throbber
US010317647B2
`
`( 12 ) United States Patent
`Dror et al .
`
`( 10 ) Patent No . : US 10 , 317 , 647 B2
`( 45 ) Date of Patent :
`* Jun . 11 , 2019
`
`( 54 ) MINIATURE TELEPHOTO LENS ASSEMBLY
`( 71 ) Applicant : Corephotonics Ltd . , Tel - Aviv ( IL )
`( 72 ) Inventors : Michael Dror , Nes Ziona ( IL ) ;
`Ephraim Goldenberg , Ashdod ( IL ) ;
`Gal Shabtay , Tel Aviv ( IL )
`( 73 ) Assignee : Corephotonics Ltd , Tel Aviv ( IL )
`Subject to any disclaimer , the term of this
`( * ) Notice :
`patent is extended or adjusted under 35
`U . S . C . 154 ( b ) by 0 days .
`This patent is subject to a terminal dis
`claimer .
`( 21 ) Appl . No . : 15 / 976 , 422
`May 10 , 2018
`( 22 )
`Filed :
`Prior Publication Data
`( 65 )
`US 2018 / 0275375 A1 Sep . 27 , 2018
`Related U . S . Application Data
`Continuation of application No . 15 / 817 , 235 , filed on
`Nov . 19 , 2017 , which is a continuation of application
`( Continued )
`
`( 63 )
`
`( 51 )
`
`( 52 )
`
`Int . Ci .
`G02B 13 / 00
`( 2006 . 01 )
`G02B 13 / 02
`( 2006 . 01 )
`( Continued )
`U . S . CI .
`CPC . . . . . . . . . G02B 13 / 0045 ( 2013 . 01 ) ; G02B 1 / 041
`( 2013 . 01 ) ; G02B 9 / 60 ( 2013 . 01 ) ;
`( Continued )
`
`( 56 )
`
`( 58 ) Field of Classification Search
`CPC . . GO2B 13 / 0045 ; GO2B 9 / 60 ; GO2B 27 / 0025 ;
`GO2B 5 / 005 ; GO2B 13 / 02 ; G02B 1 / 041 ;
`( Continued )
`References Cited
`U . S . PATENT DOCUMENTS
`2 , 354 , 503 A
`7 / 1944 Cox
`2 , 378 , 170 A
`6 / 1945 Aklin
`( Continued )
`
`CN
`JP
`
`FOREIGN PATENT DOCUMENTS
`104297906 A
`1 / 2015
`1966006865
`4 / 1966
`( Continued )
`OTHER PUBLICATIONS
`A compact and cost effective design for cell phone zoom lens ,
`Chang et al . , Sep . 2007 , 8 pages .
`( Continued )
`Primary Examiner - Evelyn A Lester
`( 74 ) Attorney , Agent , or Firm — Nathan & Associates ;
`Menachem Nathan
`ABSTRACT
`( 57 )
`An optical lens assembly includes five lens elements and
`provides a TTL / EFL < 1 . 0 . In an embodiment , the focal
`length of the first lens element f1 < TTL / 2 , an air gap between
`first and second lens elements is smaller than half the second
`lens element thickness , an air gap between the third and
`fourth lens elements is greater than TTL / 5 and an air gap
`between the fourth and fifth lens elements is smaller than
`about 1 . 5 times the fifth lens element thickness . All lens
`elements may be aspheric .
`12 Claims , 6 Drawing Sheets
`
`110
`
`101
`
`102
`108 - 1100
`102 102 104 106
`102 106
`
`ASAAN
`
`M
`
`102a
`
`Toda 104
`1020
`
`erup
`CM 1100
`
`m
`
`Whennementen
`wwwwwww
`
`APPL-1001 / Page 1 of 14
`APPLE INC. v. COREPHOTONICS LTD.
`
`

`

`US 10 , 317 , 647 B2
`Page 2
`
`GO2B 9 / 60
`
`GO2B 9 / 60
`
`6 / 2011 Tang et al .
`7 , 961 , 406 B2
`8 / 2011 Tsai
`8 , 000 , 031 B1
`8 / 2011 Souma
`8 , 004 , 777 B2
`8 , 046 , 026 B2 10 / 2011 Koa
`8 , 072 , 695 B1 12 / 2011 Lee et al .
`8 , 077 , 400 B2 | 12 / 2011 Tang
`8 , 149 , 523 B2
`4 / 2012 Ozaki
`8 , 218 , 253 B2
`7 / 2012 Tang
`8 , 228 , 622 B2
`7 / 2012 Tang
`8 , 233 , 224 B2
`7 / 2012 Chen
`8 , 253 , 843 B2
`8 / 2012 Lin
`8 . 279 . 537 B2 10 / 2012 Sato
`8 , 310 , 768 B2 11 / 2012 Lin et al .
`8 , 363 , 337 B2
`1 / 2013 Tang et al .
`8 , 395 , 851 B2
`3 / 2013 Tang et al .
`8 , 400 , 717 B2
`3 / 2013 Chen et al .
`3 , 451 , 549 A1 5 / 2013 Yamanaka et al .
`8 , 503 , 107 B2
`8 / 2013 Chen et al .
`8 , 508 , 860 B2
`8 / 2013 Tang et al .
`8 , 514 , 502 B2
`8 / 2013 Chen
`8 , 553 , 106 B2
`10 / 2013 Scarff
`8 , 731 , 390 B2
`5 / 2014 Goldenberg et al .
`8 , 780 , 465 B2
`7 / 2014 Chae
`8 , 810 , 923 B2
`8 / 2014 Shinohara
`8 , 854 , 745 B1 10 / 2014 Chen
`8 , 958 , 164 B2
`2 / 2015 Kwon et al .
`9 , 185 , 291 B1 11 / 2015 Shabtay et al .
`9 , 229 , 194 B21 / 2016 Yoneyama et al .
`9 , 235 , 036 B2
`1 / 2016 Kato et al .
`9 , 279 , 957 B2
`3 / 2016 Kanda et al .
`9 , 402 , 032 B2 *
`7 / 2016 Dror . . . .
`9 , 405 , 099 B2
`8 / 2016 Jo et al .
`9 , 438 , 792 B2
`9 / 2016 Nakada et al .
`9 , 488 , 802 B2
`11 / 2016 Chen et al .
`9 , 568 , 712 B2 *
`2 / 2017 Dror . . . .
`9 , 678 , 310 B2
`6 / 2017 Iwasaki et al .
`9 , 817 , 213 B2 11 / 2017 Mercado
`9 , 857 , 568 B2 *
`1 / 2018 Dror . . . . . . . . . . . . . . . . . . GO2B 13 / 0045
`2005 / 0141103 A1 6 / 2005 Nishina
`2005 / 0168840 A18 / 2005 Kobayashi et al .
`2006 / 0187312 A1
`8 / 2006 Labaziewicz et al .
`2007 / 0229983 Al 10 / 2007 Saori
`2007 / 0229987 A1 10 / 2007 Shinohara
`2008 / 0166115 A17 / 2008 Sachs et al .
`2008 / 0187310 A1
`8 / 2008 Janson et al .
`2008 / 0218613 Al
`9 / 2008 Janson et al .
`2008 / 0304161 AL 12 / 2008 Souma
`2009 / 0002839 AL
`1 / 2009 Sato
`2009 / 0122423 A1 5 / 2009 Park et al .
`2010 / 0254029 Al 10 / 2010 Shinohara
`2011 / 0001838 A1
`1 / 2011 Lee
`2011 / 0080487 Al
`4 / 2011 Vankataraman et al .
`2011 / 0115965 Al 5 / 2011 Engelhardt et al .
`2012 / 0087020 A1 4 / 2012 Tang et al .
`2012 / 0092777 Al
`4 / 2012 Tochigi et al .
`2012 / 0105708 A1 5 / 2012 Hagiwara
`2012 / 0154929 A1 6 / 2012 Tsai et al .
`2012 / 0314296 Al 12 / 2012 Shabtay et al .
`2013 / 0003195 AL
`1 / 2013 Kubota et al .
`2013 / 0038947 Al 2 / 2013 Tsai et al .
`2013 / 0208178 A1
`8 / 2013 Park
`2013 / 0286488 AL 10 / 2013 Chae
`2014 / 0022436 A11 / 2014 Kim et al .
`2014 / 0029116 A1
`1 / 2014 Tsai et al .
`2014 / 0204480 A1 7 / 2014 Jo et al .
`2014 / 0285907 A1 9 / 2014 Tang et al .
`2014 / 0293453 Al 10 / 2014 Ogino
`2014 / 0362274 Al 12 / 2014 Christie et al .
`2015 / 0029601 A1
`1 / 2015 Dror et al .
`2015 / 0085174 A1
`3 / 2015 Shabtay et al .
`2015 / 0116569 Al 4 / 2015 Mercado
`2015 / 0253647 AL
`9 / 2015 Mercado
`2016 / 0085089 A1 3 / 2016 Mercado
`2016 / 0187631 A1 6 / 2016 Choi et al .
`2016 / 0313537 Al 10 / 2016 Mercado
`2017 / 0102522 AL
`4 / 2017 Jo
`2017 / 0115471 A14 / 2017 Shinohara
`
`( 56 )
`
`( 51 )
`
`( 52 )
`
`( 2006 . 01 )
`( 2006 . 01 )
`( 2006 . 01 )
`( 2006 . 01 )
`( 2006 . 01 )
`( 2006 . 01 )
`( 2006 . 01 )
`
`Related U . S . Application Data
`No . 15 / 418 , 925 , filed on Jan . 30 , 2017 , now Pat . No .
`9 , 857 , 568 , which is a continuation of application No .
`15 / 170 , 472 , filed on Jun . 1 , 2016 , now Pat . No .
`9 , 568 , 712 , which is a continuation of application No .
`14 / 932 , 319 , filed on Nov . 4 , 2015 , now Pat . No .
`9 , 402 , 032 , which is a continuation of application No .
`14 / 367 , 924 , filed as application No . PCT / IB2014 /
`062465 on Jun . 20 , 2014 , now abandoned .
`( 60 ) Provisional application No . 61 / 842 , 987 , filed on Jul .
`4 , 2013 .
`Int . Ci .
`GO2B 9 / 60
`GO2B 27 / 00
`GO2B 1 / 04
`GO2B 27 / 64
`GO2B 5 / 00
`GO2B 9 / 00
`H04N 101 / 00
`U . S . CI .
`CPC . . . . . . . . . GO2B 13 / 02 ( 2013 . 01 ) ; G02B 27 / 0025
`( 2013 . 01 ) ; G02B 27 / 646 ( 2013 . 01 ) ; G02B
`5 / 005 ( 2013 . 01 ) ; GO2B 9 / 00 ( 2013 . 01 ) ; GO2B
`13 / 002 ( 2013 . 01 ) ; H04N 2101 / 00 ( 2013 . 01 ) ;
`H04N 2201 / 00 ( 2013 . 01 ) ; Y1OT 29 / 4913
`( 2015 . 01 )
`( 58 ) Field of Classification Search
`CPC . . . . . GO2B 13 / 002 ; GO2B 9 / 00 ; GO2B 27 / 646 ;
`HO4N 2201 / 00 ; Y10T 29 / 4913
`USPC . . . . . . . . .
`. . . . . . . . 359 / 714 , 739 , 740 , 763 , 764
`See application file for complete search history .
`References Cited
`U . S . PATENT DOCUMENTS
`5 / 1948 Aklin
`2 , 441 , 093 A
`6 / 1968 Eggert et al .
`3 , 388 , 956 A
`8 / 1970 Eggert et al .
`3 , 524 , 700 A
`2 / 1975 Harada
`3 , 864 , 027 A
`3 / 1976 Betensky
`3 , 942 , 876 A
`1 / 1979 Sugiyama et al .
`4 , 134 , 645 A
`7 / 1982 Matsui
`4 , 338 , 001 A
`4 , 465 , 345 A
`8 / 1984 Yazawa
`3 / 1991 Shibayama
`5 , 000 , 551 A
`12 / 1992 Wilm et al .
`5 , 172 , 235 A
`5 , 946 , 142 A
`8 / 1999 Hirata et al .
`11 / 2003 Ori
`6 , 654 , 180 B2
`7 , 187 , 504 B2
`3 / 2007 Horiuchi
`7 , 515 , 351 B2
`4 / 2009 Chen et al .
`7 / 2009 Tang
`7 , 564 , 635 B1
`1 / 2010 Tsai
`7 , 643 , 225 B1
`2 / 2010 Tang
`7 , 660 , 049 B2
`3 / 2010 Tang
`7 , 684 , 128 B2
`7 , 688 , 523 B2
`3 / 2010 Sano
`4 / 2010 Tang et al .
`7 , 692 , 877 B2
`4 / 2010 Iyama
`7 , 697 , 220 B2
`7 , 738 , 186 B2
`6 / 2010 Chen et al .
`7 , 777 , 972 B1
`8 / 2010 Chen et al .
`7 , 813 , 057 B2
`10 / 2010 Lin
`10 / 2010 Tang et al .
`7 , 821 , 724 B2
`11 / 2010 Tang et al .
`7 , 826 , 149 B2
`7 , 826 , 151 B2
`11 / 2010 Tsai
`7 , 869 , 142 B2
`1 / 2011 Chen et al .
`3 / 2011 Tang
`7 , 898 , 747 B2
`7 , 916 , 401 B2
`3 / 2011 Chen et al .
`7 , 918 , 398 B2
`4 / 2011 Li et al .
`6 / 2011 Tang
`7 , 957 , 075 B2
`6 / 2011 Tang
`7 , 957 , 076 B2
`6 / 2011 Tang
`7 , 957 , 079 B2
`
`APPL-1001 / Page 2 of 14
`APPLE INC. v. COREPHOTONICS LTD.
`
`

`

`US 10 , 317 , 647 B2
`Page 3
`
`( 56 )
`
`References Cited
`U . S . PATENT DOCUMENTS
`5 / 2018 Dror . . . . . . . . . . . . . . . GO2B 13 / 0045
`2018 / 0120541 A1 *
`8 / 2018 Lee et al .
`2018 / 0224630 AL
`2018 / 0275374 A1 *
`9 / 2018 Dror . . . . . . . . . . . . . . . . . . GO2B 13 / 0045
`FOREIGN PATENT DOCUMENTS
`1976016135
`5 / 1976
`1 / 1979
`1979003617 A
`S54157620 A
`12 / 1979
`S59121015 A
`7 / 1984
`5 / 1995
`1995113952
`2007306282
`11 / 2007
`2008064884
`3 / 2008
`5 / 2008
`2008122900
`7 / 2011
`2011138175
`2012203234 A
`10 / 2012
`2013106289
`5 / 2013
`2013106289 A
`5 / 2013
`20100040357
`4 / 2010
`
`KR
`KR
`WO
`WO
`WO
`WO
`wo
`
`201000119673
`20140023552 A
`2013058111 A1
`2013063097 A1
`2013105012 A2
`2014199338 A2
`2015015383 A2
`
`11 / 2010
`2 / 2014
`4 / 2013
`5 / 2013
`7 / 2013
`12 / 2014
`2 / 2015
`
`OTHER PUBLICATIONS
`Consumer Electronic Optics : How small a lens can be ? The case of
`panomorph lenses , Thibault et al . , Sep . 2014 , 7 pages .
`Optical design of camera optics for mobile phones , Steinich et al . ,
`2012 , pp . 51 - 58 ( 8 pages ) .
`The Optics of Miniature Digital Camera Modules , Bareau et al . ,
`2006 , 11 pages .
`Modeling and measuring liquid crystal tunable lenses , Peter P .
`Clark , 2014 , 7 pages .
`Mobile Platform Optical Design , Peter P . Clark , 2014 , 7 pages .
`* cited by examiner
`
`APPL-1001 / Page 3 of 14
`APPLE INC. v. COREPHOTONICS LTD.
`
`

`

`atent
`
`Jun . 11 , 2019
`
`Sheet 1 of 6
`
`US 10 , 317 , 647 B2
`
`101
`1
`
`102 103
`102 104 106
`( 106a
`7 perang
`
`www
`
`1082
`
`wwwwww
`
`111
`
`h
`
`1022
`
`Lle
`
`Lietl den 1040
`1026
`
`1066
`1060
`a 1086
`
`re
`
`FIG . 1A
`
`APPL-1001 / Page 4 of 14
`APPLE INC. v. COREPHOTONICS LTD.
`
`

`

`atent
`
`Jun . 11 , 2019
`
`Sheet 2 of 6
`
`US 10 , 317 , 647 B2
`
`
`
`OTF OOO ONCOL
`
`Modulus of the
`
`TS O
`
`0 . 2
`0 . 11
`0 . 01
`- 0 . 05 - 0 . 04 - 0 . 03 - 0 . 02 - 0 . 01 0
`Focus shift ( mm )
`Polychromatic Diffraction Through Focus MTF
`Angle 6 / 2 / 2013
`Data for 0 . 4350 to 0 . 6560 um .
`Spatial Frequency : 180 . 0000 cycles / mm .
`
`Distortion ( centroid )
`
`wwwmumuhammakombora
`mwanammm
`wwwwwwwwwwwwwwww
`
`- 2 . 000
`30 / 06 / 2013
`Maximum distortion = 1 . 3 %
`
`0 . 000
`Distortion ( % )
`
`0 . 02 0 . 03 0 . 04
`
`0 . 05
`
`FIG . 1B
`
`22 . 000
`19 . 800
`17 . 600
`15 . 400
`13 . 200
`11 . 000
`8 . 800
`6 . 600
`4 . 400
`2 . 200
`2 . 0000 . 000
`
`FIG . 1C
`
`Field ( deg )
`
`APPL-1001 / Page 5 of 14
`APPLE INC. v. COREPHOTONICS LTD.
`
`

`

`U . S . Patent com o o . .
`
`Jun . 11 , 2019
`
`Sheet 3 of 6
`
`US 10 , 317 , 647 B2
`
`202 2
`
`MEN
`
`www
`
`201
`
`WAN
`
`207a
`
`2087212111 212
`7 1 204 206
`2102
`207 , 2082
`wwwww
`1211 | | 1 1
`2066
`slutter
`2080
`Lep 2042 2046
`A
`2026
`11e -
`
`S3
`
`m
`
`208a
`
`VEL
`
`NNNN
`
`A
`
`FIG . 2A
`
`APPL-1001 / Page 6 of 14
`APPLE INC. v. COREPHOTONICS LTD.
`
`

`

`atent
`
`Jun . 11 , 2019
`
`Sheet 4 of 6
`
`US 10 , 317 , 647 B2
`
`*
`
`*
`
`*
`
`*
`
`* *
`
`*
`
`*
`
`* *
`
`*
`
`* * *
`
`* *
`
`* *
`
`* *
`
`*
`
`* * *
`
`*
`
`*
`
`*
`
`*
`
`Modulus of the OTF
`
`TS 0°
`TS 10°
`
`. .
`
`. .
`
`. .
`
`TS 180
`
`Oder
`
`.
`
`CA
`
`W
`
`ÞE .
`
`.
`
`WW
`
`*
`
`0 . 1 +
`0 . 01
`0
`- 0 . 05 - 0 . 04 - 0 . 03 - 0 . 02 0 . 01
`Focus shift ( mm )
`Polychromatic Diffraction Through Focus MTF
`Angle 6 / 2 / 2013
`Data for 0 . 4350 to 0 . 6560 um .
`Spatial Frequency : 180 . 0000 cycles / mm .
`
`Distortion ( centroid )
`
`wwwwwww
`
`w
`
`www
`
`wegen
`
`Distortion ( % )
`
`- 2 . 000
`
`30 / 06 / 2013
`Maximum distortion = 1 . 5 %
`
`0 . 02
`
`0 . 03 0 . 04 0 . 05
`
`FIG . 2B
`
`22 . 000
`19 . 800
`17 . 600
`15 . 400
`13 . 200
`11 . 000
`8 . 800
`6 . 600
`4 . 400
`2 . 200
`0 . 000
`2 . 000
`
`FIG . 20
`
`Field ( deg )
`
`APPL-1001 / Page 7 of 14
`APPLE INC. v. COREPHOTONICS LTD.
`
`

`

`atent
`
`Jun . 11 , 2019
`
`Sheet 5 of 6
`
`US 10 , 317 , 647 B2
`
`308
`y " 304 306
`m
`7 306a
`308a
`1111 | T
`990€
`308b
`3042 3040
`
`*
`
`302a
`Lle
`
`300
`310
`
`310a
`312
`
`ww
`
`wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
`
`MAKALAT
`
`TEKITARKKAAKAKKUKKAKEALALTKARAKAT
`
`ing
`
`yen
`
`CoCLUEERGEGEE
`
`FIG . 3A
`
`APPL-1001 / Page 8 of 14
`APPLE INC. v. COREPHOTONICS LTD.
`
`

`

`atent
`
`Jun . 11 , 2019
`
`Sheet 6 of 6
`
`US 10 , 317 , 647 B2
`
`1
`
`Modulus of the OTF
`
`Ts 0°
`
`TS 20°
`
`www .
`
`12
`w
`
`ww
`
`.
`
`0 . 14
`0 . 014 0 . 028 0 . 042 0 . 056 0 . 07
`0
`- 0 . 07 - 0 . 056 - 0 . 042 - 0 . 028 - 0 . 014
`Focus shift ( mm )
`Polychromatic Diffraction Through Focus MTF
`Angle 6 / 9 / 2013
`Data for 0 . 4350 to 0 . 6560 um .
`Spatial Frequency : 180 . 0000 cycles / mm .
`
`FIG . 3B
`
`Distortion ( centroid )
`
`0 . 000
`Distortion ( % )
`
`Lumanamwandinnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
`
`- 2 . 000
`
`30 / 06 / 2013
`Maximum distortion = 1 . 3 %
`
`22 . 000
`19 . 800
`17 . 600
`15 . 400
`13 . 200
`11 . 000
`8 . 800
`6 . 600
`4 . 400
`2 . 200
`2 . 000 0 . 000
`
`Field ( deg )
`
`FIG . 3C
`
`APPL-1001 / Page 9 of 14
`APPLE INC. v. COREPHOTONICS LTD.
`
`

`

`US 10 , 317 , 647 B2
`
`MINIATURE TELEPHOTO LENS ASSEMBLY
`
`An optical lens system incorporating the lens assembly
`may further include a stop positioned before the first lens
`CROSS REFERENCE TO RELATED
`element , a glass window disposed between the image - side
`APPLICATIONS
`surface of the fifth lens element and an image sensor with an
`5 image plane on which an image of the object is formed .
`The effective focal length of the lens assembly is marked
`This application is a Continuation application of U . S .
`“ EFL ” and the total track length on an optical axis between
`patent application Ser . No . 15 / 817 , 235 filed Nov . 19 , 2017 ,
`the object - side surface of the first lens element and the
`which was a Continuation application of U . S . patent appli
`electronic sensor is marked “ TTL ” . In all embodiments ,
`cation Ser . No . 15 / 418 , 925 filed Jan . 30 , 2017 , now U . S . Pat .
`No . 9 , 857 , 568 , which was a Continuation in Part application 10 TTL is smaller than the EFL , i . e . the TTL / EFL ratio is
`smaller than 1 . 0 . In some embodiments , the TTL / EFL ratio
`of U . S . patent application Ser . No . 15 / 170 , 472 filed Jun . 1 ,
`is smaller than 0 . 9 . In an embodiment , the TTL / EFL ratio is
`2016 , now U . S . Pat . No . 9 , 568 , 712 , which was a Continu
`about 0 . 85 . In all embodiments , the lens assembly has an F
`ation application of U . S . patent application Ser . No . 14 / 932 ,
`number F # < 3 . 2 . In an embodiment , the focal length of the
`319 filed Nov . 4 , 2015 , now U . S . Pat . No . 9 , 402 , 032 , which 15 first lens element fl is smaller than TTL / 2 , the first , third and
`was a Continuation application of U . S . patent application
`fifth lens elements have each an Abbe number ( “ Vd ” )
`Ser . No . 14 / 367 , 924 filed Jun . 22 , 2014 , now abandoned ,
`greater than 50 , the second and fourth lens elements have
`which was a 371 Continuation application of international
`each an Abbe number smaller than 30 , the first air gap is
`application PCT / IB2014 / 062465 filed Jun . 20 , 2014 , and is
`smaller than d , / 2 , the third air gap is greater than TTL / 5 and
`related to and claims priority from U . S . Provisional Patent 20 the fourth air gap is smaller than 1 . 5 ds . In some embodi
`ments , the surfaces of the lens elements may be aspheric .
`Application No . 61 / 842 , 987 filed Jul . 4 , 2013 , which is
`incorporated herein by reference in its entirety .
`In an optical lens assembly disclosed herein , the first lens
`element with positive refractive power allows the TTL of the
`FIELD
`lens system to be favorably reduced . The combined design
`25 of the first , second and third lens elements plus the relative
`Embodiments disclosed herein relate to an optical lens
`short distances between them enable a long EFL and a short
`system and lens assembly , and more particularly , to a
`TTL . The same combination , together with the high disper
`miniature telephoto lens assembly included in such a system
`sion ( low Vd ) for the second lens element and low disper
`and used in a portable electronic product such as a cell -
`sion ( high Vd ) for the first and third lens elements , also helps
`30 to reduce chromatic aberration . In particular , the ratio TTLI
`phone .
`EFL < 1 . 0 and minimal chromatic aberration are obtained by
`BACKGROUND
`fulfilling the relationship 1 . 2x | f31 > | f2 | > 1 . 5xfi , where " D "
`indicates the lens element effective focal length and the
`numerals 1 , 2 , 3 , 4 , 5 indicate the lens element number .
`Digital camera modules are currently being incorporated
`The conditions TTL / EFL < 1 . 0 and F # < 3 . 2 can lead to a
`into a variety of host devices . Such host devices include 35
`large ratio L11 / Lle ( e . g . larger than 4 ) between the largest
`cellular telephones , personal data assistants ( PDAs ) , com -
`width ( thickness ) L11 and the smallest width ( thickness ) of
`puters , and so forth . Consumer demand for digital camera
`the first lens element ( facing the object ) Lle . The largest
`modules in host devices continues to grow . Cameras in
`width is along the optical axis and the smallest width is of
`cellphone devices in particular require a compact imaging
`lens system for good quality imaging and with a small total 40 a flat circumferential edge of the lens element . L11 and Lle
`track length ( TTL ) . Conventional lens assemblies compris
`are shown in each of elements 102 , 202 and 302 . A large
`ing four lens elements are no longer sufficient for good
`L11 / Lle ratio ( e . g . > 4 ) impacts negatively the manufactur
`quality imaging in such devices . The latest lens assembly
`ability of the lens and its quality . Advantageously , the
`designs , e . g . as in U . S . Pat . No . 8 , 395 , 851 , use five lens
`present inventors have succeeded in designing the first lens
`elements . However , the design in U . S . Pat . No . 8 , 395 , 851 45 element to have a L11 / Lle ratio smaller than 4 , smaller than
`suffers from at least the fact that the TTL / EFL ( effective
`3 . 5 , smaller than 3 . 2 , smaller than 3 . 1 ( respectively 3 . 01 for
`focal length ) ratio is too large .
`element 102 and 3 . 08 for element 302 ) and even smaller
`Therefore , a need exists in the art for a five lens element
`than 3 . 0 ( 2 . 916 for element 202 ) . The significant reduction
`optical lens assembly that can provide a small TTL / EFL
`in the L11 / Lle ratio improves the manufacturability and
`ratio and better image quality than existing lens assemblies . 50 increases the quality of lens assemblies disclosed herein .
`The relatively large distance between the third and the
`SUMMARY
`fourth lens elements plus the combined design of the fourth
`and fifth lens elements assist in bringing all fields ' focal
`points to the image plane . Also , because the fourth and fifth
`Embodiments disclosed herein refer to an optical lens
`assembly comprising , in order from an object side to an 55 lens elements have different dispersions and have respec
`image side : a first lens element with positive refractive
`tively positive and negative power , they help in minimizing
`power having a convex object - side surface , a second lens
`chromatic aberration .
`element with negative refractive power having a thickness
`BRIEF DESCRIPTION OF THE DRAWINGS
`d , on an optical axis and separated from the first lens
`element by a first air gap , a third lens element with negative 60
`refractive power and separated from the second lens element
`FIG . 1A shows a first embodiment of an optical lens
`by a second air gap , a fourth lens element having a positive
`system disclosed herein ;
`refractive power and separated from the third lens element
`FIG . 1B shows the modulus of the optical transfer func
`by a third air gap , and a fifth lens element having a negative
`tion ( MTF ) vs . focus shift of the entire optical lens assembly
`refractive power , separated from the fourth lens element by 65 for various fields in the first embodiment ;
`a fourth air gap , the fifth lens element having a thickness da
`FIG . 1C shows the distortion vs . field angle ( + Y direction )
`in percent in the first embodiment ;
`on the optical axis .
`
`APPL-1001 / Page 10 of 14
`APPLE INC. v. COREPHOTONICS LTD.
`
`

`

`US 10 , 317 , 647 B2
`
`eter are expressed in mm . “ Nd ” is the refraction index . The
`equation of the aspheric surface profiles is expressed by :
`
`Cr ?
`1 + V1 – ( 1 + k _ c27 2
`
`-
`
`+ air
`
`Q2r4 + Q3n6 + 248 + @ splº + Qfml2 + Q7p24
`
`FIG . 2A shows a second embodiment of an optical lens
`system disclosed herein ;
`FIG . 2B shows the MTF vs . focus shift of the entire
`optical lens assembly for various fields in the second
`embodiment ;
`FIG . 2C shows the distortion + y in percent in the second
`embodiment ;
`FIG . 3A shows a third embodiment of an optical lens
`system disclosed herein ;
`FIG . 3B shows the MTF vs . focus shift of the entire 10
`lite 10 where r is distance from ( and perpendicular to ) the optical
`optical lens system for various fields in the third embodi
`axis , k is the conic coefficient , c = 1 / R where R is the radius
`ment ;
`of curvature , and a are coefficients given in Table 2 In the
`FIG . 3C shows the distortion + Y in percent in the third
`equation above as applied to embodiments of a lens assem
`embodiment .
`bly disclosed herein , coefficients a , and a , are zero . Note
`15 that the maximum value of r “ max r ” = Diameter / 2 . Also note
`DETAILED DESCRIPTION
`that Table 1 ( and in Tables 3 and 5 below ) , the distances
`between various elements and / or surfaces ) are marked
`In the following description , the shape ( convex or con
`“ Lmn " ( where m refers to the lens element number , n = 1
`cave ) of a lens element surface is defined as viewed from the
`respective side ( i . e . from an object side or from an image 20 refers to the element thickness and n = 2 refers to the air gap
`to the next element ) and are measured on the optical axis z ,
`side ) . FIG . 1A shows a first embodiment of an optical lens
`wherein the stop is at z = 0 . Each number is measured from
`system disclosed herein and marked 100 . FIG . 1B shows the
`the previous surface . Thus , the first distance - 0 . 466 mm is
`MTF vs . focus shift of the entire optical lens system for
`measured from the stop to surface 102a , the distance L11
`various fields in embodiment 100 . FIG . 1C shows the
`from surface 102a to surface 102b ( i . e . the thickness of first
`distortion + Y in percent vs . field . Embodiment 100 com - 25 lens element 102 ) is 0 . 894 mm , the gap L12 between
`prises in order from an object side to an image side : an
`surfaces 102b and 104a is 0 . 020 mm , the distance L21
`optional stop 101 ; a first plastic lens element 102 with
`between surfaces 104a and 104b ( i . e . thickness d2 of second
`positive refractive power having a convex object - side sur
`lens element 104 ) is 0 . 246 mm , etc . Also , L21 = d , and
`face 102a and a convex or concave image - side surface 102b ;
`L51 = da . L11 for lens element 102 is indicated in FIG . 1A .
`a second plastic lens element 104 with negative refractive 30 Also indicated in FIG . 1A is a width Lle of a flat circum
`power and having a meniscus convex object - side surface
`ferential edge ( or surface ) of lens element 102 . L11 and Lle
`104a , with an image side surface marked 104b ; a third
`are also indicated for each of first lens elements 202 and 302
`plastic lens element 106 with negative refractive power
`in , respectively , embodiments 200 ( FIG . 2A ) and 300 ( FIG .
`having a concave object - side surface 106a with an inflection
`point and a concave image - side surface 106b ; a fourth 35 SA
`plastic lens element 108 with positive refractive power
`having a positive meniscus , with a concave object - side
`surface marked 108a and an image - side surface marked
`108b ; and a fifth plastic lens element 110 with negative
`refractive power having a negative meniscus , with a concave 40 –
`object - side surface marked 110a and an image - side surface
`marked 110b . The optical lens system further comprises an
`optional glass window 112 disposed between the image - side
`surface 110b of fifth lens element 110 and an image plane
`114 for image formation of an object . Moreover , an image 45
`sensor ( not shown ) is disposed at image plane 114 for the
`image formation .
`In embodiment 100 , all lens element surfaces are
`aspheric . Detailed optical data is given in Table 1 , and the
`aspheric surface data is given in Table 2 , wherein the units 50
`of the radius of curvature ( R ) , lens element thickness and / or
`distances between elements along the optical axis and diam
`
`TABLE 1
`Distances
`[ mm ]
`- 0 . 466
`0 . 894
`0 . 020
`0 . 246
`0 . 449
`0 . 290
`2 . 020
`0 . 597
`0 . 068
`0 . 293
`0 . 617
`0 . 210
`0 . 200
`
`Radius R
`[ mm ]
`Infinite
`1 . 5800
`- 11 . 2003
`33 . 8670
`3 . 2281
`- 12 . 2843
`7 . 7138
`- 2 . 3755
`- 1 . 8801
`- 1 . 8100
`- 5 . 2768
`Infinite
`Infinite
`
`tina
`
`Comment
`#
`Stop
`1
`2 L11
`3 L12
`4 L21
`L22
`6 L31
`7 L32
`8 L41
`9 L42
`10 L51
`11 L52
`12 Window
`13
`
`Nd / Vd
`
`1 . 5345 / 57 . 095
`1 . 63549 / 23 . 91
`
`1 . 5345 / 57 . 095
`
`1 . 63549 / 23 . 91
`1 . 5345 / 57 . 095
`
`1 . 5168 / 64 . 17
`
`Diameter
`[ mm ]
`2 . 4
`2 . 5
`2 . 4
`2 . 2
`1 . 9
`1 . 9
`1 . 8
`3 . 3
`3 . 6
`3 . 9
`4 . 3
`3 . 0
`3 . 0
`
`TABLE 2
`
`Conic
`coefficient k
`- 0 . 4668
`- 9 . 8525
`10 . 7569
`1 . 4395
`0 . 0000
`- 9 . 8953
`0 . 9938
`- 6 . 8097
`- 7 . 3161
`0 . 0000
`
`#
`
`mtina o
`
`11
`
`az
`7 . 9218E - 03
`2 . 0102E - 02
`- 1 . 9248E - 03
`5 . 1029E - 03
`2 . 1629E - 01
`2 . 3297E - 01
`- 1 . 3522E - 02
`- 1 . 0654E - 01
`- 1 . 8636E - 01
`- 1 . 1927E - 01
`
`Az alaga
`2 . 3146E - 02
`- 3 . 3436E - 02
`2 . 3650E - 02
`- 9 . 2437E - 03
`2 . 0647E - 04
`7 . 4394E - 03
`- 1 . 7529E - 02
`4 . 5206E - 03
`- 4 . 0607E - 02
`1 . 3545E - 02
`1 . 1676E - 02
`8 . 6003E - 02
`2 . 4578E - 01
`- 1 . 7734E - 01
`2 . 9848E - 01
`- 1 . 3320E - 01
`4 . 0134E - 02
`1 . 3615E - 02
`2 . 5914E - 03
`- 1 . 2292E - 02
`- 1 . 2725E - 01
`1 . 5691E - 01
`- 5 . 9624E - 02
`8 . 2917E - 02
`- 1 . 5336E - 024 . 3707E - 03
`- 7 . 0395E - 03
`1 . 4569E - 02
`1 . 2933E - 02
`2 . 9548E - 04
`- 1 . 8317E - 03
`5 . 0111E - 04
`8 . 3105E - 02
`2 . 4012E - 03
`- 1 . 2816E - 04
`- 1 . 8632E - 02
`7 . 0245E - 02
`- 2 . 0735E - 02
`2 . 6418E - 03
`- 1 . 1576E - 04
`
`APPL-1001 / Page 11 of 14
`APPLE INC. v. COREPHOTONICS LTD.
`
`

`

`US 10 , 317 , 647 B2
`
`Embodiment 100 provides a field of view ( FOV ) of 44
`degrees , with EFL = 6 . 90 mm , F # = 2 . 80 and TTL of 5 . 904
`mm . Thus and advantageously , the ratio TTL / EFL = 0 . 855 .
`Advantageously , the Abbe number of the first , third and fifth
`lens element is 57 . 095 . Advantageously , the first air gap 5
`between lens elements 102 and 104 ( the gap between
`surfaces 102b and 104a ) has a thickness ( 0 . 020 mm ) which
`is less than a tenth of thickness d , ( 0 . 246 mm ) . Advanta
`geously , the Abbe number of the second and fourth lens
`elements is 23 . 91 . Advantageously , the third air gap between
`lens elements 106 and 108 has a thickness ( 2 . 020 mm )
`greater than TTL / 5 ( 5 . 904 / 5 mm ) . Advantageously , the
`fourth air gap between lens elements 108 and 110 has a
`thickness ( 0 . 068 mm ) which is smaller than 1 . 5 d . ( 0 . 4395 15
`mm ) .
`The focal length ( in mm ) of each lens element in embodi
`ment 100 is as follows : f1 = 2 . 645 , f2 = - 5 . 578 , f3 = - 8 . 784 ,
`f4 = 9 . 550 and f5 = - 5 . 290 . The condition 1 . 2x | f3 | > | f2 | < 1 . 5x
`fl is clearly satisfied , as 1 . 2x8 . 787 > 5 . 578 > 1 . 5x2 . 645 . fl
`also fulfills the condition fl < TTL / 2 , as 2 . 645 < 2 . 952 .
`Using the data from row # 2 in Tables 1 and 2 , Lle in lens
`element 102 equals 0 . 297 mm , yielding a center - to - edge
`thickness ratio L11 / Lle of 3 . 01 .
`FIG . 2A shows a second embodiment of an optical lens
`system disclosed herein and marked 200 . FIG . 2B shows the
`
`markings and units are the same as in , respectively , Tables
`1 and 2 . The equation of the aspheric surface profiles is the
`same as for embodiment 100 .
`TABLE 3
`
`# Comment
`1
`Stop
`2 L11
`3 L12
`4 . L21
`5
`L22
`6 L31
`7 L32
`8 L41
`9 L42
`10 151
`11 L52
`12 Window
`
`Radius R
`[ mm ]
`Infinite
`1 . 5457
`- 127 . 7249
`6 . 6065
`2 . 8090
`9 . 6183
`3 . 4694
`- 2 . 6432
`- 1 . 8663
`- 1 . 4933
`- 4 . 1588
`Infinite
`Infinite
`
`Distances
`[ mm ]
`- 0 . 592
`0 . 898
`0 . 129
`0 . 251
`0 . 443
`0 . 293
`1 . 766
`0 . 696
`0 . 106
`0 . 330
`0 . 649
`0 . 210
`0 . 130
`
`Nd / Vd
`
`Diameter
`[ mm ]
`
`1 . 53463 / 56 . 18
`
`1 . 91266 / 20 . 65
`
`1 . 53463 / 56 . 18
`
`1 . 632445 / 23 . 35
`
`1 . 53463 / 56 . 18
`
`1 . 5168 / 64 . 17
`
`2 . 5
`2 . 6
`2 . 6
`2 . 1
`1 . 8
`1 . 8
`1 . 7
`3 . 2
`
`wo
`
`in
`
`5 . 5
`
`TABLE 4
`
`Conic
`coefficient k
`0 . 0000
`- 10 . 0119
`10 . 0220
`7 . 2902
`0 . 0000
`8 . 1261
`0 . 0000
`0 . 0000
`- 4 . 7688
`0 . 00E + 00
`
`#
`2
`3
`
`10
`11
`
`2
`
`az
`az
`. 8779E - 04
`- 2 . 7367E - 03
`- 1 . 8379E - 02
`4 . 0790E - 02
`5 . 8320E - 02
`4 . 6151E - 02
`1 . 1436E - 01
`3 . 6028E - 02
`5 . 6754E - 02
`1 . 6639E - 01
`8 . 1427E - 02
`1 . 5353E - 01
`1 . 9535E - 02
`- 3 . 2628E - 02
`- 1 . 2252E - 02
`1 . 5173E - 02
`7 . 6335E - 02
`- 1 . 4736E - 01
`- 8 . 3741E - 024 . 2660E - 02
`
`- 4 . 3661E - 03
`2 . 2562E - 02
`- 2 . 0919E - 02
`- 1 . 9022E - 02
`- 1 . 2238E - 02
`- 1 . 5773E - 01
`- 1 . 6716E - 02
`3 . 3611E - 03
`- 2 . 5539E - 02
`- 8 . 4866E - 03
`
`Qo
`- 1 . 2282E - 03
`3 . 0069E - 03
`- 1 . 7706E - 024 . 9640E - 03
`- 1 . 2846E - 028 . 8283E - 03
`4 . 7992E - 03
`- 3 . 4079E - 03
`- 1 . 8648E - 021 . 9292E - 02
`1 . 5303E - 01
`- 4 . 6064E - 02
`- 2 . 0132E - 03
`2 . 0112E - 03
`- 2 . 5303E - 03
`8 . 4038E - 04
`5 . 5897E - 03
`- 5 . 0290E - 04
`1 . 2183E - 04
`7 . 2785E - 05
`
`Embodiment 200 provides a FOV of 43 . 48 degrees , with
`MTF vs . focus shift of the entire optical lens system for
`EFL = 7 mm , F # = 2 . 86 and TTL = 5 . 90 mm . Thus and advan
`various fields in embodiment 200 . FIG . 2C shows the
`tageously , the ratio TTL / EFL = 0 . 843 . Advantageously , the
`distortion + Y in percent vs . field . Embodiment 200 com -
`prises in order from an object side to an image side : an 45 Abbe number of the first , third and fifth lens elements is
`optional stop 201 ; a first plastic lens element 202 with
`56 . 18 . The first air gap between lens elements 202 and 204
`positive refractive power having a convex object - side sur -
`has a thickness ( 0 . 129 mm ) which is about half the thickness
`face 202a and a convex or concave image - side surface 202b ;
`d2 ( 0 . 251 mm ) . Advantageously , the Abbe number of the
`a second glass lens element 204 with negative refractive
`second lens element is 20 . 65 and of the fourth lens element
`power , having a meniscus convex object - side surface 204a , 50 is 23 . 35 . Advantageously , the third air gap between lens
`with an image side surface marked 204b ; a third plastic lens
`elements 206 and 208 has a thickness ( 1 . 766 mm ) greater
`element 206 with negative refractive power having a con
`than TTL / 5 ( 5 . 904 / 5 mm ) . Advantageously , the fourth air
`cave object - side surface 206? with an inflection point and a
`gap between lens elements 208 and 210 has a thickness
`concave image - side surface 206b ; a fourth plastic lens
`( 0 . 106 mm ) which is less than 1 . 5xds ( 0 . 495 mm ) .
`element 208 with positive refractive power having a positive 55
`The focal length ( in mm ) of each lens element in embodi
`meniscus , with a concave object - side surface marked 208a
`ment 200 is as follows : f1 = 2 . 851 , f2 = - 5 . 468 , f3 = - 10 . 279 ,
`and an image - side surface marked 208b ; and a fifth plastic
`f4 = 7 . 368 and f5 = - 4 . 536 . The condition 1 . 2x | f3 | > | f2 | < 1 . 5x
`lens element 210 with negative refractive power having a
`fl is clearly satisfied , as 1 . 2x10 . 279 > 5 . 468 > 1 . 5x2 . 851 . f1
`negative meniscus , with a concave object - side surface
`also fulfills the condition f1 < TTL / 2 , as 2 . 851 < 2 . 950 .
`marked 110a and an image - side surface marked 210b . The 60
`Using the data from row # 2 in Tables 3 and 4 , Lle in lens
`optical lens system further comprises an optional glass
`element 202 equals 0 . 308 mm , yielding a center - to - edge
`window 212 disposed between the image - side surface 210b
`thickness ratio L11 / Lle of 2 . 916 .
`o

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket