throbber

`
`
`
`
`
`
`
`
`
`
`
`
`SELECTED TOPICS IN NOVEL OPTICAL DESIGN
`
`
`by
`
`
`Yufeng Yan
`
`
`____________________________
`Copyright © Yufeng Yan 2019
`
`
`A Dissertation Submitted to the Faculty of the
`
`
`JAMES C. WYANT COLLEGE OF OPTICAL SCIENCES
`
`
`In Partial Fulfillment of the Requirements
`
`For the Degree of
`
`
`DOCTOR OF PHILOSOPHY
`
`
`In the Graduate College
`
`
`THE UNIVERSITY OF ARIZONA
`
`
`2019
`
`
`APPLE V COREPHOTONICS
`IPR2020-00906
`Exhibit 2034
`Page 1
`
`

`

`2
`
`THE UNIVERSITY OF ARIZONA
`GRADUATT: COLLEGE
`
`As members ofthe Dissertatian Committec, we certify thal we have read the dissertation
`prepared by Yufeng Yan, titled Selected Topics in Novel Optical Design and recommendthatit be
`accepted asfulfilling the dissertation requirement for the Degree of Doctor of Philosophy.
`
`Pe ANAorecono Date: {1d Zot
`
`Jose
`Sasian
`
`
`
`
`
`
`\ eeg)aan Date:_2fIG/215|
`
`James Schwiegerling
`
`/ngpor a—
`Date: _ 17/1ff
`
`a
`
`— |
`
`{
`
`RongguangLidng
`
`Final approval and acceptance ofthis dissertation is contingent upon the candidate’s submission
`of the final copies ofthe dissertation to the Graduate College,
`
`| hereby certify that I have read this dissertation prepared under mydirection and recommend
`that it be accepted as fulfilling the dissertation requirement,
`
`
`
`picsanaes Date: (A>3-20!'7
`
`Joye Susian
`Dissertation Committee Chair
`Optical Sciences
`
`APPLE V COREPHOTONICS
`IPR2020-00906
`Exhibit 2034
`Page 2
`
`APPLE V COREPHOTONICS
`IPR2020-00906
`Exhibit 2034
`Page 2
`
`

`

`
`
`ACKNOWLEDGEMENTS
`
`3
`
`
`
`I would like to first thank my parents in China for their support that encouraged me to
`
`pursue both bachelor’s, master’s and doctorate degree abroad. I would also like to thank my
`
`girlfriend Jie Feng for her strong support and being the first reader of each chapter of this
`
`dissertation. I am very grateful to my adviser, Dr. Jose Sasian. This project would not have been
`
`possible without his constant support and mentoring. I would also like to acknowledge the
`
`members of my committee, Dr. Rongguang Liang and Dr. Jim Schwiegerling, who took their time
`
`to review this dissertation and gave me valuable suggestions.
`
`
`
`In addition, I would like to thank Zemax for giving me permission to use their software for
`
`designing and evaluating the optical systems in this project. I would also like to thank Dr. Liang
`
`for his funding and support to the project “Optical performance evaluation and chromatic
`
`aberration correction of a focus tunable lens used for 3D microscopy”, which is included in Chapter
`
`4 of this dissertation.
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`APPLE V COREPHOTONICS
`IPR2020-00906
`Exhibit 2034
`Page 3
`
`

`

`4
`
`
`
`DEDICATION
`
`
`
`
`
`To my parents Xueping and Zhiming, and to my love Jie
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`APPLE V COREPHOTONICS
`IPR2020-00906
`Exhibit 2034
`Page 4
`
`

`

`
`
`TABLE OF CONTENTS
`
`5
`
`LIST OF FIGURES ...................................................................................................................... 7
`LIST OF TABLES ...................................................................................................................... 14
`ABSTRACT ................................................................................................................................. 15
`1
`Introduction .......................................................................................................................... 16
`2 Photographic Fisheye Lens Design for 35mm Format Cameras ..................................... 19
`2.1 Introduction to Fisheye Lenses ....................................................................................... 20
`2.1.1 The History behind Fisheye Lenses ..................................................................... 21
`2.1.2 Diagonal and Circular Fisheye Lens for Photographic Purpose .......................... 27
`2.2 Projection Methods of Fisheye Lenses ........................................................................... 30
`2.2.1 Tangential and Sagittal Magnification ................................................................. 31
`2.2.2 Equidistant Projection .......................................................................................... 33
`2.2.3 Orthographic Projection ....................................................................................... 35
`2.2.4 Stereographic Projection ...................................................................................... 36
`2.2.5 Equisolid Angle Projection .................................................................................. 38
`2.2.6 Projection Difference and their Practice Use ....................................................... 40
`2.3 Special Properties and Design Issues of Photographic Fisheye Lenses ......................... 42
`2.3.1 Negative Meniscus Lens and Pupil Shift ............................................................. 43
`2.3.2 Inverted Telephoto Structure and Minimum BFD Requirement ......................... 46
`2.3.3 Depth of Field ...................................................................................................... 48
`2.3.4 Relative Illumination and Image Space Chief Ray Angle ................................... 51
`2.4 Design of a Zoom Fisheye Lens for 35mm Format DSLR Cameras .............................. 53
`2.4.1 Motivation and Current Designs of Zoom Fisheye Lenses ................................. 54
`2.4.2 Design Specifications and Lens Construction ..................................................... 56
`2.4.3 Aberration Control ............................................................................................... 60
`2.4.4 Lens Optimization ................................................................................................ 65
`2.4.5 Performance Evaluation ....................................................................................... 66
`2.4.6 Tolerance Analysis............................................................................................... 73
`2.5 Conclusion ...................................................................................................................... 74
`3 Miniature Camera Lens Design with a Freeform Surface ............................................... 77
`3.1 Design Challenges of a Miniature Camera Lens ............................................................ 79
`
`APPLE V COREPHOTONICS
`IPR2020-00906
`Exhibit 2034
`Page 5
`
`

`

`
`
`6
`
`3.2 Aspherical and Freeform Surfaces .................................................................................. 84
`3.2.1 Conventional Aspherical Surfaces ....................................................................... 85
`3.2.2 Freeform Surface based on Pedal Curve to the Ellipse ........................................ 88
`3.3 First Lens Comparison .................................................................................................... 92
`3.3.1 Nominal Performance Comparison...................................................................... 93
`3.3.2 Tolerance Sensitivity ........................................................................................... 94
`3.4 Second Lens Comparison ............................................................................................... 99
`3.4.1 Performance Comparison................................................................................... 100
`3.4.2 Reversed Asphere Design .................................................................................. 107
`3.5 Conclusion .................................................................................................................... 111
`4 Applications and Optical Performance Consideration of Liquid Lenses ..................... 114
`4.1 Development and Principles of Focus Tunable Lenses ................................................ 115
`4.2 A Review of Application Utilizing Liquid Lenses ....................................................... 121
`4.2.1 Focus Sweeping ................................................................................................. 121
`4.2.2 Zoom System based on Liquid Lens .................................................................. 130
`4.2.3 Nonmechanical Beam Steering .......................................................................... 139
`4.3 Optical Performance Evaluation of Liquid Lens used for 3D microscopy ................... 142
`4.3.1 Simulation and Experiment Setup ..................................................................... 143
`4.3.2 Simulation and Experiment Results ................................................................... 147
`4.4 Correction of Chromatic Aberration ............................................................................. 154
`4.5 Conclusion .................................................................................................................... 162
`5 Conclusion .......................................................................................................................... 165
`APPENDIX A – LENS DATA I ............................................................................................... 167
`APPENDIX B – LENS DATA II ............................................................................................. 171
`REFERENCES .......................................................................................................................... 179
`
`
`
`
`
`
`
`
`APPLE V COREPHOTONICS
`IPR2020-00906
`Exhibit 2034
`Page 6
`
`

`

`
`
`LIST OF FIGURES
`
`7
`
`Figure 2.1. Modern fisheye lens applications such as (a) the “Bird’s-eye” visual system [6] and (b)
`a Samsung “360-degree” camera for virtual reality displays [7]. .......................................... 21
`Figure 2.2. Refraction of a ray at critical angle ............................................................................... 23
`Figure 2.3. (a) Water camera designed by R.W.Wood, (b) photo took by Wood’s camera, (c) fisheye
`camera designed by W.N.Bond and (d) entire sky captured by Bond’s camera ................... 23
`Figure 2.4. The layout of ‘the Hill sky lens’ designed by R. Hill ................................................... 24
`Figure 2.5. The comparison between the (a) AEG fisheye lens and (b) Nikkor’s first fisheye lens26
`Figure 2.6. A sample Image taken by a diagonal fisheye lens ........................................................ 29
`Figure 2.7. A sample Image taken by a circular fisheye lens.......................................................... 29
`Figure 2.8. The object hemisphere of a fisheye lens system ........................................................... 31
`Figure 2.9. The image space of a fisheye lens system .................................................................... 32
`Figure 2.10. Image height vs. field angle for different fisheye projection system.......................... 40
`Figure 2.11. Same object under (a) stereographic projection, (b) equidistant projection, (c) equisolid
`angle projection and (d) orthographic projection .................................................................. 41
`Figure 2.12. The projection curve fitting for the Nikkor 16mm F/2.8D fisheye lens ..................... 42
`Figure 2.13. The Nikkor 6mm F/2.8 220-degree fisheye lens with 3 negative meniscus lenses .... 44
`Figure 2.14. The pupil shift effect of the Nikkor 8mm F/8 fisheye lens ......................................... 45
`Figure 2.15. A fisheye lens with ray aiming turned on (top) and off (bottom) in Zemax............... 46
`Figure 2.16. The structure of the telephoto lens and the inverted telephoto lens ............................ 47
`Figure 2.17. For a fisheye lens without sufficient BFD, (a) the folding mirror needs to be held at
`upright position and (b) an attachable viewfinder is needed to provide live view [20] ........ 48
`Figure 2.18. Illustration of depth of field L..................................................................................... 49
`Figure 2.19. Coma aberration of the entrance pupil. Black solid lines indicate the paraxial entrance
`pupil with grid. The red dashed lines indicate the off-axis entrance pupil with corresponding
`grid. ........................................................................................................................................ 53
`Figure 2.20. A monochromatic fisheye lens design with 104% edge relative illumination (compare
`to center illumination) ............................................................................................................ 53
`
`
`
`
`
`APPLE V COREPHOTONICS
`IPR2020-00906
`Exhibit 2034
`Page 7
`
`

`

`
`
`LIST OF FIGURES - Continued
`
`8
`
`Figure 2.21. (a) Size comparison between a 35mm sensor and an APS-C sensor, (b) zoom fisheye
`lens at its shortest focal length, (c) zoom fisheye lens providing diagonal fisheye image for
`APS-C sensor, (d) zoom fisheye lens at its longest focal length. .......................................... 54
`Figure 2.22. Lens structure at extreme zoom positions ................................................................... 58
`Figure 2.23. Cam curve of the zoom lens ....................................................................................... 58
`Figure 2.24. Image space CRA vs. HFOV at (a) wide-angle position, (b) intermediate zoom position,
`and (c) telephoto zoom position............................................................................................. 66
`Figure 2.25. Optical path difference for 0 deg, 30 deg, 60 deg, and 90 deg half field at (a) wide angle
`zoom position, (b) intermediate zoom position, and (c) telephoto zoom position. Scale is (cid:114) 2
`waves ..................................................................................................................................... 67
`Figure 2.26. Astigmatic field curves at (a) wide angle zoom position, (b) intermediate zoom position,
`and (c) telephoto zoom position............................................................................................. 67
`Figure 2.27. Longitudinal aberration at (a) wide angle zoom position, (b) intermediate zoom position,
`and (c) telephoto zoom position............................................................................................. 68
`Figure 2.28. Longitudinal aberration at (a) wide angle zoom position, (b) intermediate zoom position,
`and (c) telephoto zoom position............................................................................................. 68
`Figure 2.29. Lateral color at (a) wide angle zoom position, (b) intermediate zoom position, and (c)
`telephoto zoom position. ........................................................................................................ 69
`Figure 2.30. MTF versus spatial frequency at (a) wide angle zoom position, (b) intermediate zoom
`position, and (c) telephoto zoom position. ............................................................................. 71
`Figure 2.31. MTF versus field at (a) wide angle zoom position, (b) intermediate zoom position, and
`(c) telephoto zoom position. .................................................................................................. 71
`Figure 2.32. Entrance pupil shape at its maximum at (a) wide angle zoom position, (b) intermediate
`zoom position, and (c) telephoto zoom position. ................................................................... 72
`Figure 2.33. Relative illumination at (a) wide angle zoom position, (b) intermediate zoom position,
`and (c) telephoto zoom position............................................................................................. 73
`Figure 2.34. Effect of 1-arc min surface/element tilt, and 10-(cid:80)m surface/element decenter, at all
`three critical zoom positions, based upon the root-sum-square method ................................ 74
`Figure 3.1. Global digital still camera shipments in pieces from 2010 to 2018 .............................. 77
`
`APPLE V COREPHOTONICS
`IPR2020-00906
`Exhibit 2034
`Page 8
`
`

`

`
`
`LIST OF FIGURES - Continued
`
`9
`
`Figure 3.2. Layout comparison between the Nikon 28mm conventional camera lens and Apple 4mm
`miniature camera lens ............................................................................................................ 80
`Figure 3.3. Sideview of a typical CMOS sensor, large angle off-axis ray bundle may cause light
`leakage into the neighboring pixels and results in color crosstalk ........................................ 81
`Figure 3.4. Comparison of relative illumination between Nikon 28mm camera lens and Apple 4mm
`miniature lens ......................................................................................................................... 82
`Figure 3.5. An example pedal curve to the ellipse, a = 2, b = 1 ...................................................... 89
`Figure 3.6. An elliptical-like curve on the x-y plane for sag equation derivation .......................... 90
`Figure 3.7. Layout and OPD plots of the benchmark lens. The maximum scales of OPD plots are (cid:114)1
`wave ....................................................................................................................................... 93
`Figure 3.8. Layout and OPD plots of the evaluation lens. The maximum scales of OPD plots are (cid:114)1
`wave ....................................................................................................................................... 94
`Figure 3.9. Nominal MTF plots of benchmark lens (left) and evaluation lens (right) .................... 94
`Figure 3.10. MTF plots of benchmark lens (left) and evaluation lens (right) under 5 (cid:80)m decenter of
`surface 7 in Y direction .......................................................................................................... 95
`Figure 3.11. MTF plots of benchmark lens (left) and evaluation lens (right) under 5 (cid:80)m decenter of
`surface 8 in Y direction .......................................................................................................... 95
`Figure 3.12. MTF plots of benchmark lens (left) and evaluation lens (right) under 5 (cid:80)m decenter of
`surface 9 in Y direction .......................................................................................................... 96
`Figure 3.13. MTF plots of benchmark lens (left) and evaluation lens (right) under 5 (cid:80)m decenter of
`surface 10 in Y direction ........................................................................................................ 96
`Figure 3.14. MTF plots of benchmark lens (left) and evaluation lens (right) under 5 (cid:80)m decenter of
`element 4 in Y direction......................................................................................................... 96
`Figure 3.15. MTF plots of benchmark lens (left) and evaluation lens (right) under 5 (cid:80)m decenter of
`element 5 in Y direction......................................................................................................... 97
`Figure 3.16. MTF plots of benchmark lens (left) and evaluation lens (right) under 5 (cid:80)m decenter of
`surface 7 in X direction .......................................................................................................... 97
`Figure 3.17. MTF plots of benchmark lens (left) and evaluation lens (right) under 5 (cid:80)m decenter of
`surface 8 in X direction .......................................................................................................... 97
`
`APPLE V COREPHOTONICS
`IPR2020-00906
`Exhibit 2034
`Page 9
`
`

`

`
`
`LIST OF FIGURES - Continued
`
`10
`
`Figure 3.18. MTF plots of benchmark lens (left) and evaluation lens (right) under 5 (cid:80)m decenter of
`surface 9 in X direction .......................................................................................................... 98
`Figure 3.19. MTF plots of benchmark lens (left) and evaluation lens (right) under 5 (cid:80)m decenter of
`surface 10 in X direction ........................................................................................................ 98
`Figure 3.20. MTF plots of benchmark lens (left) and evaluation lens (right) under 5 (cid:80)m decenter of
`element 4 in X direction......................................................................................................... 98
`Figure 3.21. MTF plots of benchmark lens (left) and evaluation lens (right) under 5 (cid:80)m decenter of
`element 5 in X direction......................................................................................................... 99
`Figure 3.22. Lens layout of the even aspere lens, the Q-type polynomial lens and the pedal freeform
`lens ....................................................................................................................................... 101
`Figure 3.23. Nominal OPD plots of the even sphere lens ............................................................. 101
`Figure 3.24. Nominal OPD plots of the Q-type polynomial lens .................................................. 102
`Figure 3.25. Nominal OPD plots of the pedal freeform lens ........................................................ 102
`Figure 3.26. Nominal MTF plots of the even asphere lens, the Q- type polymonial lens and the pedal
`freeform lens ........................................................................................................................ 103
`Figure 3.27. MTF plots under 5 (cid:80)m decenter of surface 7 in Y direction for the even asphere lens,
`the Q- type polymonial lens and the pedal freeform lens .................................................... 104
`Figure 3.28. MTF plots under 5 (cid:80)m decenter of surface 8 in Y direction for the even asphere lens,
`the Q- type polymonial lens and the pedal freeform lens .................................................... 104
`Figure 3.29. MTF plots under 5 (cid:80)m decenter of surface 9 in Y direction of the even asphere lens,
`the Q- type polymonial lens and the pedal freeform lens .................................................... 105
`Figure 3.30. MTF plots under 5 (cid:80)m decenter of surface 10 in Y direction of the even asphere lens,
`the Q- type polymonial lens and the pedal freeform lens .................................................... 105
`Figure 3.31. MTF plots under 5 (cid:80)m decenter of element 4 in Y direction of the even asphere lens,
`the Q- type polymonial lens and the pedal freeform lens .................................................... 106
`Figure 3.32. MTF plots under 5 (cid:80)m decenter of element 5 in Y direction of the even asphere lens,
`the Q- type polymonial lens and the pedal freeform lens .................................................... 106
`Figure 3.33. Layout of the pedal freeform lens (left) and the reversed asphere lens (right) ......... 108
`
`
`APPLE V COREPHOTONICS
`IPR2020-00906
`Exhibit 2034
`Page 10
`
`

`

`
`
`LIST OF FIGURES - Continued
`
`11
`
`Figure 3.34. Nominal MTF plots of the pedal freeform lens (left) and the reversed asphere lens (right)
` ............................................................................................................................................. 108
`Figure 3.35. MTF plots of the pedal freeform lens (left) and the reversed asphere lens (right) under
`5 (cid:80)m decenter of surface 7 in Y direction ........................................................................... 109
`Figure 3.36. MTF plots of the pedal freeform lens (left) and the reversed asphere lens (right) under
`5 (cid:80)m decenter of surface 8 in Y direction ........................................................................... 109
`Figure 3.37. MTF plots of the pedal freeform lens (left) and the reversed asphere lens (right) under
`5 (cid:80)m decenter of surface 9 in Y direction ........................................................................... 110
`Figure 3.38. MTF plots of the pedal freeform lens (left) and the reversed asphere lens (right) under
`5 (cid:80)m decenter of surface 10 in Y direction ......................................................................... 110
`Figure 3.39. MTF plots of the pedal freeform lens (left) and the reversed asphere lens (right) under
`5 (cid:80)m decenter of element 4 in Y direction .......................................................................... 110
`Figure 3.40. MTF plots of the pedal freeform lens (left) and the reversed asphere lens (right) under
`5 (cid:80)m decenter of element 10 in Y direction ........................................................................ 111
`Figure 4.1. Working principle of the “butterfly cup” from Song dynasty. ................................... 116
`Figure 4.2. Working principle of LC tunable lens with inhomogeneous cell cap ......................... 117
`Figure 4.3. Electrode designs for LC lenses with homogeneous cell gap, including (a) hole-patterned
`electrode, (b) curved electrode and (c) planar electrodes. ................................................... 118
`Figure 4.4. Working principle of a liquid lens based on electrowetting. ...................................... 119
`Figure 4.5. Working principle of a liquid lens with polymer membrane, lens shape is changed by
`applying pressure on membrane. ......................................................................................... 120
`Figure 4.6. Figure of an example patented variable focus liquid ophthalmic lens. Optical power of
`liquid lens is tunable by adjusting the rotatable impeller .................................................... 122
`Figure 4.7. Example of presbyopia correction using liquid lens. (a) A relaxed eye looking at infinity
`through liquid lens, (b) a relaxed eye looking at a near object through liquid lens, (c) a relaxed
`eye looking at infinity without liquid lens, (d) an eye looking at a near object with eye lens
`accommodation. ................................................................................................................... 123
`Figure 4.8. Demonstration of VAC in HMDs. .............................................................................. 125
`Figure 4.9. A “bird bath” type HMD with a tunable lens to reduce VAC .................................... 126
`
`APPLE V COREPHOTONICS
`IPR2020-00906
`Exhibit 2034
`Page 11
`
`

`

`
`
`LIST OF FIGURES - Continued
`
`12
`
`Figure 4.10. A wide FOV HMD with commercial off-the-shelf liquid lens ................................. 127
`Figure 4.11. A focus-tunable near-eye HMD based on commercially off-the-shelf components [71]
` ............................................................................................................................................. 128
`Figure 4.12. Light propagation through (a) a conventional infinite conjugate objective with a fixed
`focus plane and (b) an infinite conjugate objective pairs with a liquid lens ........................ 129
`Figure 4.13. System comparison between putting liquid lens at conjugated pupil of aperture stop
`(top) and putting liquid lens directly above microscope objective close to the aperture stop
`(bottom). .............................................................................................................................. 129
`Figure 4.14. An afocal zoom system. Both objective and eye piece are liquid lenses introduced by
`Nickolaos Savidis ................................................................................................................ 132
`Figure 4.15. A 4x zoom laparoscope presented by Lee. ............................................................... 134
`Figure 4.16. A 1.7x zoom camera lens presented by Kuiper [78]................................................. 134
`Figure 4.17. A 2x zoom camera lens presented by Zhao [79]. ..................................................... 135
`Figure 4.18. A 2x zoom camera lens with chromatic aberration correction. ................................ 137
`Figure 4.19. Optical performance of the 2x zoom lens based on liquid lenses ............................. 138
`Figure 4.20. 2.5x hybrid zoom lens presented by Wippermann (left) and 2.6x hybrid zoom lens
`presented by Sun [82, 83] .................................................................................................... 139
`Figure 4.21. A 9.8x hybrid zoom lens patented by Canon [84] .................................................... 139
`Figure 4.22. A non-mechanical beam steering system using liquid lenses ................................... 140
`Figure 4.23. An ultra-wide angle non-mechanical beam steering system using liquid lenses
`presented by Zohrabi [87] .................................................................................................... 141
`Figure 4.24. A camera lens with liquid lens optical image stabilizer [88] .................................... 142
`Figure 4.25. Simulation setup in Zemax ....................................................................................... 144
`Figure 4.26. A Twyman-Green interferometer to measure the spherical aberration and chromatic
`focal shift of the 3D microscopy setup in vertical direction. ............................................... 145
`Figure 4.27. Setup to measure the image contrast with a USAF 1951 target to evaluate system
`resolution. ............................................................................................................................ 146
`Figure 4.28. Setup to measure aberration and contrast of the 3D microscopy in horizontal direction
`to exam gravity effect. ......................................................................................................... 147
`
`
`
`APPLE V COREPHOTONICS
`IPR2020-00906
`Exhibit 2034
`Page 12
`
`

`

`
`
`LIST OF FIGURES - Continued
`
`13
`
`Figure 4.29. On-axis MTF of the liquid lens and OL paired with Thorlabs 2X refractive objective.
` ............................................................................................................................................. 148
`Figure 4.30. On-axis MTF of the liquid lens and OL paired with Thorlabs 4X refractive objective.
` ............................................................................................................................................. 148
`Figure 4.31. On-axis MTF of the liquid lens and OL paired with Thorlabs 15X reflective objective.
` ............................................................................................................................................. 149
`Figure 4.32. On-axis MTF of the liquid lens and OL paired with Thorlabs 40X reflective objective.
` ............................................................................................................................................. 149
`Figure 4.33. Chromatic focal shifts between F-line and C-line (blue bar) and between F-line and d-
`line (orange bar) for 4 chosen objectives with liquid lens and OL. ..................................... 150
`Figure 4.34. Chromatic focal shift plots for the objectives with and without liquid lens. ............ 151
`Figure 4.35. Optical performance evaluation of 3D microscopy setup in vertical direction ........ 152
`Figure 4.36. Optical performance evaluation of 3D microscopy setup in horizontal direction .... 154
`Figure 4.37. Optical setup for equation derivation........................................................................ 155
`Figure 4.38. An achromatic liquid lens system with 2 thin doublets ............................................ 161
`Figure 4.39. An apochromatic 3D microscopy system. ................................................................ 162
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`APPLE V COREPHOTONICS
`IPR2020-00906
`Exhibit 2034
`Page 13
`
`

`

`
`
`LIST OF TABLES
`
`14
`
`Table 2.1. Design specification of the zoom fisheye lens at different zoom positions ................. 57
`Table 2.2. Lens data with aspherical coefficients ......................................................................... 59
`Table 2.3. Aberration coefficients upon object shift according to the object shift parameter S ... 60
`Table 2.4. Zoom lens aberration coefficients in waves for a semi-field of 30 degrees ................ 62
`Table 3.1. Lens data for the Nikon lens, Apple lens and Nikon lens scaled to same focal length
`with the Apple lens ................................................................................................................ 80
`Table 3.2. Some example patent lenses with strongly aspherical rear elements. ......................... 85
`Table 3.3. Design specification of the first benchmark lens and evaluation lens ........

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket