`
`(12) United States Patent
`US 9,500,635 B2
`Islam
`(45) Date of Patent:
`*Nov. 22, 2016
`
`(10) Patent No.:
`
`(54)
`
`SHORT-WAVE INFRARED
`SUPER-CONTINUUM LASERS FOR EARLY
`DETECTION OF DENTAL CARIES
`
`(71) Applicant: OMNI MEDSCI, INC., Ann Arbor, MI
`(US)
`
`USPC .......................................................... 356/300
`See application file for complete search history.
`
`(56)
`
`References Cited
`U.S. PATENT DOCUMENTS
`
`(72)
`
`Inventor: Mohammed N. Islam, Ann Arbor, MI
`(US)
`
`4,063,106 A
`4,158,750 A
`
`12/1977 Ashkin et a1.
`6/1979 Sakoe et a1.
`
`(73) Assignee: OMNI MEDSCI, INC., Ann Arbor, MI
`(US)
`
`( * ) Notice:
`
`Subject to any disclaimer, the term of this
`patent is extended or adjusted under 35
`U.S.C. 154(b) by 0 days.
`
`This patent is subject to a terminal dis-
`claimer.
`
`(21) Appl. No.:
`
`14/651,367
`
`(22) PCT Filed:
`
`Dec. 17, 2013
`
`(86) PCT No.:
`
`PCT/US2013/075736
`
`§ 371 (0X1),
`(2) Date:
`
`Jun. 11, 2015
`
`(87) PCT Pub. No.: W02014/105521
`
`PCT Pub. Date: Jul. 3, 2014
`
`(65)
`
`Prior Publication Data
`
`Oct. 29, 2015
`US 2015/0305627 A1
`Related US. Application Data
`
`(60) Provisional application No. 61/747,477, filed on Dec.
`31, 2012, provisional application No. 61/754,698,
`filed on ]an. 21, 2013.
`
`(51)
`
`Int. Cl.
`G01] 3/00
`G01N 33/15
`
`(2006.01)
`(2006.01)
`(Continued)
`
`(52) US. Cl.
`CPC ............. G01N 33/15 (2013.01); A613 5/0013
`(2013.01); A613 5/0022 (2013.01);
`(Continued)
`
`(58) Field of Classification Search
`CPC ................ G01] 3/02; G01] 3/28; G01] 3/42;
`G01N 21/31; G01N 21/552
`
`(Continued)
`
`FOREIGN PATENT DOCUMENTS
`
`DE
`EP
`
`102010012987 A1
`1148666
`
`10/2010
`10/2001
`
`(Continued)
`
`OTHER PUBLICATIONS
`
`Pan, Yingtian, et a1., “Hand-held arthroscopic optical coherence
`tomography for in vivo high-resolution imaging of articular carti-
`lage”, Journal of Biomedical Optics 8(4), Oct. 2003, pp. 648-654.
`(Continued)
`
`Primary Examiner 7 Tarifur Chowdhury
`Assistant Examiner 7 Md M Rahman
`
`(74) Attorney, Agent, or Firm 7 Brooks Kushman PC.
`
`(57)
`
`ABSTRACT
`
`A system and method for using near-infrared or short-wave
`infrared (SWIR) sources such as lamps, thermal sources,
`LED’s,
`laser diodes, super-luminescent laser diodes, and
`super-continuum light sources for early detection of dental
`caries measure transmission and/or reflectance. In the SWIR
`wavelength range, solid, intact teeth may have a low reflec-
`tance or high transmission with very few spectral features
`while a carious region exhibits more scattering, so the
`reflectance increases in amplitude. The spectral dependence
`of the transmitted or reflected light from the tooth may be
`used to detect and quantify the degree of caries. Instruments
`for applying SWIR light to one or more teeth may include
`a C-clamp design, a mouth guard design, or hand-held
`devices that may augment other dental tools. The measure-
`ment device may communicate with a smart phone or tablet,
`which may transmit a related signal to the cloud, where
`additional value-added services are performed.
`
`18 Claims, 15 Drawing Sheets
`
`900
`
`
`
`905
`
`
`
`
`
`
`
`
`
`
`
`
`PRE-AMP
`POWER-AMP
`
`
`906
`
`902
`
`Page 1
`
`OMNI 2020 - |PR20-00209
`
`Page 1
`
`OMNI 2020 - IPR20-00209
`
`
`
`US 9,500,635 B2
`
`Page 2
`
`(51)
`
`(2006.01)
`200601
`(
`~
`)
`(2006.01)
`(2006.01)
`(200601)
`(201401)
`(2006.01)
`(200601)
`(388281)
`(
`~
`)
`(2006.01)
`
`Int. Cl.
`A613 5/1455
`A613 5/00
`G01] 3/10
`G01] 3/28
`“113/453
`G01N 21/359
`A613 5/145
`G01N 33/49
`213;; :33
`G01J3/18
`(52) U_S_ CL
`CPC .......... A613 5/0075 (2013.01); A613 5/0086
`(2013.01); A613 5/0088 (2013.01); A613
`5/1455 (2013.01); A613 5/14532 (2013.01);
`A613 5/14546 (2013.01); A613 5/4547
`(201301); G01] 3/108 (2013.01); G01] 3/28
`(201301); GOIJ3/453 (2013.01); G01N
`21/359 (2013.01); G01N 33/49 (2013.01);
`A6IB 2562/0233 (2013.01); A6IB 2562/0238
`(2013.01); A613 2562/146 (2013.01); A613
`2576/02 (2013.01); G01J3/14 (2013.01);
`G01J3/1838 (2013.01); G01J 2003/104
`(2013.01); G01] 2003/2826 (2013.01); G01N
`2201/06] (2013.01); G01N 2201/12 (2013.01);
`H015 3/302 (2013.01)
`
`(56)
`
`.
`References C‘ted
`
`US PATENT DOCUMENTS
`.
`9/1980 Flemmmg
`641981 L35“ d
`SASS; $11ng
`7/1984 Johnstone et a1.
`5/1985 Monyama et al~
`$332 E83138? al~
`2/1987 Tunnelletal.
`.
`11/ 1987 R2111“ et 31'
`“988 N10 etaL
`841988 Cough“ et 31
`13/333 gfnyliinet 31
`.
`~
`1/1992 LKJ\:I(1)%1 etaL
`
`4321997 A
`4,275,266 A
`2,233,252 A
`4,462,080 A
`4,516,207 A
`jagggaggg A
`,
`,
`4,641,292 A
`4,704,696 A
`4728974 A
`4762455 A
`2533313 2
`,
`,
`g‘fififig A
`,
`,
`
`5,687,734 A
`5,695,493 A
`5,696,778 A
`5,704,351 A
`5,718,234 A
`3,32%??? :
`a
`5
`5,792,204 A
`5,812,978 A
`5,855,550 A
`,
`,
`282838???
`5,912,749 A
`5,944,659 A
`5,950,629 A
`5,957,854 A
`23123:; A
`6’043’927 A
`6,115,673 A
`6,185,535 B1
`6,200,309 B1
`233,233; 3}
`6,246,896 B1
`6,273,858 131
`6,278,975 B1
`233%; 31
`6,289,238 B1
`6:301:271 B1
`6,301,273 B1
`6,333,803 Bl
`6,337,462 Bl
`6,340,806 Bl
`6,350,261 B1
`6,364,834 B1
`6,374,006 B1
`6,381,391 B1
`6,402,691 B1
`6,407,853 B1
`6,436,107 B1
`2:33:13?) 3
`6,443,890 B1
`6,450,172 B1
`6453 201 B1
`’
`’
`6,454,705 B1
`6,458,120 B1
`6,462,500 B1
`6,463,361 B1
`6,480,656 B1
`6,512,936 B1
`6,543,012 B1
`6549 702 B2
`
`11/1997 DempSey et a1.
`12/1997 Nakajlma et a1.
`12/1997 MacPherson
`1/1998 Mortara et a1.
`2/1998 Warden et a1.
`Z83:
`$111311?
`1
`ac
`et a .
`8/1998 Snell
`9/1998 Nolan
`1/1999 Lai et a1.
`S e
`.
`111333 vaafr‘inefiil'
`6/1999 Harstead et a1.
`8/1999 Flach et a1.
`9/1999 Taylor et al.
`9/1999 Besson et a1.
`“$333 1133mm et ah 1
`3,2000 15:13:11“ 3'
`9/2000 Malin
`2/2001 Hedjn et al.
`3/2001 Rlce et al.
`$88} $381283 31
`6/2001 Dumoulin
`8/2001 Fox et 31,
`8/2001 Brant et a1.
`$881 185112111
`9,2001 Béscszilantal
`10/2001 Sanders et a1.
`10/2001 Sanders et a1.
`12/2001 Kurotori et al.
`1/2002 Smart
`1/2002 Smart et al.
`2/2002 Domankevitz et a1.
`4/2002 ReuSS et al.
`4/2002 Islam et al.
`4/2002 Islam etal.
`6/2002 Peddicord et a1.
`6/2002 Samson et a1.
`8/2002 Wang et a1.
`$883 $2133;
`9/2002 Schulze et a1.
`9/2002 Hartlaub et a1.
`9/2002 D
`t
`1.
`”In? a
`9/2002 Cosentlno et a1.
`10/2002 Shen et al.
`10/2002 L’Hegarat et al.
`10/2002 Wang et al.
`11/2002 Islam et a1.
`1/2003 Monfre
`4/2003 Viswanathan
`4/2003 11
`t
`1.
`
`54345620 A
`5442930 A
`
`1
`71992 Hfiber
`91992 A en eta~
`
`6,603,910 B2
`6,605,080 B1
`
`8/2003 Islam et al.
`8/2003 Altshuler et a1.
`
`5,191,628 A
`53185655 A
`5330923 A
`5346904 A
`2523;: A
`,
`,
`
`5,300,097 A
`5,303,148 A
`8:888:
`5’323’404 A
`5,345,538 A
`5,400,165 A
`5,408,409 A
`5,458,122 A
`5,544,654 A
`5,572,999 A
`5,617,871 A
`5,631,758 A
`
`341993 BYTOEh.
`61993 Mm 1
`7/1993 NAkano
`9/1993 Clarke etaL
`15133; 32111112331188
`
`~
`
`4/1994 Lerner et al.
`4/1994 Mattson et al.
`:88: an :1
`'
`@994 Gmbb
`9/1994 Narayannan et a1.
`3/1995 Gnauck etal.
`4/1995 Glassman et a1.
`10/1995 Hethuin
`8/1996 Murphy et a1.
`11/1996 Funda et a1.
`4/1997 Burrows
`5/1997 Knox etal.
`
`6,625,180 B2
`6,631,025 B2
`6,640,117 B2
`6,659,947 B1
`6,659,999 B1
`6738 652 B2
`
`6,773,922 B2
`6,788,965 B2
`Bl
`6,816,241 B2
`2:33:32 :1
`,
`,
`6,885,498 BZ
`6,885,683 B1
`6,943,936 B2
`6,990,364 B2
`7,010,336 B2
`7,027,467 B2
`
`9/2003 Bufetov et a1.
`10/2003 Islam et al.
`10/2003 Makarewicz
`12/2003 Carter et a1.
`12/2003 Anderson et a1.
`5/2004 M ttu
`
`8/2004 Jeng
`9/2004 Ruchti
`Slew
`11/2004 Grubisic
`$882 hemelson
`ale“
`“005 151m
`4/2005 Fermann et a1.
`9/2005 Islam-et a1.
`1/2006 Ruchtl
`3/2006 Lorenz
`4/2006 BaeV etal.
`
`Page 2
`
`OMNI 2020 - |PR20-00209
`
`Page 2
`
`OMNI 2020 - IPR20-00209
`
`
`
`US 9,500,635 B2
`
`Page 3
`
`(56)
`
`References Cited
`U.S. PATENT DOCUMENTS
`
`7,060,061 B2
`7,133,710 B2
`7,167,300 B2
`7,209,657 B1
`7,233,816 B2
`7,259,906 B1
`7,263,288 B1
`7,294,105 B1
`7,299,080 B2
`7,317,938 B2
`7,318,909 B2 *
`
`6/2006 Altshuler et al.
`11/2006 Acosta
`1/2007 Fermann et al.
`4/2007 Islam
`6/2007 Blank
`8/2007 Islam
`8/2007 Islam
`11/2007 Islam
`11/2007 Acosta
`1/2008 Lorenz
`1/2008 Lehmann .................. G01] 3/42
`422/534
`
`4/2008 Bullock et al.
`7,356,364 B1
`7/2008 Monfre
`7,395,158 B2
`10/2008 Islam
`7,433,116 B1
`4/2009 Islam
`7,519,253 B2
`4/2009 Blank
`7,519,406 B2
`11/2009 Ruchti
`7,620,674 B2
`4/2010 Monfre
`7,697,966 B2
`8/2010 Wadsworth
`7,787,503 B2
`8/2010 Acosta
`7,787,924 B2
`9/2010 Mattsson
`7,800,818 B2
`10/2010 Hashim et al.
`7,807,718 B2
`8/2011 Buchter
`8,000,574 B2
`3/2012 Arai
`8,145,286 B2
`5/2012 Rebec
`8,180,422 B2
`6/2013 Islam
`8,472,108 B2
`9,207,121 B2* 12/2015 Adler ......................
`2002/0013518 A1
`1/2002 West et al.
`2002/0019584 A1
`2/2002 Schulze et al.
`2002/0032468 A1
`3/2002 Hill et al.
`2002/0082612 A1
`6/2002 Moll et al.
`2002/0109621 A1
`8/2002 Khair et al.
`2002/0115914 A1
`8/2002 Russ
`2002/0128846 A1
`9/2002 Miller
`2002/0178003 A1
`11/2002 Gehrke et al.
`2003/0022126 A1
`1/2003 Buchalla
`2003/0107739 A1*
`6/2003 Lehmann .................. G01] 3/42
`356/437
`6/2003 Lehmann .................. G01] 3/42
`436/164
`8/2003 Drasek ...................... F23N 5/00
`385/12
`
`G01J 3/021
`
`2003/0109055 A1*
`
`2003/0152307 A1*
`
`2004/0174914 A1
`2004/0240037 A1
`2005/0111500 A1
`2006/0223032 A1
`2006/0245461 A1
`2006/0268393 A1
`2007/0021670 A1
`2007/0078348 A1
`2008/0105665 A1
`2009/0028193 A1
`2009/0204110 A1
`2010/0046067 A1
`2010/0322490 A1
`2010/0331637 A1
`2011/0143364 A1
`2011/0282167 A1
`2012/0013722 A1
`2012/0239013 A1
`2013/0274569 A1
`
`9/2004 Fukatsu
`12/2004 Harter
`5/2005 Harter et al.
`10/2006 Fried
`11/2006 Islam
`11/2006 Islam
`1/2007 Mandelis et al.
`4/2007 Holman
`5/2008 Kondo
`1/2009 Islam
`8/2009 Islam
`2/2010 Fermann et al.
`12/2010 Pan
`12/2010 Ting
`6/2011 Kim
`11/2011 Ridder et al.
`1/2012 Wong
`9/2012 Islam
`10/2013 Islam
`
`FOREIGN PATENT DOCUMENTS
`
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`WO
`
`9715240
`9749340
`0150959
`0189362
`0227640
`0228123
`2005013843 A2
`2007061772 A2
`2009130464 A1
`2013012938
`
`5/1997
`12/1997
`7/2001
`11/2001
`4/2002
`4/2002
`2/2005
`5/2007
`10/2009
`1/2013
`
`OTHER PUBLICATIONS
`
`Xie, Tuqiang, et a1., “Endoscopic optical coherence tomography
`with a modified microelectromechanical systems mirror for detec-
`tion of bladder cancers”, Applied Optics, v01. 42, N0. 31, Nov. 1,
`2003, pp. 6422-6426.
`Dubois, A., et a1., “Three-dimensional cellular-level imaging using
`full-field optical coherence tomography”, Physics in Medicine and
`Biology, Phys. Med. Biol. 49, 2004, pp. 1227-1234.
`Park, Jesung, et a1., “Analysis of birefringent image in the retinal
`nerve fiber layer by polarization sensitive optical coherence tomog-
`raphy”, Ophthalmic Technologies XIV, Proceedings of SPIE, vol.
`5314, 2004, pp. 188-194.
`Unterhuber, A., et a1., “Advances in broad bandwidth light sources
`for ultrahigh resolution optical oherence tomography”, Physics in
`Medicine and Biology, Phys. Med. Biol. 49, 2004, pp. 1235-1246.
`Drexler, Wolfgang, “Ultrahigh-resolution optical coherence tomog-
`raphy”, Journal of Biomedical Optics, v01. 9, N0. 1, Jan/Feb. 2004,
`pp. 47-74.
`Schmitt, Joseph, et a1., “Intravascular Optical Coherence Tomog-
`raphy Opens a Window Onto Coronary Artery Disease”, Optics &
`Photonics News, Feb. 2004, pp. 20-25.
`Nassif, N.A., et al., “In vivo high-resolution video-rate spectral-
`domain optical coherence tomography of the human retina and optic
`nerve”, Optics Express, v01. 12, N0. 3, Feb. 9, 2004, pp. 367-376.
`Choi, Seung-Ho, et a1., “Observation of Optical Precursors in
`Water”, Physical Review Letters, vol. 92, N0. 19, May 14, 2004, pp.
`193903-1-193903-.3.
`Pierce, Mark C., et a1., “Advances in Optical Coherence Tomogra-
`phy imaging for Dermatology”, Optical Coherence Tomography
`Advances, The Journal of Investigative Dermatology, Sep. 3, 2004,
`pp. 458-463.
`“State-Specific Trends in Chronic Kidney FailureiUnited States,
`1990-2001”, Morbidity and Mortality Weekly Report, Department
`of Health and Human Services Centers for Disease Control and
`Prevention,
`v01.
`53, N0.
`39,
`copied from intemet:
`file://
`C:\Documents and Settings\eturlo\Deskt0p\State-Speciflc Trends in
`Chronic Kidney .
`.
`. Feb. 12, 2010, Oct. 8, 2004, pp. 918-920.
`I.B. Ads, A.A.E. Wagie, N.B. Mariun, A.B.E. Jammal, “An Internet-
`based blood pressure monitoring system for patients,” Journal of
`Telemedicine and Telecare, 2001, pp. 51-53.
`R.H. Istepanian, B. Woodward, P.A. Bales, S. Chen, B. Luk, “The
`comparative performance of mobile telemediCal systems based on
`the 18-54 and GSM cellular blephone standards,” Journal of
`Telemedicine and Telecare, 1999, pp. 97-104.
`Shaw, et al, IR Supercontinuum Generation in Asise Photonic
`Crystal Fiber, Optical Society of America, Copyright 2005, 3 pages.
`PCT/USO6/44451, Notification of Transmittal of the International
`Search Report and the Written Opinion of the International Search-
`ing Authority, or the Declaration, Nov. 29, 2007, 12 pages.
`G.S. Edwards et a1., “Free-electron-laser-based biophysical and
`biomedical Instrumentation,” American Institute of Physics, v01. 74,
`N0. 7, Jul. 2003, pp. 3207-3245.
`Computer Motion, Inc., “501(k) SummaryizEUS® MicroWristTM
`Surgical System and Accessories,” Sep. 24, 2002, 6 pages.
`Computer Motion, Inc. “HERMESTM O.R. Control Center7510(k)
`Summary of Safety and Effectiveness,” Oct. 11, 2002, 5 pages.
`K.M. Joos, et al. “Optic Nerve Sheath Fenestration with a Novel
`Wavelength Produced by the Free Electron Laser (FEL),” Lasers in
`Surgery and Medicine, 27: 2000,191-205.
`J. Sanghera, I. Aggarwal, “IR Fiber Optics at NRL,” undated, 10
`pages.
`“Applications of
`I.D. Aggarwal,
`Shaw,
`J. Sanghera, L.B.
`chalcogenide glass optical fibers,” Academic of Science, 2003, pp.
`1-11.
`B. Rigas, P.T.T. Wong, “Human Colon Adenocarcinoma Cell Lines
`Display Infrared Spectroscopic Features,” Cancer Research, Jan. 1,
`1992, pp. 84-88.
`G. Edwards, et a1., “Comparison of CPA and Mark-III FEL for
`Tissue Ablation at 6.45 Microns,” Department of Physics and Free
`Electron Laser Laboratory, Duke University, 2002, 7 pages.
`
`Page 3
`
`OMNI 2020 - |PR20-00209
`
`Page 3
`
`OMNI 2020 - IPR20-00209
`
`
`
`US 9,500,635 B2
`
`Page 4
`
`(56)
`
`References Cited
`OTHER PUBLICATIONS
`
`Glenn Edwards, “Biomedical and potential clinical applications for
`pulsed lasers operating near 6.45 um,” Society of Photo-Optical
`Instrumentation Engineers, 1995, 2 pages.
`Passat, “Solid-State Lasers and Optical Components,” Jul. 14, 2003,
`5 pages.
`P.A. Thielen and LB. Shaw, et al., “Small-core Asise fiber for
`Raman amplification,” Optics LETI-ERS, vol. 28, No. 16, Aug. 15,
`2003, 3 pages.
`R.Rox Anderson, et al., “Selective Photothermolysis: Precise
`Microsurgery by Selective Absorption of Pulsed Radiation,”
`Department of Dermatology, Harvard Medical School, Science, vol.
`220, Apr. 29, 1983, 4 pages.
`U.S. Appl. No. 10/652,276, “System and Method for Voice Control
`of Medical devices,” by Mohammed N. Islam, abandoned filed Aug.
`29, 2003.
`US. Appl. No. 10/757,341, “System and Method for Voice Control
`of Medical devices,” by Mohammed N. Islam, issued filed Jan. 13,
`2004.
`US. Appl. No. 12/206,432, “System and Method for Voice Control
`of Medical Devices,” by Mohammed N. Islam, pending filed Sep.
`8, 2008.
`US. Patent and Trademark Oflice, Office Action for US. Appl. No.
`12/206,432, filed Sep. 8, 2008, Mohammed N, Islam, filed Mar. 12,
`2009.
`US. Patent and Trademark Oflice, Notice of Allowance and Fee(s)
`Due for US. Appl. No. 12/206,432, filed Sep. 8, 2008, Mohammed
`N. Islam, filed Aug. 28, 2009.
`Lee, Ju Han, et al., “Continuous-wave supercontinuum laser based
`on an erbium-doped fiber ring cavity incorporating a highly non-
`linear optical fiber”, Optics Letters, vol. 30, No. 19, Oct. 1, 2005,
`pp. 2599-2601.
`Genty, G., et al., “Supercontinuum generation in large mode-area
`microstructured fibers”, Optics Express, vol. 13, No. 21, Oct. 17,
`2005, pp. 8625-8633.
`Schreiber, T., et al., “Supercontinuum generation by femtosecond
`single and dual wavelength pumping in photonic crystal fibers with
`two zero dispersion wavelengths”, Optics Express, vol. 13, No. 23,
`Nov. 14, 2005, pp. 9556-9569.
`Travers, J. C., et al., “Extended blue supercontinuum generation in
`cascaded holey fibers”, Optics Letters, vol. 30, No. 23, Dec. 1, 2005,
`pp. 3132-3134.
`Hagen, C. L., et al., “Generation of a Continuum Extending to the
`Midinfrared by Pumping ZBLAN Fiber With an Ultrafast 1550-nm
`Source”, IEEE Photonics Technology Letters, vol. 18, No. 1, Jan. 1,
`2006, pp. 91-93.
`octave-spanning
`of
`“Generation
`al.,
`et
`Moon,
`Sucbei,
`supercontinuum with 1550-nm amplified diode-laser pulses and a
`dispersion-shifted fiber”, Optics Express, vol. 14, No. 1, Jan. 9,
`2006, pp. 270-278.
`Fedotova, 0., et al., “Supercontinuum generation in planar rib
`waveguides enabled by anomalous dispersion”, Optics Express, vol.
`14, No. 4, Feb. 20, 2006, pp. 1512-1517.
`Harrington, James A., “Infrared Fiber Optics”, OSA Handbook, vol.
`III, white paper, to be published by McGraw Hill, Undated, 13
`pages.
`Aaviksoo, J., et al., “Observation of optical precursors at pulse
`propagation in GaAs”, Physical Review A, vol. 44, No. 9, Nov. 1,
`1991, pp. R5353-R5356.
`Boppart, Stephen A., et al., “Imaging developing neural morphol-
`ogy using optical coherence tomography”, Journal of Neuroscience
`Methods 70, 1996, pp. 65-72.
`Boppart, Stephen A., et al., “Noninvasive assessment of the devel-
`oping Xenopus cardiovascular system using optical coherence
`tomography”, Proc. Natl. Acad. Sci. USA, vol. 94, Apr. 1997, pp.
`4256-4261.
`Tearney, Guillermo J., et al., “In vivo Endoscopic Optical Biopsy
`with Optical Coherence Tomography”, Science, New Series, vol.
`276, Jun. 27, 1997, pp. 2037-2039.
`
`de Boer, Johannes F., et al., “Imaging thermally damaged tissue by
`polarization sensitive optical coherence tomography”, Optics
`Express 212, vol. 3, No. 6, Sep. 14, 1998, pp. 212-218.
`Roggan, Andre, et al., “Optical Properties of Circulating Human
`Blood in the Wavelength Range 400-2500 NM”, Journal of Bio-
`medical Optics, vol. 4, No. 1, Jan. 1999, pp. 36-46.
`de Boer, Johannes F., et al., “Determination of the depth-resolved
`Stokes parameters of ight backscattered from turbid media by use of
`polarization-sensitive optical coherence tomography”, Optics Let-
`ters, vol. 24, No. 5; Mar. 1, 1999, pp. 300-302.
`Rollins, Andrew M., et al., “Real-time in vivo imaging of human
`gastrointestinal ultrastructure by use of endoscopic optical coher-
`ence tomography with a novel eflicient nterferometer design”,
`Optics Letters, vol. 24, No. 19, Oct. 1, 1999, pp. 1358-1360.
`D’Amico, Anthony V., et al., “Optical Coherence Tomography as a
`Method for Identifying Benign and Malignant Microscopic Struc-
`tures in the Prostate Gland”, Basic Science, Urology 55 (5), 2000,
`pp. 783-787.
`Li, Xingde, et al., “Imaging needle for optical coherence tomogra-
`phy”, Optics Letters, vol. 25, No. 20, Oct. 15, 2000, pp. 1520-1522.
`Oughstun, Kurt E., “Influence of precursor fields on ultrashort pulse
`autocorrelation measurements and pulse width evolution”, Optics
`Express, vol. 8, No. 8, Apr. 9, 2001, pp. 481-491.
`Kowalevicz, Andrew M., et al., “Ultrahigh resolution optical coher-
`ence tomography using a superluminescent light source” Optics
`Express 349, vol. 10, No. 7, Apr. 8, 2002, pp. 349-353.
`Povazay, B., et al., “Submicrometer axial resolution optical coher-
`ence tomography”, Optics Letters, vol. 27, No. 20, Oct. 15, 2002,
`pp. 1800-1802.
`Kie, T.-Q., et al., “Detection of tumorigenesis in urinary bladder
`with optical coherence tomography: optical characterization of
`morphological changes”, Optics Express, vol. 10, No. 24, Dec. 2,
`2002, 2003, pp. 1431-1443.
`Seefeldt, Michael, et al., “Compact white-light source with an
`average output power of 2.4 Wand 900 nm spectral bandwid ”,
`Optics Communications 216, pp. 199-202.
`Nang, Yimin, et al., “Ultrahigh-resolution optical coherence tomog-
`raphy by broadband continuum generation from a photonic crystal
`fiber”, Optics Letters, vol. 28, No. 3, Feb. 1, 2003, pp. 182-184.
`Bizheva, K, et al., “Compact, broad-bandwidth fiberlaserforsub-2-
`pm axial resolution optical coherence tomography in the 1300-nm
`wavelength region,” Optics Letters, vol. 28, No. 9, May 1, 2003, pp.
`707-709.
`Hori, Takashi, et al., “Flatly broadened, wideband and low noise
`supercontinuum generation in highly nonlinear hybrid fiber”, Optics
`Express, vol. 12, No. 2, Jan. 26, 2004, pp. 317-324.
`Wadsworth, W. J., et al., “Supercontinuum and four-wave mixing
`with Q-switched pulses in endlessly single-mode photonic crystal
`fibres”, Optics Express, vol. 12, No. 2, Jan. 26, 2004, pp. 299-309.
`Hilligsoe, Karen Marie, et al., “Supercontinuum generation in a
`photonic crystal
`fiber with two zero dispersion wavelengths”,
`Optics Express, vol. 12, No. 6, Mar. 22, 2004, pp. 1045-1054.
`Venugopalan, V., “Optical Society of America Biomed Topical
`Meeting Tutorial on Tissue Optics”, Apr. 27, 2004, pp. 1-32.
`Slusher, Richart E., et al., “Large Raman gain and nonlinear phase
`shifts in high-purity As2So3 chalcogenide fibers”, J. Opt. Soc. Am.
`B, vol. 21, No. 6, Jun. 2004, pp. 1146-1155.
`Leon-Saval, S. G., et al., “Supercontinuum generation in submicron
`fibre waveguides”, Optics Express, vol. 12, No. 13, Jun. 28, 2004,
`pp. 2864-2869.
`Nicholson, J. W., et al., “High power, single mode, all-fiber source
`of femtosecond pulses at 1550 nm and its use in supercontinuum
`generation”, Optics Express, vol. 12, No. 13, Jun. 28, 2004, pp.
`3025-3034.
`Genty, G., et al., “Enhanced bandwidth of supercontinuum gener-
`ated m microstructured fibers”, Optics Express, vol. 12, No. 15, Jul.
`26, 2004, pp. 3471-3480.
`Champert, Pierre-Alain, et al., “White-light supercontinuum gen-
`eration in normally dispersive optical fiber using original multi-
`wavelength pumping system”, Optics Express, vol. 12, No. 19, Sep.
`20, 2004, pp. 4366-4371.
`
`Page 4
`
`OMNI 2020 - |PR20-00209
`
`Page 4
`
`OMNI 2020 - IPR20-00209
`
`
`
`US 9,500,635 B2
`
`Page 5
`
`(56)
`
`References Cited
`OTHER PUBLICATIONS
`
`Nicholson, J. W., “Supercontinuum generation in ultraviolet-irradi-
`ated fibers”, Optics Letters, vol. 29, No. 20, Oct. 15, 2004, pp.
`2363-2365.
`Hori, Takashi, et al., “Experimental and numerical analysis of
`widely broadened supercontinuum generation in highly nonlinear
`dispersion-shifted fiber with a femtosecond pulse”, J. Opt. Soc. Am.
`B, vol. 21, No. 11, Nov. 2004, pp. 1969-1980.
`Demircan, Ayhan, et al., “Supercontinuum generation by the modu-
`lation instability”, Optics communications 244, 2005, pp. 181-185.
`Papemyi, S. B., et al., “Sixth-Order Cascaded Raman Amplifica-
`tion”, OFC/NFOEC, 2005, 3 pages.
`Tanaka, Keiji, “Optical nonlinearity in photonic glasses”, Journal of
`Materials Science: Materials in Electronics 16, 2005, pp. 633-643.
`Westbrook, Paul 8.,
`“Improved Supercontinuum Generation
`Through UV Processing of Highly Nonlinear Fibers”, Journal of
`Lightwave Technology, vol. 23, No. 1, Jan. 2005, pp. 13-18.
`Abeeluck, Akheelesh K., et al., “Continuous-wave pumping in the
`anomalous- and normal dispersion regimes of nonlinear fibers for
`supercontinuum generaffon”, Optics Letters, vol. 30, No. 1, Jan. 1,
`2005, pp. 61-63.
`Kutz, J. Nathan, et al., “Enhanced Supercontinuum Generation
`through Dispersion-Management”, Optics Express, vol. 13, No. 11,
`May 30, 2005, pp. 3989-3998.
`Lee, Ju Han, et al., “Experimental performance comparison for
`various continuous-wave supercontinuum schemes: ring cavity and
`single pass structures”, Optics Express, vol. 13, No. 13, Jun. 27,
`2005, pp. 4848-4853.
`Saliminia, A., et al., “Ultra-broad and coherent white light genera-
`tion in silica glass by focused femtosecond pulses at 1.5pm”, Optics
`Express, vol. 13, No. 15, Jul. 25, 2005, pp. 5731-5738.
`Takushima, Yuichi, High average power, depolarized super-con-
`tinuum generation using a 1.55-um ASE noise source, Optics
`Express, vol. 13, No. 15, Jul. 25, 2005, pp. 5871.-5877.
`Travers, J. C., et al., “Extended continuous-wave supercontinuum
`generation in a low-water-loss holey fiber”, Optics Letters, vol. 30,
`No. 15, Aug. 1, 2005, pp. 1938-1940.
`of high-power
`Kobtsev,
`Serguei M.,
`et
`al.,
`“Modelling
`supercontinuum generation in highly nonlinear, dispersion shifted
`fibers at CW pump”, Optics Express, vol. 13, No. 18, Sep. 5, 2005,
`pp. 6912-6918.
`Falk, Peter, et al., “Supercontinuum generation in a photonic crystal
`fiber with two zero-dispersion wavelengths tapered to normal
`dispersion at all wavelengths”, Optics Express, vol. 13, No. 19, Sep.
`19, 2005, pp. 7535-7540.
`Tombelaine, Vincent, et al., “Ultra wide band supercontinuum
`generation in air-silica holey fibers by SHG-induced modulation
`instabilities”, Optics Express, vol. 13, No. 19, Sep. 19, 2005, pp.
`7399-7404.
`Hazen, K.H., M.A. Arnold, G.W. Small, “Measurement of glucose
`and other analytes in undiluted human serum with near-infrared
`transmission spectroscopy,” Analytica Chimica Acta, vol. 371, pp.
`255-267 (1998).
`Malin, S.F., T.L. Ruchti, T.B. Blank, S.N. Thennadil, S.L. Monfre,
`“Noninvasive prediction of glucose by near-infrared diffuse reflec-
`tance spectroscopy,” Clinical Chemistry, vol. 45, No. 9, pp. 1651-
`1658 (1999).
`Thennadil, S.N., J.L. Rennert, B.J. Wenzel, K.H. Hazen, T.L.
`Ruchti, M.B. Block, “Comparison of glucose concentration in
`interstitial
`fluid, and capillary and venous blood during rapid
`changes in blood glucose levels,” Diabetes Technology & Thera-
`peutics, vol. 3, No. 3, pp. 357-365 (2001).
`Troy, T.L., S.N. Thennadil, “Optical properties of human skin in the
`near infrared wavelength range of 1000 to 2200nm,” Journal of
`Biomedical Optics, vol. 6, No. 2, pp. 167-176, (2001).
`Blank, T.B., T.L. Ruchti, A.D. Lorenz, S.L. Monfre, M.R.
`Makarewicz, M. Mattu, K.H. Hazen, “Clinical results from a
`non-invasive blood glucose monitor,” Optical Diagnostics and
`Sensing of Biological Fluids and Glucose and Dholesterol Moni-
`Page 5
`
`toring II, A.V. Priezzhev and G.L. Cote, Editors, Proceedings of
`SPIE, vol. 4624, pp. 1019 (2002).
`Yeh, S-J, C.F. Hanna, O.S. Khalil, “Monitoring blood glucose
`changes in cutaneous tissue by temperature-modulated localized
`reflectance measurements,” Clinical Chemistry, vol. 49, No. 6, pp.
`924-934 (2003).
`Marbach, R., T. Koschinsky, F.A. Gries, H.M. Heise, “Noninvasive
`blood glucose assay by near-infrared diffuse reflectance spectros-
`copy of the human inner lip,” Applied Spectroscopy, vol. 47, No. 7,
`pp. 875-881 (1993).
`Enejder, A.M.K., T.G. Scecina, J. Oh, M. Hunter, W.C. Shih, S.
`Sasic, G.L. Horowitz, M.S. Feld, “Raman spectroscopy for nonin-
`vasive glucose measurements,” Journal of Biomedical Optics, vol.
`10, No. 3, 031114 (2005).
`Olesberg, J.T., L. Liu, V.V. Zee, M.A. Arnold, “In vivo near-infrared
`spectroscopy of rat skin tissue with varying blood glucose levels,”
`Analytic Chemistry, vol. 78, No. 1, pp. 215-223 (2006).
`Olesberg, J.T., M.A. Arnold, C. Mermelstein, J. Schmitz, J. Wagner,
`“Tunable laser diode system for noninvasive blood glucose mea-
`surements,” Applied Spectroscopy, vol. 59, No. 12, pp. 1480-1484
`(2005).
`Harman-Boehm, I. A. Gal, A.M. Raykhman, J.D. Zahn, E Naidis, Y.
`Mayzel, “Noninvasive glucose monitoring: a novel approach,”
`Journal of Diabetes Science and Technology, vol. 3, No. 2 pp.
`253-260 (2009).
`Kim-K.D., G.S. Son, S.S. Lim, S.S. Lee, “Measurement of glucose
`level exploiting a relative optical absorption at
`liscrete probe
`wavelengths,” Japanese Journal oprplied Physics, vol. 48, 077001
`(2009).
`Smith, J.L., “The Pursuit of Noninvasive Glucose: Hunting the
`Deceitful Turkey,” 2nd Edition, pp. 1-141 (2011).
`Pezzaniti, J.L., T.W. Jeng, L. McDowell, G.M. Oosta, “Preliminary
`investigation of near-infrared spectroscopic measurements of urea,
`creatinine, glucose, protein and ketone in urine,” Clinical Biochem-
`istry, vol. 34, pp. 239-246 (2001).
`Lussi, A., R. Hibst, R. Paulus, “Diagnodent: An optical method for
`caries detection,” Journal of Dental Research, vol. 33, special issue
`C, pp. C80-C83 (2004).
`“Photoelectric
`Reese,
`E.L,
`E.E.
`Fisher, D.A. Horowitz,
`densitometry of the circulation of the human dental pulp,” The
`Journal of the Baltimore College of Dental Surgery, vol. 26, No. 1,
`pp. 6-18 (1971).
`Zakian, C.,
`I. Pretty, R. Ellwood, “Near-infrared hyperspectral
`imaging of teeth for dental caries detection,” Journal of Biomedical
`Optics, vol. 16, No. 6, 064047 (2009).
`Belikov, A.V., A.V. Skripnik, K.V. Shatilova, “Study of the dynam-
`ics of the absorption spectra of human tooth enamel and dentine
`under heating and ablation by submillisecond pulse radiation of an
`erbium laser with a generation wavelength of 2.79 um,” Optics and
`Spectroscopy, vol. 109, No. 2, pp. 211-216 (2010).
`Karlsson, L. “Caries detection methods based on changes in optical
`properties between healthy and carious tissue,” International Jour-
`nal of Dentistry, vol. 2010, Article ID 270729, 9 pages (2010).
`Fried, D. M. Staninec, C.L. Darling, “Near-infrared imaging of
`dental decay at 1310nm,” Journal of Laser Dentistry, vol. 18, No. 1,
`pp. 8-16 (2010).
`Burmen, M. P. Usenik, A. Fidler, F. Pernus, B. Likar, “A construc-
`tion of standardized near infrared hyper-spectral teeth databaseia
`first step in the development of reliable diagnostic tool for quanti-
`fication and early detection of caries,” Lasers in Dentistry XVII,
`edited by P. Rechmann, D. Fried, Proceedings of SPIE, vol. 7884,
`Paper 78840E (2011).
`Maia, A, L. Karlsson, W. Margulis, A. Gomes, “Evaluation of two
`imaging techniques: near-infrared transillumination and dental
`radiographs for the detection of early approximal enamel canes,”
`Dentomaxillofacial Radiology, vol. 40, pp. 429-433 (2011).
`Chung, S., D. Fried, M. Staninec, C.L. Darling, “Multispectral
`near-IR reflectance and transillumination imaging of teeth,” Bio-
`medical Optics Express, vol. 2, No. 10, pp. 2804-2814 (2011).
`Chung, S., D. Fried, M. Staninec, C.L. Darling, “Near infrared
`imaging of teeth at wavelengths between 1200 and 1600nm,”
`Proceedings of the Society of Photo Optical Instrument Engineer-
`ing, paper 7884 (2011).
`
`OMNI 2020 - |PR20-00209
`
`Page 5
`
`OMNI 2020 - IPR20-00209
`
`
`
`US 9,500,635 B2
`Page 6
`
`(56)
`
`References Cited
`OTHER PUBLICATIONS
`
`Staninec, M., S.M. Douglas, C.L. Darling, K. Chan, H. Kang, R. C.
`Lee, D. Fried, “Nondestructive clinical assessment of occlusal
`caries lesions using near-IR imaging methods,” Lasers in Surgery
`and Medicine, vol. 43, No. 10, pp. 951-959 (2011).
`Nishizawa, N.,
`“Generation and application of high-quality
`supercontinuum sources,” Optical Fiber Technology, vol. 18, pp.
`394-402 (2012).
`Islam, M. N., et al., “Broad bandwidths from frequency-shifting
`solitons in fibers”, Optics Letters, vol. 14, No. 7, Apr. 1, 1989, pp.
`370-372.
`Islam, M. N., et al., “Femtosecond distributed soliton spectrum in
`fibers”, J. Opt. Soc. Am. B, vol. 6, No. 6, Jun. 1989, pp. 1149-1158.
`Busse, Lynda E., et al., “Design Parameters for Fluoride Multimode
`Fibers”, Journal of Lightwave Technology, vol. 9, No. 7, Jul. 1991,
`pp. 828-831.
`Wuthrich, Stefan, et al., “Optical damage thresholds at 2.94 um in
`fluoride glass fibers”, Applied Optics, vol. 31, No. 27, Sep. 20, 1992,
`pp. 5833-5837.
`Inoue, H., et al., “Computer simulation of the vibrational spectra
`and properties of fluoride glasses based on ZrF4”, Journal of
`Non-Crystalline Solids, vol. 161, 1993, pp. 118-122.
`Mizunami, Toru, et al., “Gain saturation characteristics of Raman
`amplification in silica and fluoride glass optical fibers”, Optics
`Communications 97, 1993, pp. 74-78.
`Desthieux, B., et al., “111 kW (0. 5 mJ) pulse amplification at 1.5
`um using a gated cascade of three erbium-doped fiber amplifiers,”
`Appl. Phys. Lett. vol. 63, Aug. 2, 1993, pp. 586-588.
`Edwards, Glenn, et al., Tissue ablation by a free-electron laser tuned
`to the amide II band, Nature, vol. 371, Sep. 29, 1994, pp. 416-419.
`Borrelli, N. F., et al., “Resonant and non-resonant elfects in photonic
`glasses”, Journal ofNon-Crystalline Solids 185, 1995, pp. 109-122.
`Asobe, Masaki, et al., “Third-order nonlinear spectroscopy in
`As2S3 chalcogenide glass fibers”, J. Appl. Phys. 77 (11), Jun. 1,
`1995, pp. 5518-5523.
`Jarman, Ricth H., “Novel optical fiber lasers”, Current Opinion in
`Solid State and Materials Science, 1996, pp. 199-203.
`Iatridis, James C., et al., “Is the Nucleus Pulposus a Solid or a Fluid?
`Mechanical Behaviors of the Nucleus Pulposus of the Human
`Intervertebral Disc”, Spine, vol. 21(10), May 15, 1996, pp. 1174-
`1184.
`Asobe, Masaki, “Nonlinear Optical Properties of Chalcogenide
`Glass Fibers and Their Application to All-Optical Switching”,
`Optical Fiber Technology, vol. 3, Article No. OF970214, 1997, pp.
`142-148.
`Smektala, F., et al., “Chalcogenide glasses with large non-linear
`refractive indices”, Journal of Non-Crystalline Solids 239, 1998, pp.
`139-142.
`Hamilton, James D., et al., “High Frequency Ultrasound Imaging
`with Optical Arrays”,
`IEEE Transactions on Ultrasonics, Fer-
`roelectrics, and Frequency Control, vol. 45, No. 1, Jan. 1998, pp.
`216-235.
`Hamilton, James D., et al., “High Frequency Ultrasound Imaging
`Using an Active Optical Detector”, IEEE Transactions on Ultra-
`sonics, Ferroelectrics, and Frequency Control, vol. 15, No. 3, May
`1998, pp. 719-727.
`Nowak, G. A., et al., “Low-power high-efficiency wavelength
`conversion based on modulational instability in high-nonlinearity
`fiber,” Optics Letters, vol. 23, No. 12, Jun. 15, 1998, pp. 936-938.
`Cardinal, T., et al., “Non-linear optical properties of chalcogenide
`glasses in the system Asisise”, Journal of Non-Crystalline
`Solids 256 & 257, 1999, pp. 353-360.
`Lucas, Jacques, “Infrared glasses”, Current Opinion in Solid State
`& Materials Science 4, 1999. pp. 181-187.
`Sanghera,