................................62
`7 OPERATION .....................................................................................................................................................64
`7.1
` Commands .............................................................................................................................................. 64
`7.2
` Command, Address And Write Data Input Timings ........................................................................65
`
`Des m arais LLP
`
`-i-
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:19 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2017, 0005
`
`

`

`JEDEC Standard No. 232A
`
` No Operation (NOP) ..............................................................................................................................65
`7.3
` Mode Register Set ...................................................................................................................................66
`7.4
` Row Activation ........................................................................................................................................67
`7.5
` Write (WOM)............................................................................................................................................69
`7.6
` DQ Write Preamble ..............................................................................................................................76
`7.6.1
` Write Lower And Upper Bytes (WOML/WOMU)..............................................................................76
`7.7
` Write Data Mask (WDM/WSM).............................................................................................................78
`7.8
` READ ........................................................................................................................................................ 87
`7.9
` DQ Read Preamble ...............................................................................................................................94
`7.9.1
` READ with RDQS Mode .....................................................................................................................95
`7.9.2
`7.10 Precharge ..................................................................................................................................................96
`7.10.1 Auto Precharge .....................................................................................................................................97
`7.11 Refresh ......................................................................................................................................................97
`7.11.1 Refresh Command ...............................................................................................................................97
`7.11.2 Per-Bank Refresh Command ..............................................................................................................98
`7.12 Self Refresh ........................................................................................................................................... 101
`7.12.1 Hibernate Self Refresh .......................................................................................................................104
`7.12.2 Partial Array Self Refresh .................................................................................................................105
`7.13 Power-Down ..........................................................................................................................................105
`7.14 Low Frequency Modes .........................................................................................................................107
`7.15 Clock Frequency Change Sequence ...................................................................................................108
`7.16 Command Truth Tables .......................................................................................................................108
`8 OPERATING CONDITIONS .......................................................................................................................112
`8.1
` Absolute Maximum Ratings ................................................................................................................112
`8.2
` Pad Capacitances ..................................................................................................................................112
`8.3
` Package Electrical Specification...........................................................................................................113
`8.4
` Package Thermal Characteristics ........................................................................................................113
`8.5
` Electrostatic Discharge Sensitivity Characteristics ..........................................................................114
`8.6
` DC & AC Operating Conditions .........................................................................................................115
`8.7
` IDD Specifications and Test Conditions ............................................................................................119
`8.8
` AC Timings ............................................................................................................................................125
`8.9
` Clock-To-Data Timing Sensitivity ......................................................................................................131
`8.10 POD I/O System ....................................................................................................................................132
`PIN DEFINITION AND BALLOUT ...........................................................................................................137
`9.1
` Signal Description .................................................................................................................................137
`9.2
` Clamshell (x16) Mode ...........................................................................................................................138
`9.3
` Mirror Function (MF) Enable ..............................................................................................................141
`9.4
` Ballout .....................................................................................................................................................142
`10 PACKAGE OUTLINE ....................................................................................................................................144
`11 BOUNDARY SCAN .......................................................................................................................................145
`11.1 Test Pins .................................................................................................................................................145
`11.2 TAP Controller ......................................................................................................................................145
`11.3 TAP Registers ........................................................................................................................................147
`11.4 TAP Instruction Set ...............................................................................................................................150
`11.5 Boundary Scan Operation ....................................................................................................................151
`11.6 Interaction Between Boundary Scan and Normal Device Operation ...........................................152
`
`Des m arais LLP
`
`9
`
`-ii-
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:19 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2017, 0006
`
`

`

`JEDEC Standard No. 232A
`Page 1
`
`GRAPHICS DOUBLE DATA RATE (GDDR5X) SGRAM STANDARD
`(From JEDEC Board Ballot JCB-16-39, formulated under the cognizance of the JC-42.3 Subcommittee on
`DRAM Memories, item number 1827.99B (V1.2).
`
`1
`
`SCOPE
`
`This document defines the GDDR5X SGRAM memory standard, including features, device operation,
`electrical charactersitics, timings, signal pin assignments and package.
`The purpose of this standard is to define the minimum set of requirements for JEDEC standard compatible
`4 Gb through 16 Gb x32 GDDR5X SGRAM devices. System designs based on the required aspects of this
`standard will be supported by all GDDR5X SGRAM vendors providing JEDEC standard compatible
`devices. Some aspects of the GDDR5X standard such as AC timings were not standardized. Some features
`are optional and therefore may vary among vendors. In all cases, vendor data sheets should be consulted
`for specifics.
`This standard was created based on the GDDR5 SGRAM standard (JESD212). Each aspect of the changes
`were considered and balloted. The accumulation of these ballots were then incorporated to prepare this
`GDDR5X SGRAM standard.
`
`Des m arais LLP
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:19 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2017, 0007
`
`

`

`JEDEC Standard No. 232A
`Page 2
`
`2
`
`GDDR5X SGRAM STANDARD OVERVIEW
`
`/ 256 Mb x 16 (16 Mb x 16 x 16 banks)
`= 128 Mb x 32 ( 8 Mb x 32 x 16 banks)
`4 Gb
`= 192 Mb x 32 (12 Mb x 32 x 16 banks) / 384 Mb x 16 (24 Mb x 16 x 16 banks)
`6 Gb
`= 256 Mb x 32 (16 Mb x 32 x 16 banks) / 512 Mb x 16 (32 Mb x 16 x 16 banks)
`8 Gb
`12 Gb = 384 Mb x 32 (24 Mb x 32 x 16 banks) / 768 Mb x 16 (48 Mb x 16 x 16 banks)
`16 Gb = 512 Mb x 32 (32 Mb x 32 x 16 banks) / 1 Gb x 16
`(64 Mb x 16 x 16 banks)
`
`Des m arais LLP
`
` FEATURES
`2.1
`• Single ended interface for command, address and data
`• Differential clock input CK_t/CK_c for ADD/CMD
`• Two differential clock inputs WCK_t/WCK_c, each associated with two data bytes (DQ, DBI_n, EDC)
`• Single Data Rate (SDR) commands (CK)
`• Double Data Rate (DDR) addresses (CK)
`• QDR and DDR operating modes:
`• QDR mode: Quad Data Rate (QDR) data (WCK); 16n prefetch architecture with 512 bit per array
`read or write access; burst length 16
`• DDR mode: Double Data Rate (DDR) data (WCK); 8n prefetch architecture with 256 bit per array
`read or write access; burst length 8
`• 16 internal banks
`• 4 bank groups for tCCDL = 3 tCK and 4 tCK
`• Programmable read latency: 5 to 36 tCK; programmable write latency: 1 to 7 tCK
`• Write data mask function via address bus (single/double/quad byte mask)
`• Data bus inversion (DBI) & address bus inversion (ABI)
`• Input/output PLL/DLL
`• Address training: address input monitoring via DQ/DBI_n/EDC pins
`• WCK2CK clock training with phase information via EDC pins
`• Data read and write training via READ FIFO (depth = 6)
`• Read FIFO pattern preload by LDFF command
`• Direct write data load to READ FIFO via WRTR command
`• Consecutive read of READ FIFO via RDTR command
`• Read/write EDC on/off mode
`• Programmable EDC hold pattern for CDR
`• Read/write data transmission integrity secured by cyclic redundancy check (CRC-8)
`• Programmable CRC read latency = 1 to 4 tCK; programmable CRC write latency = 7 to 14 tCK
`• Low Power modes
`• RDQS mode on EDC pins
`• On-chip temperature sensor with read-out
`• Auto precharge option for each burst access
`• Auto refresh mode with per-bank refresh option
`• Temperature sensor controlled self refresh rate
`• Optional digital tRAS lockout
`• On-die termination (ODT) for all high-speed inputs
`• Pseudo open drain (POD-135) compatible outputs
`• ODT and output driver strength auto-calibration with external resistor ZQ pin (120 Ω)
`• Programmable termination and driver strength offsets
`• Internal VREF for data inputs with programmable levels
`• Selectable external or internal VREF for address / command inputs
`• Vendor ID for device identification
`• Mirror function with MF pin
`• IEEE 1149.1 compliant boundary scan
`• 1.35 V supply voltage for device operation (VDD) and I/O interface (VDDQ)
`• 1.8 V pump voltage (VPP)
`• 190 ball BGA package
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:19 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2017, 0008
`
`

`

`JEDEC Standard No. 232A
`Page 3
`
`3
`
`FUNCTIONAL DESCRIPTION
`
` FUNCTIONAL OVERVIEW
`3.1
`The GDDR5X SGRAM is a high speed dynamic random-access memory designed for applications
`requiring high bandwidth. It is internally configured as 16-bank memory and contains the following
`number of bits:
`4 Gb has 4,294,967,296 bits
`6 Gb has 6,442,450,944 bits
`8 Gb has 8,589,934,592 bits
`12 Gb has 12,884,901,888 bits
`16 Gb has 17,179,869,184 bits
`The GDDR5X SGRAM’s high-speed interface is optimized for point-to-point connections to a host
`controller. On-die termination (ODT) is provided for all high-speed interface signals to eliminate the need
`for termination resistors in the system.
`The GDDR5X SGRAM supports two operating modes which mainly differ in the internal prefetch and
`DQ/DBI_n pin to WCK clock frequency ratio. The operating mode is set by a mode register bit:
`• In Quad Data Rate (QDR) mode the interface transfers four 32-bit wide data words per WCK clock
`cycle to/from the I/O pins. Corresponding to the 16-n prefetch a single write or read access consists of a
`512 bit wide, two CK clock cycle data transfer at the internal memory core and sixteen corresponding
`32 bit wide one-quarter WCK clock cycle data transfers to the I/O pins.
`• In Double Data Rate (DDR) mode the interface transfers two 32-bit wide data words per WCK clock
`cycle to/from the I/O pins. Corresponding to the 8-n prefetch a single write or read access consists of a
`256 bit wide, two CK clock cycle data transfer at the internal memory core and eight corresponding 32
`bit wide one-half WCK clock cycle data transfers to the I/O pins.
`Read and write accesses to the GDDR5X SGRAM are burst oriented; an access starts at a selected location
`and consists of a total of sixteen data words in QDR mode and eight data words in DDR mode. Accesses
`begin with the registration of an ACTIVATE command, which is then followed by a READ or WRITE
`command. The address bits registered coincident with the ACTIVATE command and the next rising CK_c
`edge are used to select the bank and the row to be accessed. The address bits registered coincident with the
`READ or WRITE command and the next rising CK_c edge are used to select the bank and the column
`location for the burst access.
`This standard includes all features and functionality required for JEDEC GDDR5X SGRAM devices. Users
`benefit from knowing that any system design based on the required aspects of the standard are supported
`by all GDDR5X SGRAM vendors; conversely users seeking to use any superset specifications bear the
`responsibility to verify support with individual vendors.
`
`Des m arais LLP
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:19 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2017, 0009
`
`

`

`JEDEC Standard No. 232A
`Page 4
`
` SIGNAL STATE TERMINOLOGY
`3.2
`The GDDR5X SGRAM will be operated in both ODT enable (terminated) and ODT disable (unterminated)
`modes. For highest data rates it is recommended to operate in the ODT enable mode. ODT disable mode is
`designed to reduce power and may operate at reduced data rates. There exist situations where ODT enable
`mode can not be guaranteed for a short period of time, for example during power-up.
`Four terminologies define the state of a device pin (GDDR5X SGRAM or controller) during operation. The
`state of the bus will be determined by the combination of the device pins connected to the bus in the
`system. For example, with GDDR5X it is possible for the device pin to be tristated while the controller pin
`is High or ODT. In both cases the bus would be High if the ODT is enabled.
`Device pin signal level:
`• High: a device pin drives the Logic “1” state.
`• Low: a device pin drives the Logic “0” state.
`• High-Z: a device pin is tristate.
`• ODT: a device pin terminates with ODT setting, which could be terminating or tristate depending on
`mode register setting.
`Bus signal level:
`• High: one device on the bus is High and all other devices on bus are either ODT or High-Z. The voltage
`level on the bus would be nominally VDDQ.
`• Low: one device on the bus is Low and all other devices on bus are either ODT or High-Z. The voltage
`level on the bus would be nominally VOL(DC) if ODT is enabled, or VSSQ if High -Z.
`• High-Z: all devices on the bus are High-Z. The voltage level on bus is undefined as the bus is floating.
`• ODT: at least one device on the bus is ODT and all others are High-Z. The voltage level on the bus
`would be nominally VDDQ.
`
`Des m arais LLP
`
` CLOCKING
`3.3
`The GDDR5X SGRAM operates from a differential clock CK_t and CK_c. Commands are registered at
`every rising edge of CK_t. Addresses are registered at every rising edge of CK_t and every rising edge of
`CK_c.
`The data interface uses two differential forwarded clocks WCK_t and WCK_c, each associated with two
`data bytes. WCK_t and WCK_c are continuously running and operate at twice the frequency of the
`command/address clock (CK_t/CK_c). A PLL/DLL is associated with each WCK pair. The use of the PLL/
`DLL is mandatory in QDR mode and vendor specific in DDR mode.
`• QDR mode uses a quad data rate data interface and a 16n-prefetch architecture for DQ/DBI_n, and a
`double data rate data interface and 8n-prefetch architecture for EDC. The PLL/DLL generates four
`equally spaced clock edges per WCK clock cycle. QDR means that four DQ/DBI_n data words per
`WCK cycle are registered at these internally generated clock edges. DDR means that two EDC data
`words per WCK cycle are registered at every second of these internally generated clock edges.
`• DDR mode uses a double data rate data interface and an 8n-prefetch architecture for DQ/DBI_n/EDC.
`DDR means that the data is registered at every rising edge of WCK_t and rising edge of WCK_c.
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:19 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2017, 0010
`
`

`

`JEDEC Standard No. 232A
`Page 5
`
`CLOCKING (cont’d)
`3.3
`Table 1 and Figure 1 illustrate the clock and interface signal relationship for both QDR and DDR operating
`modes.
`Table 1 — Example Clock and Interface Signal Frequency Relationship
`
`PIN
`CK_t, CK_c
`Command
`Address
`WCK_t, WCK_c
`DQ, DBI_n
`EDC
`
`QDR MODE
`1.5
`1.5
`3.0
`3.0
`12.0
`6.0
`
`DDR MODE
`1.5
`1.5
`3.0
`3.0
`6.0
`6.0
`
`UNIT
`GHz
`Gbps/pin
`Gbps/pin
`GHz
`Gbps/pin
`Gbps/pin
`
`CK_c
`CK_t
`
`COMMAND
`
`ADDRESS
`
`Des m arais LLP
`
`WCK_t
`WCK_c
`DQ, DBI_n
`(QDR Mode)
`DQ, DBI_n
`(DDR Mode)
`EDC
`(QDR + DDR Modes)
`NOTE 1 Figure 1 shows the relationship between the data rate of the buses and the clocks and is not a timing diagram.
`
`Figure 1 — GDDR5X Clocking and Interface Relationship
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:19 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2017, 0011
`
`

`

`JEDEC Standard No. 232A
`Page 6
`
`3.3
`
`CLOCKING (cont’d)
`
`Controller
`
`ADD/CMD centered with CK_t/CK_c
`
`ADD/CMD
`
`QD
`
`ADD/CMD
`
`CK_t/CK_c
`(1.5 GHz)
`
`Oscillator
`
`PLL/DLL
`Data Tx/Rx
`
`early/late
`
`core
`logic
`
`Clock Phase
`Controller
`
`Phase detector/
`accumulator
`
`DQ
`
`Receiver
`clock
`
`WCK_t/
`WCK_c
`(3 GHz)
`
`DATA
`(QDR mode:
`12 Gbps)
`(DDR mode:
`6 Gbps)
`
`early/late from
`calibration data
`
`DQ
`
`D Q
`
`Clock Phase
`Controller
`
`GDDR5X SGRAM
`CMD sampled by CK_t/CK_c as SDR
`ADD sampled by CK_t/CK_c as DDR
`
`QD
`
`DRAM
`core
`
`WCK2CK
`Alignment
`
`D Q
`
`To EDC pin
`
`PLL/DLL
`
`/2
`
`(DDR mode only)
`
`DQ
`
`WCKint
`QDR mode: 3.0 GHz
`DDR mode: 1.5 GHz
`
`QD
`
`DRAM
`core
`
`Des m arais LLP
`
`Figure 2 — Block Diagram of an Example Clock System
`
`Downloaded by Jamell Watson (JWatson@desmaraisllp.com) on Oct 19, 2020, 1:19 pm PDT
`
`Patent Owner Monterey Research, LLC
`Exhibit 2017, 0012
`
`

`

`JEDEC Standard No. 232A
`Page 7
`
` ADDRESSING
`3.4
`GDDR5X SGRAMs use a double data rate address scheme to reduce pins required on the device as shown
`in Table 2. The addresses should be provided in two parts; the first half is latched on the rising edge of
`CK_t along with the command pins such as RAS_n, CAS_n and WE_n; the second half is latched on the
`next rising edge of CK_c.
`The use of DDR addressing allows all address values to be latched in at the same rate as the SDR
`commands. All addresses related to command access have been positioned for latching on the initial rising
`edge for faster decoding.
`
`Clock
`
`Rising CK_t
`
`Rising CK_c
`
`Table 2 — Address Pairs
`
`Address Pins
`
`BA3
`
`A3
`
`BA2
`
`A4
`
`BA1
`
`A5
`
`BA0
`
`A2
`
`A14
`
`A15
`
`A12
`
`A13
`
`A11
`
`A6
`
`A10
`
`A0
`
`A9
`
`A1
`
`A8
`
`A7
`
`The addressing includes support for 4 Gb to 16 Gb densities and both QDR and DDR operating modes as
`shown in Table 3.
`
`Density
`I/O Configuration
`
`x32
`
`4 Gb
`
`Table 3 — Addressing Scheme
`6 Gb
`8 Gb
`
`x16
`
`x32
`
`x16
`
`x32
`
`x16
`
`12 Gb
`x32
`x16
`
`16 Gb
`x32
`x16
`
`A0~A12 A0~A13 A0-A13 A0-A14 A0~A13 A0~A14 A0~A14 A0~A15 A0~A14 A0~A15
`
`A0~A5
`
`A0~A6
`
`A0~A5
`
`A0~A6
`
`A0~A5
`
`A0~A6
`
`A7,A9,A12~A15
`
`A7,A9,A12~A15
`
`A7,A9,A12~A15
`
`A0~A5
`
`A0~A6
`
`A0~A5
`
`A0~A6
`
`A7,A9,A12~A15
`
`A7,A9,A12~A15
`
`A7,A9,A12~A15,A6 A7,A9,A12~A15,A6 A7,A9,A12~A15,A6 A7,A9,A12~A15,A6 A7,A9,A12~A15,A6
`
`Des m arais LLP
`
`Row address
`Column
`address
`DQ[15:0]
`Column
`address
`DQ[31:16]
`Bank address
`
`QDR Mode
`
`DDR Mode
`
`QDR Mode
`
`DDR Mode
`
`Autoprecharge
`
`Page Size
`
`Refresh
`
`BA0~BA3
`
`BA0~BA3
`
`BA0~BA3
`
`A8
`
`A8
`
`A8
`
`4K
`
`2K
`
`4K
`
`2K
`
`4K
`
`2K
`
`16K/32ms
`
`16K/32ms
`
`16K/32ms
`
`BA0~BA3
`
`BA0~BA3
`
`A8
`
`A8
`
`4K
`
`2K
`
`4K
`
`2K
`
`16K/32ms
`
`1.9us
`
`16K/32ms
`
`1.9us
`
`Refresh period
`
`1.9us
`
`1.9us
`
`1.9us
`
`NOTE 1 The burst order is fixed for Reads and Writes, and the GDDR5X SGRAM does not assign column address bits to
`distinguish between the UIs of a burst. A memory controller may internally assign such column address bits but these
`column address bits are not transmitted on the colum address bus to the GDDR5X SGRAM.
`NOTE 2 Row address range with A[13:12] = 11 (x32 mode) or A[14:13] = 11 (x16 mode) is not present for 6 Gb density. Row
`address range with A[14:13] = 11 (x32 mode) or A[15:14] = 11 (x16 mode) is not present for 12 Gb density. ACT/RD/WR
`commands to these memory locations are illegal.
`NOTE 3 Two column addresses CAL and CAU with shared bank addresses are provided with each WRITE and READ
`command.
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket