throbber

`
`
`
`
`
`Liquid-Phase Hydrogen Bonding and Raman
`Spectrometry
`II—Primary and Secondary Amines
`
`
`
`
`
`C. Perchard and J. P. Perchard
`Molecular Spectrochemistry Laboratory, Pierre and Marie Curie University, 10 Rue Cuvier 75230 Paris Cedex 05, France
`
`Structure, intensity and depolarization ratio of NH or NH2 Raman bands of some primary and secondary amines
`have been studied in pure liquid state at different temperatures and in dilute CCl4 solutions. The depolarization
`ratio and scattering activity, as in the case of alcohols previously studied, increase with self-association. It confirms
`the change of the XH bond polarizability derivatives with hydrogen bond formation.
`
`
`
`
`INTRODUCTION
`
`As part of a study of weak hydrogen bonds by Raman
`spectrometry, we present here results obtained on the
`NH···N system relating to simple primary or secondary
`amines. In previous work1 on the νOH band of the O‒
`H···O liquid alcohol system, two noteworthy results were
`obtained: a two-compound structure due to the molecules’
`chain association, and a significant increase in the
`scattering activity (45α’2 + 7γ’2) and in the depolarization
`ratio through self-association.
`Our study is divided into two parts, the first of which
`relates to a description of the liquid-phase vNH or vNH2
`bands from the triple point to the vicinity of the critical
`point, and the second to intensity measurements on those
`same bands.
`The primary amines studied are methylamine and
`ethylamine;
`the secondary amines, dimethylamine,
`diethylamine (and the corresponding ND-deuterated
`species) and pyrrole.
`
`EXPERIMENTAL PART
`
`The hydrogenated species come from Rhône-Poulenc.
`The compounds are introduced by vacuum distillation
`into the measuring cell. The deuterated species were
`prepared through successive exchanges of hydrochloride
`in heavy water. The
`isotopic
`rate, controlled
`spectroscopically, is over 90%.
`The spectra recording technique has been described
`previously.1 All amines are perfectly stable in the laser
`beam with the exception of the pyrrole, which requires
`working at low power (50 mW) and renewing the contents
`of the cell approximately every hour.
`
`† Part I: see Ref. 1.
`
`© Heyden & Son Ltd, 1977
`
`
`
`74
`
`
`
`JOURNAL OF RAMAN SPECTROSCOPY, VOL. 6, NO. 2, 1977
`
`DESCRIPTION OF THE vNH AND vNH2 BANDS
`
`Secondary amines
`
`Dimethylamine. The change in the IVV and IVH spectra is
`presented in Fig. 1. At high temperatures, the IVV
`compound
`is symmetrical and small
`in width,
`characteristic of free NH vibrators. At a
`lower
`temperature, a second wide band appears in the shoulders
`of the previous one around the low frequencies and
`gradually replaces it as it cools; it corresponds to the
`NH···N vibrators disrupted by hydrogen bond formation.
`In the vicinity of the melting point, the monomeric band
`has almost completely disappeared, while the IVV and IVH
`compounds have maximum values of 3247 cm-1 and 3258
`cm-1 respectively. In the transition to the crystalline phase,
`the two-compound structure remains, with the respective
`maximum values of 3215 and 3238 cm-1 at 170 K. These
`results may be interpreted as follows: as has already been
`observed in infrared,2 the degree of self-association is
`much lower for amines than for alcohols of an equivalent
`formula. The monomeric band (or potentially chain end)
`is observed at a much
`lower
`temperature
`for
`dimethylamine than for isoproprylic alcohol and only
`disappears at about 190 K instead of 360 K for alcohol.
`The discrepancy between IVV and IVH observed then for
`the self-associated band may be interpreted, as in the case
`of alcohol, by a coupling effect between NH vibrators; as
`the interaction between NH vibrators is weaker than it is
`between OH vibrators, the rupture observed here is much
`smaller and only really appears in the vicinity of the
`melting point. The continuity observed in the bands’
`structure in the transition to the crystalline state is
`evidence of a short-range order in liquid phase. Because
`of the absence of crystallographic data, we cannot specify
`whether this is a chain association or not.
`Similar measurements were made on the deuterated
`species (CH3)2ND, but analysis of the results was
`complicated by a Fermi resonance between the vND
`vibration and a combination around 2500 cm-1 observed
`in Bothe the liquid phase and in the gaseous state.3 The
`change in liquid spectra is shown in Fig. 2; at high
`temperature, as in the gaseous state, the high-frequency
`
`Merck Exhibit 2237, Page 1
`Mylan Pharmaceuticals Inc. v. Merck Sharp & Dohme Corp.
`IPR2020-00040
`
`

`

`
`
`LIQUID-PHASE HYDROGEN BOND AND RAMAN SPECTROMETRY
`
`IVV
`
`416 K
`
`IVV
`
`IVH 272 K
`
`IVV
`
`IVH 180 K
`
`Crystal
`
`177 K
`
`an NH/ND isotopic dilution effect at the same
`temperature indicates a shift towards high frequencies
`(3216 cm-1).
`For this compound, we therefore conclude that the
`effects of self-association are weak in the liquid phase, as
`the polymerization stage barely exceeds the dimer stage.
`Spectrum analysis of the corresponding ND compound
`appears more complex due to a resonance comparable to
`the one mentioned for dimethylamine. However, we find
`the main characters of
`the NH solid (Fig. 4):
`conformational
`equilibrium
`characterized
`by
`a
`duplication of the monomer band and a very pronounced
`shift of the polymer band in the transition to the
`crystalline state (2365 cm-1 2391 cm-1).
`Pyrrole. For the pyrrole, we find results already discussed
`by Lautié.5 Between 300 and 200 K, the spectra of the
`liquid or glassy compounds have wide bands, replaced in
`the crystalline state by two fine lines due to an
`intermolecular coupling effect.
`
`
`(CH3)2 ND
`
`419 K
`
`295 K
`
`182 K
`
`Crystal
`
`2500
`
`cm-1
`
`Figure 2. (CH3)2ND. Spectra IVV and IVH at different temperatures.
`The intensity of the IVH compounds has increased fivefold. Spectral
`slit width 1.7 cm-1.
`
`2300
`
`3400
`
`
`Figure 1. (CH3)2NH. Spectra IVV and IVH at different temperatures.
`The intensity of the IVH compounds has increased fivefold. Spectral
`slit width 1.5 cm-1.
`
`
`3200
`
`cm-1
`
`compound is the most intense, indicating that the
`fundamental vND largely contributes to the intensity of
`this band. Through cooling, the frequency of the
`fundamental decreases and the intensity of the high-
`frequency band gradually weakens, becoming negligible
`in the crystal spectrum at 170 K. Because of the
`complexity, it appears difficult to discuss the relative
`positions of the IVV and IVH compounds. It should be
`noted, however, that in the vicinity of the melting point,
`the IVH compound shifts to high frequencies by some 10
`cm-1 compared to the IVV compound.
`Diethylamide. The change in the spectra of the vNH
`band of the liquid diethylamine differs significantly
`from that observed for the dimethylamine. On the one
`hand, the band corresponding to the free NH vibrator
`splits at high temperatures (Fig. 3) as a result of the
`existence of rotational isomers 4: at 416 K, the two
`compounds were measured at 3340 and 3327 cm-1, the
`high-frequency band gradually weakening as the
`temperature was lowered. From this observation, we
`therefore
`conclude
`that
`the most
`stable
`thermodynamic isomer must be associated with the
`low-frequency band. Moreover, in the vicinity of the
`melting point, the free band is still large and the
`associated band appears at 3263 cm-1. On the crystal
`spectrum, only one compound strongly shifted to the
`low frequencies appears (3205 cm-1 at 220 K), while
`
`
`
`JOURNAL OF RAMAN SPECTROSCOPY, VOL. 6, NO. 2, 1977
`
`75
`
`Merck Exhibit 2237, Page 2
`Mylan Pharmaceuticals Inc. v. Merck Sharp & Dohme Corp.
`IPR2020-00040
`
`

`

`
`
`C. PERCHARD AND J. P. PERCHARD
`
`corresponding to vs widens considerably and becomes
`dissymmetrical, due to a greater sensitivity to molecule
`association. In addition, a band appears around 3180 cm-1,
`already observed by Wolff6 in absorption, and probably
`attributable to the harmonic of the vibration δ NH2 exalted
`by Fermi resonance with the vibration vs. In the crystalline
`state, four compounds appear at 3325, 3265, 3237 and 3179
`cm-1.
`for
`spectra were obtained
`Methylamine. Similar
`methylamine in both the liquid and solid states. The crystal
`spectrum was interpreted6 taking into account the existence,
`proven by a crystallographic study,7 of two types of
`hydrogen bond and a Fermi resonance at level 2δNH2.
`
`INTENSITY MEASUREMENTS OF THE vNH
`BANDS
`
`(C2H5)2 ND
`
`417 K
`
`295 K
`
`230 K
`
`Crystal
`
`223 K
`
`2500
`
`2400
`
`cm-1
`
`
`Figure 4. (C2H5)2Nd. Spectra IVV at different temperatures.
`Spectral slit width 3.3 cm-1.
`
`(C2H5)2 NH
`
`416 K
`
`295 K
`
`230 K
`
`Crystal
`
`218 K
`
`3200
`
`cm-1
`
`3400
`
`3300
`
`
`IVH at different
`IVV and
`(C2H5)2NH. Spectra
`Figure 3.
`temperatures. The intensity of the IVH compounds has been
`multiplied by 10 for the spectra at 416 and 295 K and by five for
`the spectrum at 230 K. Spectral slit width 3.0 cm -1.
`
`
`In our Raman study, we also observe that in the liquid or
`glassy state, the IVH compound has shifted by 8 cm-1 at the
`maximum around the high frequencies in comparison to
`the IVV compound (Fig. 5). As with the crystal, we
`associate
`this phenomenon with
`the existence of
`couplings between NH vibrators, associated with a short-
`range order in the so-called disordered phases.
`
`Primary amines
`
`The combination of methylamine and ethylamine and the
`structure of the corresponding vNH2 bands have already
`been discussed at length by Wolff et al.6 based on infrared
`and Raman results.
`Ethylamine. At high temperature (414 K), the two va and
`vs bands are observed respectively at around 3387 and
`3334 cm-1 (Fig. 6), and correspond to the NH2 vibrators
`not engaged in hydrogen bonding. When the temperature
`drops to 196 K, the maximums of the two bands decrease,
`respectively, by 30 cm-1 for va and 50 cm-1 for vs; the band
`
`76
`
`
`
`JOURNAL OF RAMAN SPECTROSCOPY, VOL. 6, NO. 2, 1977
`
`Merck Exhibit 2237, Page 3
`Mylan Pharmaceuticals Inc. v. Merck Sharp & Dohme Corp.
`IPR2020-00040
`
`

`

`
`
`LIQUID-PHASE HYDROGEN BOND AND RAMAN SPECTROMETRY
`
`Pyrrole
`220K
`
`C2H5 NH2
`
`IVV
`
`IVH
`
`IVV
`
`IVH
`
`3450
`
`3400
`
`
`Figure 5. Comparison of the Raman spectra (IVV and IVH) of
`pyrrole in the glassy state and the crystal state at 220 K. For the
`glassy state, the intensity of the compound IVH has increased
`fivefold. Spectral slit width 5.3 cm -1.
`
`
`3350
`
`cm-1
`
`414 K
`
`295 K
`
`196 K
`
`Crystal
`
`3500
`
`3100 cm-1
`
`Figure 6. C2H5NH2. Spectra IVV and IVH at different temperatures. The
`intensity of the IVV compounds was multiplied by 10 at 414 K, by five
`at 295 K and by 2.5 at 196 K. Spectral slit width 3.0 cm-1.
`
`3300
`
`Scattering activity measurements
`
`ρNH 0 · 20
`
`0 · 16
`
`0 · 12
`
`(CH3)2 NH
`
`Solution
`
`Gas
`
`0 · 6
`
`0 · 4
`
`(dσ / dΩ) CH3
`
`(dσ / dΩ) NH (D)
`
`200
`
`300
`
`
`Figure 7. (CH3)2NH(D). Change according to the temperature of the
`depolarization ratio ρNH of the ν(NH) band, and of the scattering
`cross-section ratio of the ν(NH) [] or ν(ND) band [] and of the
`νSCH3 BAND.
`
`
`400
`
`T (K)
`
`As we did with the alcohols, here we studied the change in
`the depolarization ratio and the intensity of the amines’ vNH
`bands according to their physical condition and, as a result,
`the state of self-association by hydrogen bond. Two types of
`measurements were carried out: on the one hand, cross-
`section and scattering activity measurements, with the
`compounds taken at ordinary temperature in the gaseous
`state, the liquid state or dissolved in CCl4, and, on the other,
`measurements of the relative intensity of the vNH bands in
`comparison to the vCH bands, according to temperature,
`with the compounds in a liquid state.
`
`Relative intensity measurements on the liquid
`
`Relative intensity measurements were carried out on the
`NH and ND dimethylamines and the NH diethylamine from
`the triple point to the vicinity of the critical point. For the
`dimethylamine, the CH band chosen for comparison was
`the low-frequency band (vsC3) located around 2780 cm-1;
`for the diethylamine, the comparison was made with the
`vCH solid as a whole between 2700 and 3000 cm-1.
`Measurements of the vNH band’s depolarization ratio were
`also carried out.
`All the results are presented in Figs. 7 and 8. It is clear in
`all cases that the ratio of the INH / ICH3 intensities increases
`significantly from the critical point (low-density liquid, with
`the molecules not self-associated) to the triple point (self-
`associated molecules); at the same time, the depolarization
`ratio of the vNH bands increases from 0.13 to 0.19.
`These results are very similar to those obtained for tert-
`Butyl alcohol.1 They suggest that, assuming the intensity of
`the vCH bands is independent from the molecules’ state of
`association, the intensity of the vNH bands increases
`through self-association.
`
`
`
`JOURNAL OF RAMAN SPECTROSCOPY, VOL. 6, NO. 2, 1977
`
`77
`
`Merck Exhibit 2237, Page 4
`Mylan Pharmaceuticals Inc. v. Merck Sharp & Dohme Corp.
`IPR2020-00040
`
`

`

`
`
`C. PERCHARD AND J. P. PERCHARD
`
`able to verify, on cases in which the index was known
`(e.g., ethylamine), that this method enabled us to attain
`the liquid index quite accurately.
`The intensity measurements were carried out not only
`on the vNH bands, but on the vCH bands as well, for
`comparison. In the case of the methylamine and the
`dimethylamine, the vCH bands considered were located
`around 2820 and 2,780 cm-1, respectively; except in the
`gaseous state, these bands were not perfectly insulated but
`were slightly overlapped with other, higher-frequency
`bands. To determine their surface, we made a graphic
`breakdown of the high-frequency wing, resulting in an
`error of a few percentage points. For the other amines
`(ethyl and diethylamine, pyrrole), we measured the
`intensity of the vCH solid as a whole.
`All of the results are presented in Table 1, into which
`we have carried over the depolarization ratios, the cross-
`sections and the scattering activities, as well as the cross-
`section ratios in the liquid state and the dissolved state.
`The results presented are an average of 4-6 measurements,
`half of which were carried out in the internal reference
`and half in the external reference.
`On reading this table, it appears that the intensities of
`the vCH bands vary little according to the physical state,
`while the intensities of the vNH bands change more
`significantly, except in the case of diethylamine, which in
`fact is hardly associated at 295 K. The most significant
`example is that of the pyrrole, highly self-associated in the
`liquid state, whose scattering activity increases by 50%
`through self-association. For the other amines, partially
`self-associated in the liquid state at 295 K, the increased
`intensity of NH or NH2 bands is less marked from the
`solution to the liquid. However, the general trend of the
`results seems to confirm those obtained for the alcohols,1
`namely, that the intensity of the vXH Raman bands
`increases when X‒H···X hydrogen bonds are formed.
`This variation, which is accompanied by a large
`increase in the depolarization ratio, had been associated
`′ / 𝛼𝜌
`′ ratio as a result of
`with a marked increase in the 𝛼1
`′ being the derivative of the
`hydrogen bond formation,1 𝛼1
`polarizability of the XH bond along the axis of this bond
`
`(CH3)2 NH
`
`NH 0 · 20

`
`0 · 16
`
`0 · 12
`
`Solution
`
`0 · 09
`
`0 · 07
`
`(dσ / dΩ) C2H3
`
`(dσ / dΩ) NH
`
`200
`
`300
`
`400 T (K)
`
`
`
`Figure 8. (C2H5)2NH. Change according to the temperature of the
`depolarization ratio ρNH of the ν(NH) band, and of the scattering
`cross-section ratio of the ν(NH) band and of the ν(C2H5) solid.
`
`
`The measurements of cross-section (dσ / dΩ) and scattering
`activity (SA), already defined in reference 1, were carried
`out according to both internal and external reference
`techniques for the liquids and the solutions and according
`to the external reference technique for the gas. In the
`internal reference technique, we chose as a reference the
`band at 991 cm-1 of benzene introduced in small quantities
`into the sample and, in the external reference method, the
`same band of benzene or the v1 band of CCl4. For the gas,
`the external reference band is the v1 band of methane,
`whose intensity was determined beforehand by comparing
`it with the intensity of nitrogen.8
`The internal reference measurement technique has been
`described previously.1 The external reference technique is
`the same as the one described by Nestor and Lippincott.9
`In both cases, to make any corrections, it is necessary to
`know the index of the medium. For the dilute CCl4
`solutions, the index chosen was the one for solvents; for
`the liquid methylamine, the index was not known at the
`temperature at which the experiment was conducted (295
`K). We calculated it from the known values of the specific
`mass using the molecular refraction method.10 We were
`
`Changes in the depolarization ratio intensity of the vNH band of some amines according to physical state at 295 K
`
`
`C3NH2
`
`νNH2
`
`νsCH3
`
`C2H5NH2
`νCH
`νNH2
`
`a(CH3)2NH
`νNH
`νSCH3
`
`(C2H5)2NH
`νNH
`νCH
`
`Pyrrole
`νCH
`
`νNH
`
`1.0
`
`3.9
`
`3.0
`
`8.8
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`1.6
`
`6.5
`
`0.74
`
`2.2
`
`1.6
`
`6.3
`
`8.1
`
`25.3
`
`0.13
`
`0.03
`
`0.12
`
`0.17
`
`0.12
`
`0.25
`
`0.14
`
`0.01
`
`0.13
`
`0.17
`
`1.2
`
`4.4
`
`1.7
`
`1.0
`
`2.0
`
`7.7
`
`1 L
`
`
`
`dσ
`
` x
`dΩ
`SA
`
`
`
`Table 1.
`
`
`
`
`Gas
`
`
`
`
`1.15
`
`4.6
`
`2.2
`
`6.6
`
`1.2
`
`4.6
`
`14.7
`
`46.0
`
`5.1
`
`15.6
`
`6.7
`
`2.9
`
`8.1
`
`24.1
`
`0.15
`
`0.03
`
`0.15
`
`0.17
`
`0.20
`
`0.28
`
`0.13
`
`0.01
`
`0.16
`
`0.17
`
`1.5
`
`6.1
`
`1.3
`
`2.7
`
`7.9
`
`1.2
`
`1.3
`
`5.2
`
`16.7
`
`1.9
`
`4.5
`
`52.2
`
`7.9
`
`16.0
`
`1.1
`
`1.1
`
`1.5
`
`1.0
`
`2.4
`
`9.4
`
`1.4
`
`1.1
`
`3.1
`
`2.8
`
`9.3
`
`11.0
`
`29.2
`
`1.1
`
`1.4
`
`1.2
`

`dσ
`
` x
`dΩ
`SA
`
`1 L
`
`
`

`dσ
`
` x
`dΩ
`SA
`
`1 L
`
`
`
`CCI4 solution
`
`
`
`
`
`Liquid
`
`
`
`(SA) liquid / (SA) solution
`
`a L refers to the internal field factor corresponding to each medium.1 The scattering cross-sections dσ/dΩ are expressed in 10-30 cm2 mol-1 sr-1
`and the scattering activities SA in 10-7 cm-4 g-1 mol-1.
`
`78
`
`
`
`JOURNAL OF RAMAN SPECTROSCOPY, VOL. 6, NO. 2, 1977
`
`Merck Exhibit 2237, Page 5
`Mylan Pharmaceuticals Inc. v. Merck Sharp & Dohme Corp.
`IPR2020-00040
`
`

`

`LIQUID-PHASE HYDROGEN BOND AND RAMAN SPECTROMETRY
`
`Table 2.
`
`cross-section and depolarization ratio of some
`v(XH) bands of “free” or XH···X-hydrogen-bond-
`associated XH groups at 295 K. Corresponding
`′ and 𝜶𝝆
`variations in derived polarizabilities 𝜶𝟏
`
`
`
`
`
`
`
`
`
`
`
`a
`
`CH3OH
`CD3OH
`
`(CH3)2CHOH
`(CD3)2CHOH
`
`
`
`
`
`(CH3)3COH
`
`Pyrrole
`
`Solution
`diluted
`in CCI4
`
`
`
`
`Pure liquid
`
`
`
`SA

`{
`′𝑠𝑜𝑙
`𝛼1
`′𝑠𝑜𝑙
`𝛼𝜌
`
`
`SA

`{
`′𝑙𝑖𝑞
`𝛼1
`′𝑙𝑖𝑞
`𝛼𝜌
`
`
`
`
`′𝑙𝑖𝑞
`𝛼𝑖
`′𝑠𝑜𝑙
`𝛼𝑖
`′𝑙𝑖𝑞
`𝛼𝜌
`′𝑠𝑜𝑙
`𝛼𝜌
`a The scattering activities SA are expressed in 10-7cm4 g-1 mol-1 and
`the derived polarizabilities in 10-7/2 cm2 g-1/2 mol-1/2.
`
`3.3
`0.11
`0.46
`0.13
`
`
`4.7
`0.19
`0.59
`0.09
`
`4.1
`0.11
`0.51
`0.14
`
`
`7.3
`0.17
`0.72
`0.13
`
`4.4
`0.11
`0.53
`0.15
`
`
`7.3
`0.21
`0,74
`0.09
`
`5.1
`0.12
`0.58
`0.15
`
`
`7.9
`0.20
`0.77
`0.11
`
`1.28
`
`1.41
`
`1.40
`
`1.33
`
`0.69
`
`0.93
`
`0.60
`
`0.73
`
`
`
`are consistent with those obtained on the vCD band of
`deuterochloroform.11,12
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`′ perpendicular to it. By using the two experimental
`and 𝛼𝜌
`data simultaneously—the v(XH) band’s scattering activity
`SA and depolarization ratio ρ—, it is possible to
`′ and 𝛼𝜌
`′ .
`separately specify the variations in derivatives 𝛼1
`In effect,
`
`′ + 2𝛼𝜌
`′ - 𝛼𝜌
`′ )2
`′ )2 + 7(𝛼1
`SA = 5(𝛼1
`
`and
`
`2
`
`
`
`′ + 2𝛼𝜌′ )
`
`′ − 𝛼𝜌′ )
`
`′ − 𝛼𝜌
`′ )
`3(𝛼1
`ρ =
`2
`
`
`5(𝛼1
` + 4(𝛼1
`′ and 𝛼𝜌
`′ may be calculated from the sizes of
`As a result, 𝛼1
`SA and ρ:
`
`2
`
`+ 2√𝜌)
`
` (√
`
`3−4𝜌
`
`5
`
`𝑆𝐴
`
`3(𝜌+1)
`
`√
`
`1 3
`
`′ =
`𝛼1
`
`− √𝜌).
`
` (√
`
`3−4𝜌
`
`5
`
`𝑆𝐴
`
`3(𝜌+1)
`
`√
`
`1 3
`
`′ =
`𝛼1
`
`The same formulas are obtained in the case of the
`infinite, planar zigzag chain of XH bonds applicable to
`alcohols.1
`The results for the compounds, alcohols and pyrrole,
`whose variations in intensity are clear, are brought
`together in Table 2. The consequence of hydrogen bond
`formation is an elongation of the ellipsoid of the derived
`′ increasing
`polarizabilities, with the longitudinal axis 𝛼1
`′
`while the perpendicular axis 𝛼𝜌
` decreases. These results
`
`BIBLIOGRAPHY
`
`
`
`1. C. Perchard and J. P. Perchard, J. Raman Spectros. 3, 277
`
`(1975).
`2. M. Cl. Bernard-Houplain and C. Sandorfy, J. Chem. Phys. 56,
`3412 (1972).
`3. J. P. Perchard, M. T. Forel and M. L. Josien, J. Chim. Phys. 61,
`652 (1964).
`4. G. Gamer and H. Wolff, Spectrochim. Acta Part A 29, 129
`(1973); G. Gamer and H. Wolff, Spectrochim. Acta Part A 28,
`2121 (1972).
`5. A. Lautie and A Novak, Can. J. Spectrosc. 17, 113 (1972); A.
`Lautie and A. Novak, J. Chem. Phys. 56, 2479 (1972).
`6. H. Wolff and D. Staschewski, Ber. Bunsenges Phys. Chem. 68,
`135 (1964); H. Wolff and H. Ludwig, Ber. Bunsenges Phys.
`Chem. 68, 474 (1964).
`7. M. Atoji and W. N. Lipscomb, Acta Crystallogr. 5, 606 (1953).
`
`
`8. H. A. Hyatt, J. M. Cherlow, W. R. Fenner and S. P. S. Porto
`J.O.S.A. 63, 1604(1973).
`9. J. R. Nestor and E. R. Lippincott, J. Raman Spectrosc. 1, 305
`(1973).
`10. Mansel Davies, Some Electrical and Optical Aspects of Molecular
`Behaviour, Pergamon Press, Oxford (1965).
`11. N. L. Lavrik and Yu. I. Naberukhin, Opf. Spektrosk. 39, 1093
`(1975); Opt. Spectrosc. 39, 628 (1975).
`12. R. Mierzecki, Proceedings of the Fifth International Conference
`on Raman Spectroscopy, Freiburg, 1976, Hans Ferdinand Schulz
`Verlag D-7800 Freiburg im Breisgau.
`
`Received 19 October 1976
`
`© Heyden & Son Ltd, 1977
`
`
`
`JOURNAL OF RAMAN SPECTROSCOPY, VOL. 6, NO. 2, 1977
`
`79
`
`Merck Exhibit 2237, Page 6
`Mylan Pharmaceuticals Inc. v. Merck Sharp & Dohme Corp.
`IPR2020-00040
`
`

`

`Merck Exhibit 2237, Page 7
`Mylan Pharmaceuticals Inc. v. Merck Sharp & Dohme Corp.
`IPR2020-00040
`
`

`

`Liaison Hydrogene en Phase Liquide et
`Spectrornetrie Raman
`I1.F-Amines Primaires et Secondaires
`
`C. Perchard et J. P. Perchard
`Laboratoire de Spectrochimie MolCculaire, UniversitC Pierre et Marie Curie, 10 Rue Cuvier 75230 Paris Cedex 05, France
`
`Structure, intensity and depolarization ratio of NH or NH2 Raman bands of some primary and secondary amines
`have been studied in pure liquid state at different temperatures and in dilute CCI, solutions. The depolarization
`ratio and scattering activity, as in the case of alcohols previously studied, increase with self association. It confirms
`the change of the XH bond polarizability derivatives with hydrogen bond formation.
`
`INTRODUCTION
`
`Dans le cadre d’une Ctude de liaisons hydrogbne faibles
`par spectromCtrie Raman nous prisentons ici des
`rksultats obtenus sur le systkme NH.0.N relatif a deS
`amines primaires ou secondaires simples. Dans un
`travail prCc6dent’ concernant la bande vOH du systkme
`O-H..-O d’alcools liquides, deux rCsultats notables ont
`CtC obtenus: une structure B deux composantes due B
`une association en chaine des molCcules, et d’autre part
`un accroissement significatif de I’activitC de diffusion
`(45a” + 7 y ” ) et du rapport de dCpolarisation par
`autoassociation.
`Notre Ctude se divise en deux parties, la premikre
`relative B la description des bandes vNH ou vNH2 en
`phase liquide du point triple au voisinage du point
`critique, la seconde a des mesures d’intensitC sur ces
`m2mes bandes.
`Les amines primaires CtudiCes sont la mCthylamine et
`1’Cthylamine; les amines secondaires, la dimkthylamine,
`la dikthylamine (et les espkces deutkrikes ND corres-
`pondantes) et le pyrrole.
`
`PARTIE EXPERIMENTALE
`
`Les espkces hydrogknkes proviennent de la marque
`RhBne-Poulenc. Les composCs sont introduits par distil-
`lation sous vide dam la cellule de mesure. Les espbces
`deutCriCes ont CtC prCparCes par Cchanges successifs
`des chlorhydrates dans l’eau lourde. Le taux isoto-
`pique, contrB1C spectroscopiquement, est supCrieur B
`90%.
`La technique d’enregistrement des spectres a dCja CtC
`dCcrite prCc6demment.l Toutes les amines sont parfaite-
`ment stables dans le faisceau laser B I’exception du
`pyrrole pour lequel il est nCcessaire de travailler avec
`une faible puissance (50mW) et en renouvellant le
`contenu de la cellule toutes les heures environ.
`
`t Partie I: voir RCf. 1.
`
`@ Heyden & Son Ltd, 1977
`
`74 JOURNAL OF RAMAN SPECTROSCOPY, VOL. 6,
`
`NO.
`2, 1977
`
`DESCRIPTION DES BANDES
`vNH ET uNH,
`
`Amines secondaires
`Dimethylamine. L’kvolution des spectres Ivv et IVH est
`prCsentCe sur la Fig. 1. A tempkrature 6levCe la com-
`posante Ivv est symCtrique et de faible largeur
`caracteristique de vibrateurs NH libres. A tempkrature
`infCrieure, une seconde bande large apparait en Cpaule
`la prCc6dente vers les basses frCquences et se substitue
`progressivement a elle par refroidissement; elle corres-
`pond aux vibrateurs NH..-N perturbCs par formation de
`liaison hydrogbne. Au voisinage du point de fusion, la
`bande monomCrique a presque totalement disparu tan-
`dis que les composantes Ivv et IVH ont des maxima situCs
`respectivement 3247 cm-’ et 3258 cm-l. Au passage a
`la phase cristalline la structure a deux composantes
`subsiste, les maxima respectifs &ant situCs B 3215 et
`3238 cm-I a 170 K. L’interprCtation de l’ensemble des
`rCsultats est la suivante: comme il a dCja CtC observC en
`infrarouge,2 le degrk d’autoassociation est beaucoup
`plus faible pour les amines que pour les alcools de
`formule Cquivalente. La bande monomkrique (ou
`Cventuellement de bout de chaines) est observCe B
`tempCrature
`beaucoup
`plus
`base
`pour
`la
`dimkthylamine que pour I’alcool isoproprylique et ne
`disparait que vers 190 K au lieu de 360 K pour I’alcool.
`Le dkcalage entre Ivv et IVH observC alors pour la bande
`autoassociCe est interprCtC, comme dans le cas des
`alcools, par un effet de couplage entre vibrateurs NH;
`comme l’interaction entre vibrateurs NH est plus faible
`que celle entre vibrateurs OH, 1’Cclatement observC est
`ici beaucoup plus petit et n’apparait notablement qu’au
`voisinage du point de fusion. La continuit6 observCe
`dans la structure des bandes lors du passage 5 1’Ctat
`cristallin est la preuve d’un ordre B courte distance en
`phase liquide. L’absence de donnCes cristallographiques
`ne permet pas de prCciser s’il s’agit d’une association en
`chaines.
`Des mesures analogues ont CtC effectuies sur l’espbce
`deutCriCe (CH&ND, mais l’analyse des rCsultats est
`rendue difficile en raison d’une rksonance de Fermi
`
`Merck Exhibit 2237, Page 8
`Mylan Pharmaceuticals Inc. v. Merck Sharp & Dohme Corp.
`IPR2020-00040
`
`

`

`LIAISON HYDROGENE EN PHASE LIQUIDE ET SPECTROMETRIE RAMAN
`
`basse frkquence. Par ailleurs, au voisinage du point de
`fusion, la bande libre reste importante et la bande
`associCe apparait A 3263 cm-l. Sur le spectre du cristal,
`une seule composante fortement dCcalCe vers les basses
`frCquences apparait (3205 cm-’ B 220 K), tandis qu’un
`effet de dilution isotopique NH/ND B
`la mgme
`temperature permet d’observer un dCplacement de la
`bande vers les hautes frkquences (3216 cm-I).
`Pour ce composC, on conclut donc que les effets
`d’autoassociation sont faibles en phase liquide, le stade
`de polymkrisation ne dkpassant gukre celui de dimkre.
`L‘analyse du spectre du composC ND correspondant
`apparait plus complexe en raison d’une rksonance com-
`parable B celle mentionnke pour la dimCthylamine.
`Cependant on retrouve les principaux caractbres du
`(Fig. 4): Cquilibre conformationnel
`massif NH
`caractCrisC par un dCdoublement de la bande du
`monombre et dCcalage trbs prononcC de la bande de
`polymbre lors du passage B 1’Ctat cristallin (2365 cm-’
`contre 2391 cm-I).
`Pyrrole. Nous retrouvons our le pyrrole des rCsultats
`dCjB discutes par LautiC!
`Entre 300 et 200K, les
`spectres du composC liquide ou vitreux prdsentent des
`bandes larges, remplacCes B 1’Ctat cristallin par deux
`raies fines dues B un effet de couplage intermolCculaire.
`Dans notre Ctude Raman, nous observons de plus qu’B
`1’Ctat liquide ou vitreux la composante IVH se trouve
`dCcalCe de 8 cm-I au maximum vers les hautes
`
`K
`
`419
`
`2500
`2300
`C
`Figure 2. (CHJ2ND. Spectres IVv et IvH B differentes temperatures.
`
`L‘intensite des composantes lVH a Bte multiplide par 5. Largeur de
`fente spectrale 1.7 cm-’.
`
`I
`
`JOURNAL OF RAMAN SPECTROSCOPY, VOL. 6, NO. 2, 1977 75
`
`3400
`
`3200
`
`cm-’
`
`Figure 1. (CH&NH. Spectres Ivvet IvH B differentes temperatures.
`L‘intensite des composantes IvH a ete multipliee par 5. Largeurde
`fente spectrale 1,5 cm-’.
`
`entre la vibration vND et une combinaison vers
`2500cm-I observCe en phase liquide aussi bien qu’B
`1’Ctat g a ~ e u x . ~ L’evolution des spectres du liquide est
`prCsentCe sur la Fig. 2; B haute temperature, comme B
`1’6tat gazeux, la composante de haute frCquence est la
`plus intense, indiquant une contribution importante de
`la fondamentale vND B I’intensitC de cette bande. Par
`refroidissement la frCquence de la fondamentale dCcroit
`et I’intensitC de la bande de haute frCquence s’affaiblit
`progressivement pour devenir nCgligeable dans le
`spectre du cristal B 170 K. En raison de la complexit6 il
`parait difficile de discuter des positions relatives des
`composantes Ivv et IvH. Notons toutefois qu’au voisi-
`nage du point de fusion la composante IVH est dCcal6e
`vers les hautes frCquences d’une dizaine de cm-’ par
`rapport B la composante Ivv.
`Diethylamine. L’Cvolution des spectres de la bande
`vNH de la dikthylamine liquide se diffkrencie notable-
`ment de celle observCe pour la dimkthylamine. D’une
`part la bande correspondant au vibrateur NH libre se
`dCdouble aux temperatures ClevCes (Fig. 3) par suite de
`l’existence d’isombres de rotation 4 : B 416 K les deux
`composantes sont mesurCes B 3340 et 3327cm-l, la
`bande de haute frCquence s’aff aiblissant progressive-
`ment par abaissement de tempkrature. De cette obser-
`vation, on conclut donc que l’isombre thermodynami-
`quement le plus stable doit etre associC B la bande de
`
`Merck Exhibit 2237, Page 9
`Mylan Pharmaceuticals Inc. v. Merck Sharp & Dohme Corp.
`IPR2020-00040
`
`

`

`C. PERCHARD ET J. P PERCHARD
`
`suite d’une sensibilitC plus grande A l’association des
`molCcules. De plus
`il apparait une bande vers
`3180 cm-’, dCjh observCe par Wolff6 en absorption, et
`probablement attribuable B l’harmonique de la vibration
`6NH2 exaltke par rCsonance de Fermi avec la vibration
`v,. A 1’Ctat cristallin, quatre composantes apparaissent a
`3325,3265,3237 et 3179 cm-’.
`Methylamine. Des spectres analogues ont CtC obtenus
`pour la mCthylamine A 1’6tat liquide ainsi qu’A 1’6tat
`solide. L’interprCtation du spectre de cristal a pu Ctre
`faite6 en tenant compte de l’existence, prouvke par une
`Ctude cri~tallographique,~ de deux types de liaison
`hydrogbne et d’une rCsonance de Fermi avec le niveau
`2SNH2.
`
`MESURES D’INTENSITE DES
`BANDES vNH
`
`Comme nous I’avons fait pour les alcools, nous avons ici
`CtudiC 1’Cvolution du rapport de dCpolarisation et
`1’intensitC des bandes YNH des amines en fonction de
`1’Ctat physique et, par suite, de 1’Ctat d’autoassociation
`
`! I
`
`I
`
`I
`
`2500
`
`I
`
`2400
`
`I
`
`cm-1
`
`Figure 4. (C,H&Nd. Spectres/,,,,B differentes temperatures.
`Largeur de fente spectrale 3,3 cm-’.
`
`‘L
`
`*$
`
`K
`295
`
`A GK
`
`1
`3300
`
`I
`
`I
`3200
`
`1
`
`cm-‘
`
`~
`
`I
`
`I
`
`I
`3400
`
`Figure 3. (C2H&NH. Spectres Ivv et IVH B differentes tempkra-
`tures. L‘intensite des composantes lVH at ete multipliee par 10
`pourlesspectresB416et295 Ketpar5pourceluiB230 K. Largeur
`de fente spectrale 3,O cm-’.
`
`frCquences par rapport B la composante Ivv (Fig. 5).
`Comme pour le cristal, nous relions ce phCnombne B
`l’existence de couplages entre vibrateurs NH, associCs a
`un ordre A courte distance dans les phases dites
`dCsordonnCes.
`
`Amines primaires
`
`L’association de la mtthylamine et de 1’Cthylamine et la
`structure des bandes vNH2 correspondantes ont dCja CtC
`longuement discutCes par Wolff et ~ 0 1 1 . ~ a partir de
`rCsultats infrarouge et Raman.
`Ethylamine. A tempkrature Clevte (414 K), les deux
`bandes Y, et v, sont observkes respectivement vers 3387
`et 3334 cm-’ (Fig. 6)’ et correspondent aux vibrateurs
`NH2 non engagCs dans liaison hydrogbne. Lorsque la
`tempkrature s’abaisse jusqu’h 196 K les maximums des
`deux bandes dkcroissent, respectivement de 30 cm-’
`pour v, et 50 cm-’ pour vs; la bande correspondant ii v,
`s’klargit considtrablement et devient dissymttrique, par
`
`76 JOURNAL
`
`OF
`RAMAN SPECTROSCOPY, VOL. 6, NO. 2, 1977
`
`Merck Exhibit 2237, Page 10
`Mylan Pharmaceuticals Inc. v. Merck Sharp & Dohme Corp.
`IPR2020-00040
`
`

`

`LIAISON HYDROGENE EN PHASE LIQUIDE ET SPECTROMETRIE RAMAN
`
`I
`
`\
`
`
`
`~
`
`414 K
`
`zvv
`
`I V H
`
`I
`3450
`
`I
`3400
`
`I
`3350
`
`c

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket