throbber
Force-sensing resistor
`
`A force-sensing resistor is a material whose resistance changes when a force, pressure or mechanical stress is applied. They are also known as "force-
`sensitive resistor" and are sometimes referred to by the initialism "FSR".[1]
`
`Contents
`History
`Properties
`Operation Principle of FSRs
`Percolation in FSRs
`Quantum tunneling in FSRs
`Current research trends in FSRs
`Uses
`See also
`References
`
`History
`
`FSR usage
`
`The technology of force-sensing resistors was invented and patented in 1977 by Franklin Eventoff. In 1985 Eventoff founded Interlink Electronics,[2] a
`company based on his force-sensing-resistor (FSR). In 1987, Eventoff was the recipient of the prestigious international IR 100 award for the development of
`the FSR. In 2001 Eventoff founded a new company, Sensitronics,[3] that he currently runs.[4]
`Properties
`
`Force-sensing resistors consist of a conductive polymer, which changes resistance in a predictable manner following application of force to its surface.[5] They
`are normally supplied as a polymer sheet or ink that can be applied by screen printing. The sensing film consists of both electrically conducting and non-
`conducting particles suspended in matrix. The particles are sub-micrometre sizes, and are formulated to reduce the temperature dependence, improve
`mechanical properties and increase surface durability. Applying a force to the surface of the sensing film causes particles to touch the conducting electrodes,
`changing the resistance of the film. As with all resistive based sensors, force-sensing resistors require a relatively simple interface and can operate
`satisfactorily in moderately hostile environments. Compared to other force sensors, the advantages of FSRs are their size (thickness typically less than
`0.5 mm), low cost and good shock resistance. A disadvantage is their low precision: measurement results may differ 10% and more. Force-sensing capacitors
`offer superior sensitivity and long term stability, but require more complicated drive electronics.
`Operation Principle of FSRs
`
`There are two major operation principles in Force-sensing resistors: percolation and quantum tunneling. Although both phenomena actually occur
`simultaneously in the conductive polymer, one phenomenon dominates over the other depending on particle concentration.[6] Particle concentration is also
`.[7] More recently, new mechanistic explanations have been established to explain the performance of
`referred in literature as the filler volume fraction
`force-sensing resistors; these are based on the property of contact resistance
` occurring between the sensor electrodes and the conductive polymer.
`Specifically the force induced transition from Sharvin contacts to conventional Holm contacts.[8] The contact resistance,
`, plays an important role in the
`current conduction of force-sensing resistors in a twofold manner. First, for a given applied stress
`, or force
`, a plastic deformation occurs between the
`sensor electrodes and the polymer particles thus reducing the contact resistance.[9][10] Second, the uneven polymer surface is flattened when subjected to
`.[10] At a
`incremental forces, and therefore, more contact paths are created; this causes an increment in the effective Area for current conduction
`macroscopic scale, the polymer surface is smooth. However, under a Scanning electron microscope, the conductive polymer is irregular due to agglomerations
`of the polymeric binder.[11]
`
`Up to date, there is not a comprehensive model capable of predicting all the non-linearities observed in force-sensing resistors. The multiple phenomena
`occurring in the conductive polymer turn out to be too complex such to embrace them all simultaneously; this condition is typical of systems encompassed
`within Condensed matter physics. However, in most cases, the experimental behavior of force-sensing resistors can be grossly approximated to either the
`percolation theory or to the equations governing quantum tunneling through a Rectangular potential barrier.
`
`Percolation in FSRs
`
`The percolation phenomenon dominates in the conductive polymer when the particle concentration is above the percolation threshold
`. A force-sensing
`resistor operating on the basis of percolation exhibits a positive coefficient of pressure, and therefore, an increment in the applied pressure causes an
`,[12][13] For a given applied stress
` of the conductive polymer can be computed from:[14]
`increment in the electrical resistance
`, the electrical resistivity
`
` is the critical conductivity exponent.[15] Under
` matches for a prefactor depending on the transport properties of the conductive polymer and
`where
`percolation regime, the particles are separated from each other when mechanical stress is applied, this causes a net increment in the device's resistance.
`
`Quantum tunneling in FSRs
`
`Samsung Electronics Co. Ltd. et al v. Neodron Ltd
`Exhibit 2008
`IPR2020-00308
`
`

`

`Quantum tunneling is the most common operation mode of force-sensing resistors. A conductive polymer operating on the basis of quantum tunneling
`. Commercial FSRs such as the FlexiForce,[16] Interlink [17] and Peratech [18] sensors operate
`exhibits a resistance decrement for incremental values of stress
`on the basis of quantum tunneling. The Peratech sensors are also referred to in the literature as Quantum tunnelling composite.
`
`The quantum tunneling operation implies that the average inter-particle separation
` is reduced when the conductive polymer is subjected to mechanical
` causes a probability increment for particle transmission according to the equations for a Rectangular potential barrier.[19]
`stress, such a reduction in
`Similarly, the Contact Resistance
` is reduced amid larger applied forces. In order to operate on the basis of Quantum tunneling, particle concentration in
`.[6]
`the conductive polymer must be held below the percolation threshold
`
`Several authors have developed theoretical models for the quantum tunneling conduction of FSRs,[20][21] some of the models rely upon the equations for
`particle transmission across a Rectangular potential barrier. However, the practical usage of such equations is limited because they are stated in terms of
`Electron Energy
` that follows a Fermi Dirac probability Distribution, i.e. electron energy is not a priori determined or can not be set by the final user. The
`analytical derivation of the equations for a Rectangular potential barrier including the Fermi Dirac distribution was found in the 60`s by Simmons.[22] Such
`equations relate the Current density
` with the external applied voltage across the sensor
`. However,
` is not straightforward measurable in practice, so the
`transformation
` is usually applied in literature when dealing with FSRs.
`
`Just as the in the equations for a Rectangular potential barrier, the Simmons' equations are piecewise in regard to the magnitude of
`. The simplest Simmons' equation [22] relates
`expressions are stated depending on
` and on the height of the rectangular potential barrier
` as next:
`
`, i.e. different
` with
`, when
`
` is the Planck constant. The low voltage equation of the
` are the electron's mass and charge respectively, and
`,
` is in units of electron Volt,
`where
`Simmons' model [22] is fundamental for modeling the current conduction of FSRs. In fact, the most widely accepted model for tunneling conduction has been
`proposed by Zhang et al.[23] on the basis of such equation. By re-arranging the aforesaid equation, it is possible to obtain an expression for the conductive
`polymer resistance
`, where
` is given by the quotient
` according to the Ohm's law:
`
`When the conductive polymer is fully unloaded, the following relationship can be stated between the inter-particle separation at rest state
`fraction
` and particle diameter
`:
`
`,the filler volume
`
`Similarly, the following relationship can be stated between the inter-particle separation
`
` and stress
`
`where
`next:
`
` is the Young's modulus of the conductive polymer. Finally, by combining all the aforementioned equations, the Zhang's model [23] is obtained as
`
`Although the model from Zhang et al. has been widely accepted by many authors,[11][9] it has been unable to predict some experimental observations reported
`in force-sensing resistors. Probably, the most challenging phenomenon to predict is sensitivity degradation. When subjected to dynamic loading, some force-
`sensing resistors exhibit degradation in sensitivity.[24][25] Up to date, a physical explanation for such a phenomenon has not been provided, but experimental
`observations and more complex modeling from some authors have demonstrated that sensitivity degradation is a voltage-related phenomenon that can be
`avoided by choosing an appropriate driving voltage in the experimental set-up.[26]
`
`The model proposed by Paredes-Madrid et al.[10] uses the entire set of Simmons' Equations [22] and embraces the contact resistance within the model; this
`implies that the external applied voltage to the sensor
` is split between the tunneling voltage
` and the voltage drop across the contact resistance
`as next:
`
`By replacing sensor current
`
` in the above expression,
`
` can be stated as a function of the contact resistance
`
` and
`
` as next:
`
`and the contact resistance
`
` is given by:
`
` are experimentally determined factors that depend on the interface material between
`,
` is the resistance of the conductive nano-particles and
`where
`the conductive polymer and the electrode. Finally the expressions relating sensor current
` with
` are piecewise functions just as the Simmons equations
`[22] are:
`
`When
`
`Samsung Electronics Co. Ltd. et al v. Neodron Ltd
`Exhibit 2008
`IPR2020-00308
`
`

`

`When
`
`When
`
`, and on
` is stated as an increasing function dependent on the applied stress
`In the aforesaid equations, the effective area for tunneling conduction
`coefficients
`,
`,
` to be experimentally determined. This formulation accounts for the increment in the number of conduction paths with stress:
`
`Current research trends in FSRs
`
`Although the above model [10] is unable to describe the undesired phenomenon of sensitivity degradation, the inclusion of rheological models has predicted
`that drift can be reduced by choosing an appropriate sourcing voltage; this statement has been supported by experimental observations.[26] Another approach
`to reduce drift is to employ Non-aligned electrodes so that the effects of polymer creep are minimized.[27] There is currently a great effort placed on
`improving the performance of FSRs with multiple different approaches: in-depth modeling of such devices in order to choose the most adequate driving
`circuit,[26] changing the electrode configuration to minimize drift and/or hysteresis,[27] investigating on new materials type such as carbon nanotubes,[28] or
`solutions combining the aforesaid methods.
`Uses
`
`Force-sensing resistors are commonly used to create pressure-sensing "buttons" and have applications in many fields, including musical instruments, car
`occupancy sensors, artificial limbs, Foot pronation systems and portable electronics. They are also used in Mixed or Augmented Reality systems[29] as well as
`to enhance mobile interaction.[30][31]
`
`See also
`Velostat - used to make hobbyist sensors
`References
`
`1. FSR Definitions (http://acronyms.thefreedictionary.com/FSR)
`2. "Interlink Electronics" (https://www.interlinkelectronics.com/).
`3. Physics and Radio-Electronics. "Force Sensitive Resistor" (http://www.ph
`ysics-and-radio-electronics.com/electronic-devices-and-circuits/passive-c
`omponents/resistors/forcesensitiveresistor.html).
`4. Sensitronics (http://www.sensitronics.com/about_us.htm)
`5. Tactile Sensors (http://www.soton.ac.uk/~rmc1/robotics/artactile.htm)
`6. Stassi, S; Cauda, V; Canavese, G; Pirri, C (March 14, 2014). "Flexible
`Tactile Sensing Based on Piezoresistive Composites: A Review" (https://
`www.ncbi.nlm.nih.gov/pmc/articles/PMC4003994). Sensors. 14 (3): 5296–
`5332. doi:10.3390/s140305296 (https://doi.org/10.3390%2Fs140305296).
`PMC 4003994 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4003994).
`PMID 24638126 (https://pubmed.ncbi.nlm.nih.gov/24638126).
`7. Bloor, D; Donnelly, K; Hands, P; Laughlin, P; Lussey, D (August 5, 2005).
`"A metal-polymer composite with unusual properties" (https://www.pure.e
`d.ac.uk/ws/files/4945595/2005_JPhysD_preprint_Metal_polymer_compos
`ite_with_unusual_properties.pdf) (PDF). Journal of Physics D. 38 (16):
`2851. Bibcode:2005JPhD...38.2851B (https://ui.adsabs.harvard.edu/abs/
`2005JPhD...38.2851B). doi:10.1088/0022-3727/38/16/018 (https://doi.org/
`10.1088%2F0022-3727%2F38%2F16%2F018).
`8. Mikrajuddin, A; Shi, F; Kim, H; Okuyama, K (April 24, 2000). "Size-
`dependent electrical constriction resistance for contacts of arbitrary size:
`from Sharvin to Holm limits". Materials Science in Semiconductor
`Processing. 2 (4): 321–327. doi:10.1016/S1369-8001(99)00036-0 (https://
`doi.org/10.1016%2FS1369-8001%2899%2900036-0).
`
`9. Kalantari, M; Dargahi, J; Kovecses, J; Mardasi, M; Nouri, S (2012). "A
`New Approach for Modeling Piezoresistive Force Sensors Based on
`Semiconductive Polymer Composites" (https://spectrum.library.concordia.
`ca/974523/1/Masoud_Kalantari_Final_Version.pdf) (PDF). IEEE/ASME
`Transactions on Mechatronics. 17 (3): 572–581.
`doi:10.1109/TMECH.2011.2108664 (https://doi.org/10.1109%2FTMECH.2
`011.2108664).
`10. Paredes-Madrid, L; Palacio, C; Matute, A; Parra, C (September 14,
`2017). "Underlying Physics of Conductive Polymer Composites and Force
`Sensing Resistors (FSRs) under Static Loading Conditions" (https://www.
`ncbi.nlm.nih.gov/pmc/articles/PMC5621037). Sensors. 17 (9): 2108.
`doi:10.3390/s17092108 (https://doi.org/10.3390%2Fs17092108).
`PMC 5621037 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621037).
`PMID 28906467 (https://pubmed.ncbi.nlm.nih.gov/28906467).
`11. Wang, L; Ding, T; Wang, P (June 30, 2009). "Influence of carbon black
`concentration on piezoresistivity for carbon-black-filled silicone rubber
`composite". Carbon. 47 (14): 3151–3157.
`doi:10.1016/j.carbon.2009.06.050 (https://doi.org/10.1016%2Fj.carbon.20
`09.06.050).
`12. Knite, M; Teteris, V; Kiploka, A; Kaupuzs, J (August 15, 2003).
`"Polyisoprene-carbon black nanocomposites as tensile strain and
`pressure sensor materials". Sensors and Actuators A: Physical. 110 (1–
`3): 142–149. doi:10.1016/j.sna.2003.08.006 (https://doi.org/10.1016%2Fj.
`sna.2003.08.006).
`13. Yi, H; Dongrui, W; Xiao-Man, Z; Hang, Z; Jun-Wei, Z; Zhi-Min, D (October
`24, 2012). "Positive piezoresistive behavior of electrically conductive
`alkyl-functionalized graphene/polydimethylsilicone nanocomposites". J.
`Mater. Chem. C. 1 (3): 515–521. doi:10.1039/C2TC00114D (https://doi.or
`g/10.1039%2FC2TC00114D).
`
`Samsung Electronics Co. Ltd. et al v. Neodron Ltd
`Exhibit 2008
`IPR2020-00308
`
`

`

`14. Basta, M; Picciarelli, V; Stella, R (October 1, 1993). "An introduction to
`percolation". European Journal of Physics. 15 (3): 97–101.
`Bibcode:1994EJPh...15...97B (https://ui.adsabs.harvard.edu/abs/1994EJ
`Ph...15...97B). doi:10.1088/0143-0807/15/3/001 (https://doi.org/10.1088%
`2F0143-0807%2F15%2F3%2F001).
`15. Zhou, J; Song, Y; Zheng, Q; Wu, Q; Zhang, M (February 2, 2008).
`"Percolation transition and hydrostatic piezoresistance for carbon black
`filled poly(methylvinylsilioaxne) vulcanizates". Carbon. 46 (4): 679–691.
`doi:10.1016/j.carbon.2008.01.028 (https://doi.org/10.1016%2Fj.carbon.20
`08.01.028).
`16. Tekscan, Inc. "FlexiForce, Standard Force \& Load Sensors Model A201.
`Datasheet" (https://www.tekscan.com/sites/default/files/resources/FLX-A2
`01-A.pdf) (PDF).
`17. Interlink Electronics. "FSR400 Series Datasheet" (http://www.interlinkelect
`ronics.com/datasheets/Datasheet_FSR.pdf) (PDF).
`18. Peratech, Inc. "QTC SP200 Series Datasheet. Single Point Sensors" (http
`s://www.peratech.com/assets/uploads/datasheets/Peratech-QTC-DataSh
`eet-SP200-Series-Nov15.pdf) (PDF).
`19. Canavese, G; Stassi, S; Fallauto, C; Corbellini, S; Cauda, V (June 23,
`2013). "Piezoresistive flexible composite for robotic tactile applications".
`Sensors and Actuators A: Physical. 208: 1–9.
`doi:10.1016/j.sna.2013.11.018 (https://doi.org/10.1016%2Fj.sna.2013.11.
`018).
`20. Li, C; Thostenson, E; Chou, T-W (November 29, 2007). "Dominant role of
`tunneling resistance in the electrical conductivity of carbon nanotube–
`based composites". Applied Physics Letters. 91 (22): 223114.
`Bibcode:2007ApPhL..91v3114L (https://ui.adsabs.harvard.edu/abs/2007A
`pPhL..91v3114L). doi:10.1063/1.2819690 (https://doi.org/10.1063%2F1.2
`819690).
`21. Lantada, A; Lafont, P; Muñoz, J; Munoz-Guijosa, J; Echavarri, J
`(September 16, 2010). "Quantum tunnelling composites: Characterisation
`and modelling to promote their applications as sensors". Sensors and
`Actuators A: Physical. 164 (1–2): 46–57. doi:10.1016/j.sna.2010.09.002
`(https://doi.org/10.1016%2Fj.sna.2010.09.002).
`22. Simmons, J (1963). "Electrical tunnel effect between dissimilar electrodes
`separated by a thin insulating Film". Journal of Applied Physics. 34 (9):
`2581–2590. Bibcode:1963JAP....34.2581S (https://ui.adsabs.harvard.edu/
`abs/1963JAP....34.2581S). doi:10.1063/1.1729774 (https://doi.org/10.106
`3%2F1.1729774).
`23. Xiang-Wu, Z; Yi, P; Qiang, Z; Xiao-Su, Y (September 8, 2000). "Time
`dependence of piezoresistance for the conductor-filled polymer
`composites". Journal of Polymer Science Part B: Polymer Physics. 38
`(21): 2739–2749. Bibcode:2000JPoSB..38.2739Z (https://ui.adsabs.harva
`rd.edu/abs/2000JPoSB..38.2739Z). doi:10.1002/1099-
`0488(20001101)38:21<2739::AID-POLB40>3.0.CO;2-O (https://doi.org/1
`0.1002%2F1099-0488%2820001101%2938%3A21%3C2739%3A%3AAI
`D-POLB40%3E3.0.CO%3B2-O).
`
`24. Lebosse, C; Renaud, P; Bayle, B; Mathelin, M (2011). "Modeling and
`Evaluation of Low-Cost Force Sensors". IEEE Transactions on Robotics.
`27 (4): 815–822. doi:10.1109/TRO.2011.2119850 (https://doi.org/10.110
`9%2FTRO.2011.2119850).
`25. Lin, L; Liu, S; Zhang, Q; Li, X; Ji, M; Deng, H; Fu, Q (2013). "Towards
`Tunable Sensitivity of Electrical Property to Strain for Conductive Polymer
`Composites Based on Thermoplastic Elastomer". ACS Applied Materials
`& Interfaces. 5 (12): 5815–5824. doi:10.1021/am401402x (https://doi.org/
`10.1021%2Fam401402x).
`26. Paredes-Madrid, L; Matute, A; Bareño, J; Parra, C; Gutierrez, E
`(November 21, 2017). "Underlying Physics of Conductive Polymer
`Composites and Force Sensing Resistors (FSRs). A Study on Creep
`Response and Dynamic Loading" (https://www.ncbi.nlm.nih.gov/pmc/articl
`es/PMC5706281). Materials. 10 (11): 1334.
`Bibcode:2017Mate...10.1334P (https://ui.adsabs.harvard.edu/abs/2017M
`ate...10.1334P). doi:10.3390/ma10111334 (https://doi.org/10.3390%2Fma
`10111334). PMC 5706281 (https://www.ncbi.nlm.nih.gov/pmc/articles/PM
`C5706281). PMID 29160834
`(https://pubmed.ncbi.nlm.nih.gov/29160834).
`27. Wang, L; Han, Y; Wu, C; Huang, Y (June 7, 2013). "A solution to reduce
`the time dependence of the output resistance of a viscoelastic and
`piezoresistive element". Smart Materials and Structures. 22 (7): 075021.
`Bibcode:2013SMaS...22g5021W (https://ui.adsabs.harvard.edu/abs/2013
`SMaS...22g5021W). doi:10.1088/0964-1726/22/7/075021 (https://doi.org/
`10.1088%2F0964-1726%2F22%2F7%2F075021).
`28. Cao, X; Wei, X; Li, G; Hu, C; Dai, K (March 10, 2017). "Strain sensing
`behaviors of epoxy nanocomposites with carbon nanotubes under cyclic
`deformation". Polymer. 112: 1–9. doi:10.1016/j.polymer.2017.01.068 (http
`s://doi.org/10.1016%2Fj.polymer.2017.01.068).
`29. Issartel, Paul; Besancon, Lonni; Isenberg, Tobias; Ammi, Mehdi (2016). A
`Tangible Volume for Portable 3D Interaction (https://hal.inria.fr/hal-014235
`33/document). IEEE. arXiv:1603.02642
`(https://arxiv.org/abs/1603.02642). doi:10.1109/ismar-adjunct.2016.0079
`(https://doi.org/10.1109%2Fismar-adjunct.2016.0079). ISBN 978-1-5090-
`3740-7.
`30. Besançon, Lonni; Ammi, Mehdi; Isenberg, Tobias (2017). Pressure-Based
`Gain Factor Control for Mobile 3D Interaction using Locally-Coupled
`Devices (https://hal.inria.fr/hal-01436172/document). New York, New
`York, USA: ACM Press. doi:10.1145/3025453.3025890 (https://doi.org/10.
`1145%2F3025453.3025890). ISBN 978-1-4503-4655-9.
`31. McLachlan, Ross; Brewster, Stephen (2015). Bimanual Input for Tablet
`Devices with Pressure and Multi-Touch Gestures. New York, New York,
`USA: ACM Press. doi:10.1145/2785830.2785878 (https://doi.org/10.114
`5%2F2785830.2785878). ISBN 978-1-4503-3652-9.
`
`Retrieved from "https://en.wikipedia.org/w/index.php?title=Force-sensing_resistor&oldid=925312351"
`
`This page was last edited on 9 November 2019, at 07:42 (UTC).
`Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia®
`is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.
`
`Samsung Electronics Co. Ltd. et al v. Neodron Ltd
`Exhibit 2008
`IPR2020-00308
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket