`Gerpheide
`
`[54]
`
`[76]
`
`(21)
`
`[22]
`
`[63}
`
`[51]
`[52]
`[58]
`
`[56]
`
`METHODS AND APPARATUS FOR DATA
`INPUT
`
`Inventor: George E. Gerpheide, 3481 S. Monte
`Verde Dr., Salt Lake City, Utah
`84109
`
`Appl. No.:
`Filed:
`
`914,043
`
`Jul. 13, 1992
`
`Related U.S. Application Data
`Continuation of Ser. No. 754,329, Sep. 4, 1991, which
`is a continuation of Ser. No. 394,566, Aug. 16, 1989.
`seneeseeversens G09G 3/02
`
`eeeesscsresessereenennsessaeeenes 345/174; 345/168
`CL,
`Se
`Field of Search............... 340/706, 709, 710, 712;
`341/20, 23; 178/18, 19; 345/173, 174, 168
`References Cited
`
`U.S. PATENT DOCUMENTS
`
`3,886,311
`4,071,691
`4,103,252
`4,246,452
`
`5/1975
`1/1978
`7/1978
`1/198]
`
`.
`Rodgerset al.
`Pepper, Jr. ...ccscssceesseesssees 341/20
`Bobick .
`Chandler wc. ccsseeseesees 341/20
`
`17 Claims, 13 Drawing Sheets
`
`QOAAAETA
`
`US005305017A
`[11] Patent Number:
`Date of Patent:
`[45]
`
`.
`5,305,017
`Apr. 19, 1994
`
`.
`4,476,463 10/1984 Negetal.
`4,495,485
`1/1985 Smith ooseseeeseeeeeenee 341/33
`4,550,221 10/1985 Mabusth .
`4,587,378
`5/1986 MOOT oo.cssccccsescescseseerseseaeses 178/18
`4,639,720
`1/1987 Rympalski et al.
`.
`4,672,154
`6/1987 Rodgersetal. .
`4,680,430 7/1987 Yoshikawa .
`4,736,191
`4/1988 Matzkeet al. oo...esses 340/709
`
`4,740,781
`4/1988 Brown.........
`5/1988 Alexander ..........cccccsseeeseees 341/33
`4,743,895
`
`Primary Examiner—Ulysses Weldon
`Assistant Examiner—M. Fatahiyar
`Attorney, Agent, or Firm—Thorpe North & Western
`
`ABSTRACT
`[57]
`Methodsand apparatusfor data input. Devices are pro-
`vided in accordance with this invention which utilize
`capacitive coupling of an object to the device to sense
`the object’s position. The devices are comprised of a
`plurality of electrode strips which form virtual elec-
`trodes. The virtual electrodesare selectively connected
`to form virtual dipole electrodes which are responsive
`to the object’s position.
`‘
`
`PETITIONERS
`
`Exhibit 1006, Page 1
`
`PETITIONERS
`Exhibit 1006, Page 1
`
`
`
`U.S. Patent
`
`Apr. 19, 1994
`
`~ 5,305,017
`
`Sheet 1 of 13
`
`PETITIONERS
`
`Exhibit 1006, Page 2
`
`PETITIONERS
`Exhibit 1006, Page 2
`
`
`
`U.S. Patent
`
`Apr. 19, 1994
`
`| 5,305,017
`
`Sheet 2 of 13
`
`PETITIONERS
`
`Exhibit 1006, Page 3
`
`PETITIONERS
`Exhibit 1006, Page 3
`
`
`
`U.S, Patent
`
`_ Apr. 19, 1994
`
`Sheet 3 of 13
`
`5,305,017
`
`au
`
`yo
`
`ro frr oO eI
`|
`|
`|
`|
`
`
`] <n>fll<p> | <P>||[<n><*>
`|
`300
`|
`290
`|
`|
`|
`J GILL,
`280 aay|m0
`
`80)
`
`Fig. 5(a)
`
`F'ig. 5(6)
`
`FUNDAMENTAL
`VDE
`|
`
`290
`
`300-290
`
`300
`
`<n> ['l <p>|]<n>|}<p>|]<n>|}<p>
`
`290
`
`| :|3
`
`230
`
`09
`
`220
`
`[20
`
`Fig.6
`
`PETITIONERS
`
`Exhibit 1006, Page 4
`
`PETITIONERS
`Exhibit 1006, Page 4
`
`
`
`U.S. Patent
`
`Apr. 19, 1994
`
`Sheet 4 of 13
`
`5,305,017
`
`20
`
`-
`
`390
`
`[
`
`Zz.
`330 |
`
`| |
`
`|
`ROW
`SYNTHESIS||. pa
`
`
`300
`
`| | | |
`
` COLUMN
`
`SYNTHESIS
`
`$20,130
`
`130
`
`4
`
`ROW SELECTION SIGNAL
`
`COLUMN SELECTION SIGNAL
`
`Fig.7
`
`PETITIONERS
`
`Exhibit 1006, Page 5
`
`PETITIONERS
`Exhibit 1006, Page 5
`
`
`
`U.S. Patent
`
`Apr.19, 1994
`
`Sheet 5 of 13
`
`5,305,017
`
`PETITIONERS
`
`Exhibit 1006, Page 6
`
`PETITIONERS
`Exhibit 1006, Page 6
`
`
`
`U.S. Patent
`
`Apr. 19, 1994
`
`Sheet 6 of 13
`
`5,305,017
`
`AQ
`
`Ai
`
`Ke
`
`A3
`
`A4
`
`AD
`
`AG
`
`AT
`
`oS
`Thos
`ao
`Ho
`
`— 390
`
`390=
`
`ROW SELECTION SIGNAL
`
`"420
`
`SELECTION
`LOGIC
`
`PETITIONERS
`
`Exhibit 1006, Page 7
`
`PETITIONERS
`Exhibit 1006, Page 7
`
`
`
`U.S. Patent
`
`Apr. 19, 1994
`
`Sheet 7 of 13
`
`— 5,305,017
`
`AREA=A
`
`
`
`(X=X{i])
`
`AREA A
`
`
`[~Wiktk T,
`Oe
`
`
`
`
`
`
`PETITIONERS
`
`Exhibit 1006, Page 8
`
`PETITIONERS
`Exhibit 1006, Page 8
`
`
`
`U.S. Patent
`
`Apr. 19, 1994
`
`Sheet 8 of 13
`
`| 5,305,017
`
`460
`
` ER TIP
`
`|
`X[i] !
`
`|
`
`LINEAR
`REGION
`
`FING
`POSITION , xF
`
`Fig. wl
`
`TTT TT 7 \
`9
`
`960
`
`510
`
`515
`)
`
`||||| |
`
`| | ||
`
`<ios i
`|-—_.—— 230
`550
`530
`
`490|
`
`500}
`
`510}
`
`520}
`
`| ot) 4
`|
`|
`|
`
`op
`
`;
`
`20
`
`540
`
`20
`
`Fig .l2
`
`PETITIONERS
`
`Exhibit 1006, Page 9
`
`PETITIONERS
`Exhibit 1006, Page 9
`
`
`
`U.S. Patent
`
`Apr. 19, 1994
`
`Sheet 9 of 13
`
`5,305,017
`
`
`
`
`
`193°80G3SN3S
`
`NOILISOd
`
`[b+I|X>4x7[x
`(:}908s
`
`PETITIONERS
`
`Exhibit 1006, Page 10
`
`PETITIONERS
`Exhibit 1006, Page 10
`
`
`
`
`U.S. Patent
`
`Apr. 19, 1994
`
`Sheet 10 of 13
`
`5,305,017
`
`[lied
`
`(i),
`
`LD,
`
`L[i+t
`
`[b a. WH
`
`LINEAR
`REGION
`
`Fig.l4
`
`|
`
`ALSESi“tlie |
`ERISSS“Uvi)VDE
`|
`|
`!
`olla»
`|
`|
`L |
`|
`LSSSheZZyseee1
`
`Xf]
`
`|
`xf)
`
` XAMIS
`
`of yt
`xfe) xf xf
`
`|
`|
`1
`xf] s na x)
`|
`senso OBJECT
`POSITION, xF
`Fig.l
`
`PETITIONERS
`
`Exhibit 1006, Page 11
`
`PETITIONERS
`Exhibit 1006, Page 11
`
`
`
`U.S. Patent
`
`Apr. 19, 1994
`
`Sheet 11 of 13
`
`5,305,017
`
`CONTROL ALGORITHM
`
`
`
`
`
`600
`
`DETERMINE W
`
`640
`
`
`
`
`(OPTIONALLY) FILTER
`W,X AND Y
`
`
`SIGNAL P 10
`UTILIZATION MEANS
`
`
`
`
`
`Fig.l6
`
`DETERMINE W
`
`B10
`
`
`
`SELECT C[1B] AND R[JB]
`
`
`
`
`
`
`
`W=LNOM —L
`
`DONE
`
`Fig.l?
`
`PETITIONERS
`
`Exhibit 1006, Page 12
`
`PETITIONERS
`Exhibit 1006, Page 12
`
`
`
`U.S. Patent
`
`Apr. 19, 1994
`
`Sheet 12 of 13
`
`5,305,017
`
`-
`
`DETERMINE Y
`
`|
`
`|
`
`110
`
`SELECT C[18] AND RUJT]
`
`
`
`
`
`IF Qy <0, Qy=0
`IF Qy >1, Qy=1
`
`820
`
`DETERMINE X
`
`100
`
`SELECT C[IT] AND R[JB]
`
`L=(C[IT], RLJ6))
`
`:
`SELECT CLIT+n] AND R[JB)
`
`Ln=L(C(IT+n}, ROB)
`
`110
`
`120
`
`130
`
`140
`
`190
`
`160
`
`Qx=L/A(L-Ln)
`
`IF Qx <0, Qx=0
`IF Qy >4, Qe et]
`
`X= yl IT) +Qx#XD
`
`530
`
`DONE
`
`Fig.l
`
`DONE
`
`F'ig.l9
`
`PETITIONERS
`
`Exhibit 1006, Page 13
`
`PETITIONERS
`Exhibit 1006, Page 13
`
`
`
`U.S. Patent
`
`Apr. 19, 1994
`
`Sheet 13 0f13
`
`5,305,017
`
`__ Fig. 20
`
`AF Qx=0, TT =(1T-4) 1M
`
`B0—Nie Qy=4, IT=(IT+4) 1M
`
`860
`
`TB=(INTEGER)(IT +1/24+n/24M/4 51 M
`
`UPDATE X INDICES.
`840
`
`
`
`
`
`
`
`DONE
`
`UPDATE Y INDICES
`
`_F1g.2!/
`
`870
`
`880
`
`IF Qy=0, T=(JT=4) IN
`
`
`
`IF Oy 4, JT=(JT-+4) IN
`
`890
`
`JB=[INTEGER) (IT+ 1/2-+n/2+N/4JIN
`
`DONE
`
`PETITIONERS
`
`Exhibit 1006, Page 14
`
`PETITIONERS
`Exhibit 1006, Page 14
`
`
`
`1
`
`5,305,017
`
`METHODS AND APPARATUS FOR DATA INPUT
`
`This application is a continuation of U.S. application
`Ser. No. 07/754,329, filed Sep. 4, 1991, which is a con-
`tinuation of prior application Ser. No. 07/394,566,filed
`on Aug. 16, 1989, by George E. Gerpheide for METH-
`ODS AND APPARATUS FOR DATAINPUT.
`
`FIELD OF THE INVENTION
`
`10
`
`15
`
`20
`
`25
`
`30
`
`This invention relates generally to methods and appa-
`ratus for data input. More specifically, this invention
`relates to touchsensitive input devices for data input to
`computers and other instruments.
`BACKGROUND OF THE INVENTION
`Input devices for computers are well known in the
`art. There are several types of input devices, such as the
`familiar “mouse”, which have been utilized and are
`generally useful in providing “user friendly” computer
`systems for both technical and non-technical applica-
`tions. The popularity which these devices have
`achieved in the art can be given large credit for foster-
`ing the explosive growth of the personal computer
`industry since they provide a simple means for users to
`input data to computers for users.
`Currently, about 95% of all input devices or “point-
`ing devices” are mice. A mouse generally requires a
`free-rolling surface on whichit can interface. Depend-
`ing upon the particular mouse whichis used, the device
`couplesto the free-rolling surface and translates move-
`mentacross the surface as an input to a computer. Thus,
`the mouse is unsuitable for any input application which
`cannot provide space fora rolling surface. The current
`and growing popularity of “laptop” computersthus has
`created a significant problem for mouse type technolo-
`gies which requirea rolling surface. Laptops are gener-
`ally used in small confined areas such as, for example,
`airplanes, wherethereis insufficient room fora rolling
`surface. Therefore, a long-felt need in the art exists for
`non-mouse pointing solutions for computers and other
`instruments.
`A further long-felt need in the art exists for input and
`pointing devices which are simple to use and which can
`be easily integrated with current computers. This long-
`felt need has not been solved by previous mechanical
`ball or shaft rolling technologies, such as, for example,
`track balls. Furthermore, newpointing devices should
`be reliable and rugged, withthe ability to be transported
`to a variety of locations. Current track ball devices do
`notsatisfy these long-felt needs and are also quite cum-
`bersomesince they require practiced dexterity by the -
`user as he interacts with the device.
`Other types of pointing or input devices have been
`employed in the art. U.S. Pat. No. 3,886,311, Rodgers et
`al., discloses a writing pen for detecting time varying
`electrostatic field components. The writing pen dis-
`closed in Rodgers et al. is used in conjunction with a
`writing tablet which generates an electrostatic field.
`The Rodgerset al. patent discloses an X-Y grid having
`a writing surface overlaying the grid and an active
`stylus which writes on the grid in the same manneras a
`ball point pen. See column 2,lines 63, through column
`3, line 7.
`Other examples of stylus-type or “‘tablet” input de-
`vices are disclosed in U.S. Pat. No. 4,672,154, also to
`Rodgers et al. The second Rodgers et al. patent dis-
`closes a cordless stylus which emits a directional elec-
`
`2
`tric field from thetip of a conductive pen cartridge. The
`pen tip is capacitively coupledto a digitizer tablet hav-
`ing an X-Y coordinate system. The pointing device
`disclosed in the second Rodgersetal. patent may also
`function as a mouse. See column1, lines 65 through 68.
`Boththe stylus embodimentand the mouse embodiment
`disclosed in the second Rodgerset al. patent are both
`_ active devices which emit electrostatic fields that inter-
`face with the digitizer tablet.
`The Rodgerset al. patents disclose digitizing styluses
`and mouse pointing devices which require a separate
`rolling surface. Furthermore, both of these patents dis-
`close devices which are active and emit electrostatic
`fields to interact with the digitizing tablet in order to
`input data to a computer. Since the devices disclosed in
`both Rodgerset al. patents are active, the stylusis either
`attachedto the tablet by a wire or contains a replaceable
`powersource such as a battery. In either case, the user
`is required to grasp a bulky item in order to use the
`device. Thus, the devices disclosed in the Rodgersetal.
`patents do not satisfy a long-felt need in the art for
`pointing and input devices which can be conveniently
`and efficiently used for a variety of portable and desk-
`top applications.
`It has been known in the art to use tactile sensing
`devices to provide data input. See U.S. Pat. No.
`4,680,430, Yoshikawaet al. The Yoshikawaetal. patent
`discloses a coordinate detecting apparatus for determin-
`ing the coordinate position data of a point on a plane
`indicated by the touch of a finger tip or other load.
`Yoshikawa et al.
`teaches an analog type apparatus
`which uses a resistive film through which the coordi-
`nate position of a point is detected. The point’s coordi-
`nate position is indicated by applying a load impedance
`to the position. See column 3, lines 8 through 22.
`Tactile devices such as those disclosed in Yoshikawa
`et al. exhibit a significant disadvantage since they re-
`quire electrical contact between the finger tip and the
`device. When individuals possess long fingernails or
`have other objects about the fingers and hands, good
`electrical contact is prevented and the device does not
`function properly.
`Other analogtactile devices also exist in the art. See,
`e.g., U.S. Pat. No. 4,103,252, Bobick. The Bobick patent
`discloses electrodes located on the boundariesof a sens-
`ing region. Human touch on an edge of an electrode
`produces a capacitive charge to vary the time constant
`of an RC network which is part of an oscillator. The
`variation in capacitance of the sensor changes the time
`constant of the RC network andresults in a change in
`frequency in the output signal of the oscillator. See
`column 2, lines 8-20.
`U.S. Pat. No. 4,736,191, Matzke, discloses a touch
`activated control device comprising individual conduc-
`tive plates which form sectors of a circle. A user’s touch
`on the dielectric layer overlaying the plates is detected
`by individually charging and discharging each of the
`sectors in the plates in a sequential mannerto determine
`the increased capacitance of the sector. See column 2,
`lines 26 through 40.
`Display devices which are touch sensitive have also
`beenutilized in the art. See U.S. Pat. No. 4,476,463, Ng
`et al. The Ng et al. patent discloses a display device
`which locates a touch anywhere on a conductive dis-
`play faceplate by measuring plural electrical
`imped-
`ances of the faceplate’s conductive coating. The imped-
`ances are at electrodes located on different edges of the
`faceplate. See column 2, lines 7 through 12. The touch
`
`40
`
`45
`
`50
`
`60
`
`65
`
`PETITIONERS
`
`Exhibit 1006, Page 15
`
`PETITIONERS
`Exhibit 1006, Page 15
`
`
`
`5,305,017
`
`3
`sensitive devices disclosed in Ng et al. are generally
`designed to overlay a computer display and provide
`positioning information.
`The tactile input devices disclosed in the Bobick,
`Matzke etal. and Ng et al. patents do notsatisfy a long-
`felt needin the art for tactile input devices which accu-
`rately and efficiently provide data input for computers
`and other instrumentation. The devices disclosed in the
`aforementioned patents fail to satisfy this long-felt need
`since they effectively only measure position as a frac-
`tion of the distance between electrodes located on the
`boundaries of a sensing region. This leads to measure-
`mentinaccuracies since the distance between electrodes
`is relatively large, thereby causing small errors in the
`measured fraction to result in large position errors.
`Still other tactile sensing devices utilize a grid of
`electrodes to digitally determine an object's position
`somewhere on the grid. See U.S. Pat. No. 4,550,221,
`Mabusth, and U.S. Pat. No. 4,639,720, Rympalski etal.
`The Mabusth patent discloses a touch sensitive control
`device which translates touch location to output signals
`and which includes a substrate that supports first and
`second interleaved, closely spaced, non-overlapping
`conducting plates. The plates are aligned in rows and
`columns so that edges of each ‘plate of an array are
`proximateto, but spaced apart from, the edges of plates
`of the other array. The first and secondarraysare peri-
`odically connected in a multiplexed fashion to a capaci-
`tance measuring circuit which measures the change in
`capacitancein the arrays. In effect, the Mabusth patent
`discloses a grid of pixels which are capacitively cou-
`pled.
`Similarly, the Rympalski et al. patent discloses an
`electronic sketch pad which contains a graphics input
`pad having an array oftransparentcapacitive pixels, the
`capacitance characteristics of which are changed in
`response to the passing of a conductive tipped stylus
`over the surface of the pad. The change in capacitance
`is sensed by buffers disposed along the columnsof the
`pixel matrix as the rows are scanned at a prescribed
`scanningrate.
`Neither the Mabusth patent nor the Rympalski etal.
`patentsatisfy a long-felt need in the art for tactile input
`devices which exhibit good position resolution of an
`object. Since the aforementionedpatents teach devices
`whichutilize a grid of electrodes and which operate in
`a “binary” mode, i.e., measure position by examining
`each electrode and determiningthat an object is located
`or is not located at a point on the grid, the resolution of
`the position measurementis limited to, at best, a few
`times the grid resolution. This requires an extremely
`fine pattern of electrodes to achieve acceptable position
`resolution. However, a fine pattern of electrodes is
`extremely expensive and, in most cases, not practical.
`Therefore, the Mabusth and Rympalski et al. patents do
`notsatisfy a long-felt need in the art for tactile sensing
`devices which can input data to computers or other
`instruments.
`
`SUMMARYOF THE INVENTION
`The aforementioned long-felt needs are met by meth-
`ods and apparatus provided in accordance with this
`invention. An apparatus for data input is provided. The
`apparatus comprises pad means for sensing at least one
`object’s position, the pad meanshaving electrical bal-
`ances responsive to the object’s position, and measure-
`ment means operatively coupled to the pad meansfor
`measuring the electrical balances in the pad means.
`
`4
`Methodsof measuring an object’s position are further
`provided in accordancewith the presentinvention. The
`methods comprise the steps of providing an electrically
`sensitive pad comprising insulator means having first
`and secondsides for providing an insulating substrate to
`the apparatus,first electrode meanselectrically coupled
`to thefirst side of the insulator meansfor establishing an
`electromagnetic field, second electrode means electri-
`cally coupled to the second side of the insulator means
`for further establishing the electromagnetic field in
`cooperation with the first electrode means, synthesis
`means operatively coupled to thefirst electrode means
`and the second electrode meansfor selecting first elec-
`trode means and second electrode means to repeatedly
`synthesize virtual dipole electrodes. The steps of the
`methodsfurther comprise measuring electrical balances
`between the plurality offirst electrode means and the
`second electrode means,calculating the object’s coarse
`position based on at least one target index, calculating
`the object’s fine position based on the measured bal-
`ances between the plurality of first electrode and sec-
`ond electrode means, and calculating the object’s net
`position.
`BRIEF DESCRIPTION OF THE DRAWINGS
`FIG. 1 is a block diagram of a touch sensitive control
`device provided in accordancewith this invention.
`FIG. 2 shows a touch sensitive control device pro-
`vided in accordance with this invention interfaced with
`a computer keyboard.
`FIG.3 illustrates synthesis of virtual electrodes.
`FIG. 4 shows synthesis of virtual dipole electrodes
`from virtual electrodes.
`FIG.5(a) illustrates a simple virtual dipole electrode.
`FIG.5(5)illustrates a simple virtual dipole electrode
`wrapped around.
`.
`FIG.6 illustrates cyclic virtual dipole electrodes.
`FIG.7 is a block diagram of a virtual electrode pad
`and row and column synthesis circuitry.
`FIG. 8(a) showsan elevation view of a virtual elec-
`trode pad provided in accordance with this invention.
`FIG. 8(b) is a plan view of a virtual electrode pad
`taken along the 8(5) line of FIG. 8().
`FIG.9 is a block diagram of row and columnsynthe-
`sis circuitry.
`FIG. 10(a) illustrates object position sensing with a
`touch sensitive control device provided in accordance
`with this invention.
`FIG. 10(b) shows object position sensing taken along
`the 10(b) line of FIG. 10(a).
`FIG. 11 is a graphof electrical balance versus posi-
`tion for a sensed object.
`FIG. 12 illustrates a preferred embodiment of the
`electrical balance measurementcircuit of FIG. 1.
`FIG.13 is a virtual dipole electrode pad on which a
`single row virtual dipole electrode and two column
`virtual dipole electrodes are synthesized.
`FIG.14 is a graph of balances versus object position
`for the arrangement of FIG.13.
`FIG. 15 shows target and base virtual dipole elec-
`trode extent with indices updated reflecting sensed ob-
`ject position.
`FIG.16 is a preferred embodiment ofa flow chart of
`a control algorithm provided in accordance with this
`invention.
`FIG. 17 is a flow chart to determine the proximity of
`an object to a virtual dipole electrode pad.
`
`40
`
`45
`
`50
`
`55
`
`PETITIONERS
`
`Exhibit 1006, Page 16
`
`PETITIONERS
`Exhibit 1006, Page 16
`
`
`
`5,305,017
`
`5
`FIG.18 is a flow chart to determine the x position of
`an object.
`FIG. 19 is a flow chart to determine the y position of
`an object.
`FIG.20 is a flow chart to accomplish x position index
`updating.
`FIG.21is a flow chart to accomplish y position index
`updating.
`
`DETAILED DESCRIPTION OF PREFERRED
`EMBODIMENTS
`
`Referring now to the drawings wherein like numerals
`refer to like elements, FIG. 1 is a touch sensitive input
`device provided in accordance with this invention,
`comprised of a virtual electrode pad 20,electrical bal-
`ance measurementcircuit 30, balance ratio determina-
`tion circuit 40, and control circuit 50. In preferred em-
`bodiments,virtual electrode pad 20 is in the shape of a
`sheet. In further preferred embodiments,
`the virtual
`electrode pad 20 is capable of forming “virtual elec-
`trodes” at various positions on its top and bottom sur-
`faces. The electrodes are denoted as “virtual elec-
`trodes” since separate conductive strips on the two
`sides of pad 20 are used to form single elements denoted
`“virtual electrodes.” The virtual electrodes are con-
`nected to electronic circuitry capable of measuring the
`electrical balance between selected top virtual elec-
`trodes and selected bottom virtual electrodes.
`In still further preferred embodiments, balance ratio
`determination circuit 40 is provided to determine the
`ratio of one balance measurement to another. Control
`circuit 50 selects appropriate electrodes for balance
`measurement and ratio determination. The controlcir-
`cuit 50 responds to balance ratios to calculate position
`information of the sensed object 60. This information
`may include position along 1 or 2 axes parallel to the
`electrode pad surface. Additional “proximity”informa-
`tion along an axis perpendicular to the surface of elec-
`trode pad 20 mayalso be determined from an appropri-
`ate balance measurement.
`Position information determined by control circuit 50
`is provided to a utilization means 70 which may be any
`ofa variety of electronic or computer devices.
`A finger 60 is shown located with its tip in close
`proximity to the top surface of electrode pad 20. The
`position ofthe finger tip over some region in the x and
`y directions may be sensed, as may its proximity in the
`z direction by virtual electrode pad 20. The sensed
`object 60 could also be a thumbtip, or any other con-
`ductive object. The coordinate axis 80 is shown for
`reference.
`Referring to FIG.2, a touch sensitive input device 90
`provided in accordance with the present invention may
`provide information indicative of an operator’s finger
`position to a computer, as an alternative to the function
`commonly performed by a computer mouse. An opera-
`tor may draw, select commands, or manipulate graphi-
`cally portrayed objects on a computer with touch sensi-
`tive input devices provided in accordance with this
`invention. The device 90 may be a separate pad which
`could be held in the hand, placed on a desktop, or in
`preferred embodiments built into a computer keyboard
`100 positioned below the space bar 110 so an operator
`can manipulate it with his or her thumbs. In other pre-
`ferred embodiments, the electrodes and insulator might
`be constructed from transparent materials for attach-
`ment to the viewing surface of a computer display
`screen.
`
`6
`The device 90 provides finger position information to
`any type of electronically controlled equipment. An
`operator could control the volumeof a stereo, tempera-
`ture of an oven, time for a cycle of an appliance, selec-
`tion of a vending machine item, a “video game” elec-
`tronic entertainment game, or the functions of elec-
`tronic test or measuring equipment, for example, an
`oscilloscope.If a 1-axis form of the device is desired for
`an application, the electrode pad may beofa straight
`linear geometry.It could also be circular or cylindrical,
`having an operation like a common dial or potentiome-
`ter knob.
`In preferred embodiments, the sensed object may be
`any substantially conductive object. With an electrode
`pad constructed on an appropriate scale, the device
`could sense the position of a nearby hand, person, auto-
`mobile, or piece of machinery. The touch sensitive
`control devices provided in accordance with this inven-
`tion could be further adapted for use as an “electronic
`blackboard.”
`Referring to FIG.3, virtual electrode 120 is com-
`prised of a numberofelectrodestrips 130 deployed over
`an area. An electrodestrip is a sheet conductive region.
`Thestrips are separated by insulating spaces 140 butare
`electrically connected together by electrode synthesis
`circuit 150. The area over which the connected strips
`130 are deployed, including the area betweenstrips 140,
`is defined as the area of the virtual electrode.
`As defined and used throughout, the notation A B
`means A modulo B,that is, the remainder when A is
`divided by B. Square brackets are used to enclose indi-
`ces, typically selecting one of a number of similar ob-
`jects or points. For example, C[i] denotes the “i-th col-
`umn”. All indices are to be taken with respect to an
`understood row or column modulus. For example, if
`there are M “columns”, then C[i+ 1] is to be interpreted
`as C[(i+1) Ml].
`FIG.4 showsa preferred embodimentofvirtual elec-
`trode pad 20 with two “row”virtual electrodes 160 on
`the top side of the sheet and two “column”virtual elec-
`trodes 170 on the bottom side. In further preferred
`embodiments, each virtual electrode is rectangular in
`shape. The virtual electrodes have a “length” and a
`“width”. The width of the row electrodes 160 are in the
`y direction with respect to the coordinate system 80,
`while the width of the column electrodes 170 are in the
`x direction. The two row virtual electrodes 160 form a
`row “virtual dipole electrode” (VDE)labelled R[j] at
`180. A column VDElabelled C[i] at 190 is also formed.
`In still further preferred embodiments, a VDE con-
`sists of two virtual electrodes of equal area located
`along side each other. A virtual electrode extending to
`the pad edge may “wrap around”to the opposite side’s
`edge. The componentvirtual electrodes of the VDE are
`referred to as the “‘positive” and “negative” halves of
`the VDE. The location (along the axis in the width
`direction in the present example is greater for the posi-
`tive half than for the negative half of the VDE. The
`positive half of C[i] is denoted by C[i]<p> at 200 and
`the negative half by C[i]<n> at 210. C[i]<p> is con-
`nected to wire CP at 220 and C[i]<n> to wire CN at
`230. Similarly, R[j]<p> at 240 is connected to RP at
`250 and R[j]<n> 260 to RN at 270.
`The “location” of a VDEis defined as the coordinate
`in the width direction of a locationline, i-e., equidistant
`between the two componentvirtual electrodes. Column
`VDEs C[0]... C[M— 1] are located at x[0]... x[M—1],
`respectively. Row VDEs R[0] .. . R[N—1] are located
`
`30
`
`55
`
`60
`
`65
`
`PETITIONERS
`
`Exhibit 1006, Page 17
`
`PETITIONERS
`Exhibit 1006, Page 17
`
`
`
`5,305,017
`
`7
`at y[0]... y[N—1], respectively. The “VDE spacing”is
`the distance between adjacent row (or column, as ap-
`propriate) VDElocations. Typically, WDE width is
`greater than VDEspacing and therefore VDEs may
`overlap at adjacent locations.
`Referring to FIGS.5(@) and 5(d), a preferred embodi-
`ment of two simple column VDEsas described aboveis
`shown. Thereis a single location line 280 with a nega-
`tive VDE half 290 on the left and a positive half 300 on
`the right. Each VDE covers essentially the entire vir-
`tual electrode pad 20. In FIG. 5(6), the location line is
`notin the center of the pad. The <n> virtual electrode
`290 extendsto the left edge of the pad and wraps around
`to the right edge at 310. In other preferred embodi-
`ments, a VDE mayhave only a positive half wherein
`the area of the negative half and any mutual capacities
`to the negative half are defined to be zero.
`FIG.6 illustrates another preferred embodimentof a
`VDEcalled a “cyclic” column VDE. A cyclic VDE
`consists of a “fundamental” VDE andadditional VDEs
`located periodically alongthe axis. All the <n> virtual
`electrodes 290 are electrically connected together to the
`CN wire 230. Similarly, all <p> virtual electrodes 300
`are connected to CP at 220. The number of component
`VDEs.: (including the fundamental VDE) in a cyclic
`VDEis defined as the “multiplicity”. The multiplicity is
`three for the example shown. The location 280 of the
`fundamental VDEis taken to be the location of the
`entire cyclic VDE.This location has the lowest coordi-
`nate of all the component VDEs. Simple and cyclic row
`VDEsare analogous to the column VDEsdescribed
`here.
`Simple VDEscan be considered to be a special case
`of cyclic VWDEs having multiplicity equal to one. The
`advantageofusing higher multiplicity is increased accu-
`racy compared to a virtual electrode pad of the same
`size and same numberof cyclic VDEsbut lower mullti-
`plicity. Assume the former has multiplicity A and the
`latter multiplicity B, where A is greater than B. The
`VDEspacing of the formerwill be the fraction B/A of
`the latter. Greater accuracy can be realized with the
`former due to the smaller VDE spacing.
`Multiplicity greater than one implies the sensed ob-
`ject’s absolute position can not be determined unambig-
`uously. Position can be determinedrelative to the loca-
`tion of one component VDE,but there is no way to
`determine which component VDE.In manycases only
`relative position (that is, a change in position) needs to
`be sensed. With multiplicity greater than one, position
`should be measured frequently enough that the sensed
`object never moves more than half the VDE spacing
`from one measurementto the next. In this fashion, rela-
`tive position change can be unambiguously determined.
`A multiplicity of one may be used if absolute position
`must be measured. Anothersolutionis to use two differ-
`ent periodic VDEs with different VDE spacings.
`Referring to FIG. 7, virtual electrode pad 20 com-
`prises a substrate 320 and a plurality of electrical strips
`130 on both sides of the substrate 320. In preferred
`embodiments, substrate 320 is an insulator. Electrode
`synthesis circuit 150 comprises row synthesis circuit 330
`and column synthesis circuit 340. In further preferred
`embodiments, electrode pad 20 is connected to row
`synthesis circuit 330 through lines Al through A8,
`shown generally at 350. Similarly, electrode pad 20 is
`connected to column synthesis circuit 340 through lines
`B1 through B8, shown generally at 360. In still further
`
`8
`preferred embodiments, there are eight electrode strips
`on the top side of pad 20.
`On command from control means 50, the electrode
`synthesis circuit 150 connects selected electrode strips
`to wires CN, CP, RN and RPto form one row and one
`column VDEonrespective sides of the virtual elec-
`trode pad.A signal, S, from control means 50 is input to
`row synthesis circuit 330 and column synthesis circuit
`340 and commandsthevirtual electrode pad 20 to select
`one row VDEand one column VDE.Thelocation of
`each VDEis varied according to the requirements ofa
`control algorithm. Both halves of each VDEare con-
`nected to the electrical balance measurement means30.
`This connection is via wires RN and RP connected to
`the positive and negative halves, respectively, of the
`row VDE;and via wires CN and CP connected to the
`positive and negative halves of the column VDE.In
`preferred embodiments,
`the electrical measurement
`accomplished is a capacitive measurement between the
`electrodestrips.
`FIGS. 8(a) and 8(b) show virtual electrode pad 20.
`Referring to FIG. 8(a), flat electrode strips 130 are
`present on the top and bottom of separator insulating
`substrate, shown generally at 370. On the top surface of
`electrode pad 20 is a thin overlay insulator 380 which
`prevents a sensed object from making electrical contact
`with electrode strips 130 and substrate 370. It also pro-
`tects the electrode strips from corrosion and wear.
`In further preferred embodiments, pad 20 has overall
`dimensions of about 1.0 inch high by 3.5 inches wide by
`0.08 inch thick. Overlay insulator 380 is a 0.02 inch
`thick MYLARsheet, and separator insulator 370 is a
`0.06 inch thick epoxy-glass printed circuit board mate-
`rial. Electrode strips 30 are 0.04 inch wide coppertraces
`on 0.2 inch centers fabricated on both sides of the sepa-
`rator insulator using standard printed circuit board
`techniques. Dimensions may be varied considerably
`while still achieving good functionality. The width of
`the traces, spacing betweenthe traces, and thickness of
`the circuit board insulator and overlay insulator may be
`selected for the particular application and object being
`sensed. The above-mentioned dimensions give good
`results for a humanfingertip.
`Referring to FIG. 8(5),
`there are eight electrode
`strips on the top side of the separator insulator 370
`perpendicular to the y axis. Wires labelled AO through
`A7are attached to these 8 electrode strips. In still fur-
`ther preferred embodiments, there are twenty-four elec-
`trode strips on the bottom of separator insulator 370
`perpendicular to the x axis. The twenty-four electrode
`strips are connected to wires labelled BO through B7 as
`shown. Connection of three column electrode strips to
`each column wire is consistent with multiplicity of
`three. The multiplicity is one for the rows.
`FIG.9 illustrates a preferred embodiment of an im-
`plementation of row virtual electrode synthesis circuit
`330. Each electrode strip wire AO through A7, shown
`generally at 390, is connected to a pair of electronic
`switches at 400. In preferred embodiments, electronic
`switches 400 are CMOSanalog switches. One or the
`other switch of each pair is electrically conducting. The
`electrically conducting switch connects the associated
`electrode