throbber
EP O 772 923 81
`
`2
`
`Beschreibung
`
`Die voriiegende Erfindung betritft ein Richtfunksy(cid:173)
`stem fur r-1unkt-zu-Mehrpunkt-Verbindungen, bei dem
`die fur die Komrnunikation zwischen einer Zentralstation
`und mehreren Teilnehmern zur Verfugung stehenden
`Frequenzkanale bedarfsweise zuteilbar sind.
`Ein solches Rich11unksystmn ist im Mikrokwellen(cid:173)
`Magazin, Vol. 10, No. 6, 1984, S. 629, 630 erwahnt Bei
`Punkt-zu-Mehrpunkt-Richtfunkverbindungen i;='!Bt sich
`demnach die Frnquenzbandausnutzung durch eim; nur
`bedarfsweise Belegung des er1orderi!cl1en Freqenz(cid:173)
`band€lS verbessern. DiE, Kornrnunikation zwischen der
`Zentralstation und den einzelnen Teiinehmem erfolgt
`entweder durch Vielfachzugritt irn Frequenzmultiplex
`(FDM/.\) ocJer durc~1 Violiact1zu1Jriff im Zeitmui1iplE,x (TO(cid:173)
`MA), wobei die Frequenzkanale oder Zeitschlitze je
`nach Bedarf der Teilnehmer zugeteilt werden.
`Aus EP O 169 713 A3 ist ein Duplex-Ubertragungs(cid:173)
`system bekannt Dabei eliolgt iediglich zwischen zwei
`Sende!Ernpfan~is-Stationen eine Sprachiibertra1iung
`entweder nur in eine Richtung (Simplex-Ubertragung)
`oder in beide R:chtungen (Duplex-Obe11ragung) gleich(cid:173)
`zei1ig. FOr eine Sirnplex-Obertra~JUrl\J wird ein LJbertra(cid:173)
`gungsl<anai zur Ve1ii.igung gestelit, der eine groBere
`Bandbreite aufweist als jedm der zwei fur eine Dupiex(cid:173)
`LJbertragung bereitgestellten LJbertragungskaniiie. Da(cid:173)
`zu werden die Datenraten der Obertragenen Signale an
`die Bandbreite der ihnen jeweils zugeordneten Obertra(cid:173)
`gungskan~1ie angepa8t.
`Bei einem aus der WO-A-93/00751 bekannten Da(cid:173)
`tenObertragur1gssystern werden die Sendesignalpegel
`so geregelt, daB sich eine optirnale Ubertragungsquali(cid:173)
`tat einstellt.
`Der Erfindung liegt die /.\ufgabe zugrunde, ein
`Richtfunksystem der eingangs genann1en Art anzuge-(cid:173)
`ben, dessen Ober1ragungskapazitat rnoglichst flexibel
`an ,fan BE)(fa;f der TE,llnet1rnBr anqepaBt w,mJen kann.
`Erfindungsgernal3 wird diese Aufgabe durch die
`Merkmale des Anspruchs 1 gelost. Vorteilhatte Weiter(cid:173)
`bildunqen der Erfindun;J gE,hen aus d,m UrneransprO(cid:173)
`chen hervor.
`Punkt-zu-Mer,rpunki Richtlunksysteme stellen eine
`kostengunstige und mi1 geringem Auiwand realisierbare
`ieitergebundenen Obertragungssyste(cid:173)
`Aiternaiive zu
`rnen dar. Dies \Jilt in besonderern Ma8e rnr neue Netz(cid:173)
`betreiber im Rahmen des Aufbaus eigener Telekommu(cid:173)
`nikat:onsinfrastrukiur.
`Ein nach der Erfindung ausgefi.ihrtes Punkt-zu-
`Mehrpunkt Richt1unksystem kann seine Ubertragungs-
`bandbreitenkapazitat an verschiedene von den einzel(cid:173)
`nen Teiinehmern geiorderte Datenubertragungsraten
`anpassen. Darn it stellt ein solches System ein trequenz(cid:173)
`okonornisches, arn Bedarf der einzelnen Teilnehrner ori-
`entiertes Obertragungsrnedium dar.
`Anhand eines In der Zeichnung dargostellten /\us(cid:173)
`iuhrun;isbe1spieis wird nun die EriinduniJ naher erliiu-
`tert.
`
`5
`
`Die Figur zeigt ein Frequenzkanalraster.
`Ein Punkt-zu-Mehrpunkt Richtfunksystem besteht
`aus einer Zentralstation mit einer in Azimu1richtung
`rundstrahlenden oder sektonsiert stral1lenden Antenne
`und mehreren Teilnehmern, welche rni1 Richtantennen
`ausgestattet sind. Prinzipiell weisen die Zentralstation
`und die einzelnen TeilnBhrner in bokannter Weise Hoch(cid:173)
`frnquenz--Sende/Ernpfan;is--Baugruppen,
`Urnsetrnr
`von der Hochfrequenz- in die Zwischen1requenzebene
`10 und irn Zwischenfrequenzbereich arbeitende Modulato(cid:173)
`ren und Dernodula1oren auL
`Die Modulatoren und Demodulatoren in der Zentral(cid:173)
`station sincJ so ausiJel€igt
`cJar1 Gin Zwiscr;enfmqwrnz(cid:173)
`trager rnit einer variabien Datenrate, z.B. im Bereich von
`15 64 KBit/s bis maximal 8 MBit/s, rnodulierbar bzw. demo(cid:173)
`dulierbar is1. D.h cJl,i Z€mtralstation kann - z.B. sof1warn(cid:173)
`ges1euert - jedem Teilnehmer einen Frequenzkanal zur
`VerfOgung stellen, dessen Bandbreite an die vom iewei(cid:173)
`iigen Teilnehmer geforderte Datenubertragungsrate an-
`20 gepaBt ist. Das in der Zeichnung dargestellte Frequenz(cid:173)
`kanalraster enthalt beispielhaft zwei Frequenzkanale 1
`und 5 lur eine Datenra1e von 2 MBit/s, zwei weitere Fre(cid:173)
`quenzkanaie 2 und 4 tur eine Datemate von 64 KBit/s
`und ,~inen Frequenzkanal 3 Hir eine Datenra1e von 1
`25 MBit/s. Die Lage der einzelnen Kanale relativ zu der Mit(cid:173)
`tenfrequenz fm des Obertraqungsbandes wird zweck(cid:173)
`m~iGi9erweise so organisiert, daB die Kaniile symme(cid:173)
`trisch um die Mittenfrequenz fm he rum verteilt sind (vgl.
`Figur). Die maximal rnogliche Anzar,I der den Teilner,-
`30 mern zugeordne1en Kana.le is1 durch die Kanalraste(cid:173)
`rung, den zulassigen spektralen Abstand und die kanal(cid:173)
`individuelle Da1enrate bestirnrnt.
`In der Zentralstation konnen die von den Teilneh(cid:173)
`mern getorderten Kanalbandbreiten registriert werden,
`35 damit fur jeden Teilnehrner eine von der Ubertragur1gs(cid:173)
`bandbreite abhangige TarifierunrJ moglich ist.
`Modulatoren und Demodulatoren konnen auch fur
`vmsct1ied0ne Modulationsarten (z.B. n •· PSK, n - QPS1<
`mit 11 = 1 ... 8 oder M - QAM mit M = 4 .. 256) ausgelegt
`40 werden, so dar3 Datenubertragungen mit teilnei;rnerin(cid:173)
`dlvidu,311 untmsc:hiedlich€rn MocJulationen rn6fjlich sind.
`Um en1fernungsabhangige Empfangspegeiunter(cid:173)
`schiede ausgleichen zu konnen, ist in der Zentrals1ation
`eine entsprechende Verstarkungsregeiung fur die Sen-
`45 designale vorgesehen
`
`so
`
`55
`
`2
`
`Patentanspri.iche
`
`1. Richttunksystern llir Punkt-zu-Mehrpunkt Verbin-
`dungen, bei dern die fur die Kornrnunikation zwi(cid:173)
`schen einer Zentralstation und mehreren Teilneh(cid:173)
`mern zur \le1iDgung stehenden Frequenzkanale
`bedarisweise zuteilbar sind, dadurch gekerrnzeicr1-
`ne1, daf3 die Bandbreite der einzelnen Frequenzka(cid:173)
`nale (1 ... 5) auf die von den einzelnen Teilnehmern
`jeweils geforderte Datenubertragun;israte einstell(cid:173)
`bar ist.
`
`Apple Exhibit 1010
`
`DEF0001846
`
`IPR2020-00033 Page 01651
`
`

`

`3
`
`EP O 772 923 81
`
`4
`
`caracterise en ce que
`l'arnpiification des signaux d'ernission est reglable
`pour permettre de compenser des dilferences de rn(cid:173)
`veau de signal de reception dependant de i'eloigne(cid:173)
`ment.
`
`3. Systeme de radiodiffusion par faisceau dirige seion
`la revendication 1,
`caracterise en ce que
`les moduiateurs et demodulateurs peuvent etre re(cid:173)
`gl{,s sur differents types de modulation.
`
`4. Systems cJe radiodiffusion par faisc:Gau diri;~{; seion
`la revendication ·;,
`caracterise en ce que
`la s1at!on rnntrai(l r{,aiiSE, uno tariiication d0p,mdant
`de ia largeur de la bands de transmission de cha(cid:173)
`que abonne.
`
`2. Richtfunksystem nach Anspruch ·1, dadurch ge(cid:173)
`kennzeichnet, daB die Verstiirkung der Sendesi(cid:173)
`gnaie regelbar ist, so daB entfernungsabhangige
`Unterschiede der Empfangssignaipegel ausgegli(cid:173)
`chen werden konnen.
`
`3. Richtfunksystem nach Anspruch 1, dadurch ge(cid:173)
`kennzeichnet, daB Modulatoren und Dmnoduiato-(cid:173)
`ren auf verschiedene Moduiationsar1en einstellbar
`sind.
`
`4. Richtfunksystem nach Ansprucl1 1, dadurch ge(cid:173)
`lwnnzeid;net, d,iB diE, Z€mtrals1ation
`nen Teiinehmer eine von der Ubertragungsband(cid:173)
`breite abhangige Tarifierung vomimmt
`
`fur ,fa, einzel(cid:173)
`
`Claims
`
`1. Microwave system for point-to-mui1ipoint links, in
`which the frequency channels which are available
`for communication between a central station and a
`plurality of subscribers can be assigned according
`to requirements, characterized in that 1he band(cid:173)
`width of the individual frequency channels (1 ... 5)
`can be adjusted to tho data transmission rate re(cid:173)
`spectively required by the individual subscribers.
`
`2. Microwave system according to Claim 1, cr1aracter-
`ized in 1ha1 the arnplification of 1he transmission sirJ-
`nals can be regulated, so that distance-dependent
`differences in the reception signal levels can bo
`cornpensated.
`
`3. Microwave system according to Claim 1, cr1aracter-
`ized in that modu!ators and den1odula1ors can be
`adJusted 10 different types of modulation.
`
`4. Microwave system according to Claim 1, character-
`ized in that the centrai station performs tanfl meter-
`infJ for thEl individual subscribers as ,l Junction of thEl
`transmission bandwidth.
`
`Revendications
`
`1. Systeme de radiodiffusion par faisceau dirige entre
`un point et piusieurs prnnts, selon lequei les canaux
`de ir0quenco dispornbles pour la communication
`entre une station centrale et plusieurs abonnes
`pouvont &1re attribu0s a la domande,
`caracterise en co que
`la largeur de bande des differents canaux de fre(cid:173)
`quence (1 ... 5) so regle sur le d0bit do donnees do
`transmission demande par chacun des abonnes.
`
`2" Systeirne do radiodiffusion par faisceau diri;i0 selon
`la revendication 1,
`
`5
`
`10
`
`·15
`
`20
`
`25
`
`30
`
`35
`
`40
`
`45
`
`so
`
`55
`
`3
`
`DEF0001847
`
`IPR2020-00033 Page 01652
`
`

`

`EF‘ 9 1772 923 Bi
`EP O 772 923 81
`
`
`
`4
`
`IPR2020-00033 Page 01653
`BEFGGG’E $48
`DEF0001848
`
`IPR2020-00033 Page 01653
`
`

`

`(19)
`
`(12)
`
`Europaisches Patentamt
`
`European Patent Office
`
`Office europeen des brevets
`
`111111111111111111111111111111111111111111111111111111111111111111111111111
`EP O 774 850 B1
`
`(11)
`
`EUROPEAN PATENT SPECIFICATION
`
`(45) Date of publication and mention
`of l:r,e grant of tiie paten1:
`27.10.2004 Blliietin 2004/44
`
`(21) Application number: 96118227.6
`
`(22) Date offiiing. 13.11. i 996
`
`(51) Int Ci.7: H04L 27/38, H04Q 7/38
`
`(54) Digital signal detecting method and detector
`
`Verfahren zum Erfassen eines digitalen Signais und Detektor
`
`Procede de detection d'un signal nurnerique et detecteur
`
`(84) Designated Contracting States:
`DE GB SE
`
`(56) References Cited:
`US-A- 3 497 625
`
`US-A- 5 259 000
`
`(30) Priority 16.11.1995 JP 29870795
`
`(43) Date of publication of application:
`21.05.1997 Bulletin 1997/21
`
`(73) Proprietor: NTT MOBILE COMMUNICATIONS
`NETWORK INC.
`Minato-ku, Tokyo (JP)
`
`(72) inventors:
`• Suzuki, Yasunori
`Yokohama-shi, Kanagawa (JP)
`• Kumagai, Ken
`Yokohama-shi, Kanagawa (JP}
`• Nojima, Toshia
`Yokusuka-shi, Kanagawa (JP)
`
`(74) Representative: Hoffmann, Eckart, DipL-lng.
`Patentanwalt,
`Bahnhofstrasse 103
`82166 Grafe!fing (DE)
`
`• FINES PET Al: "FULLY DIGITAL M-ARY PSK
`AND M-ARY QAM DEMODULATORS FOR LAND
`MOBILE SATELUTE COMMUNICATIONS"
`ELECTRONICS AND COMMUNICATION
`ENGINEERING JOURNAL, 110!. 3, no. 6, 1
`December 1991, pages 291-298, XP000277949
`• AGHAMOHAMMAO! A ET Al: "A NEW METHOD
`FOR PHASE SYNCHRONIZATION AND
`AUTOMATIC GAIN CONTROL OF LINEARLY
`MODULATED SIGNALS ON FREQUENCY-FLAT
`FADING CHANNELS" IEEE TRANSACTIONS ON
`COMMUNICATIONS, vol. 39, no. 1, 1 January
`1991, pages 25-29, XP000220443
`• SAMUELi H ET AL: "VLSI architectures for a
`high-speed tunable digital modulator/
`demodulator/bandpass-filter chip set" 1992
`IEEE INTERNATIONAL SYMPOSIUM ON
`CIRCUITS AND SYSTEMS (CAT.
`N0.92CH3139-3), SAN DIEGO, CA, USA, 10-13
`MAY 1992, ISBN 0-7803-0593-0, 1992:, NEW
`YORK, NY, USA, pages 1065-1068 voi.3,
`XP002069780
`• DATABASE WPI Section El, Week 9349 Derwent
`Publications Ltd., London, GB; Class U22, AN
`93-390790 XP002069781 & JP 05 291 859 A
`(HITACHI LTD)
`
`Note: Witt1in nine months from the pubiication of t!1e mention of 1he grant of the European patent, any person may give
`notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in
`a writ1en reasoned statement. It shall not be deemed 1o have been filed untii the opposi1ion fee has been paid. (Art
`99(1) European Patent Convention)
`
`Prim0d by Jouve, 75001 PARIS (FR)
`
`DEF0000275
`
`IPR2020-00033 Page 01654
`
`

`

`Description
`
`EP O 774 850 81
`
`5
`
`rn
`
`15
`
`20
`
`25
`
`30
`
`ab
`
`40
`
`45
`
`50
`
`55
`
`[00011 The present invention relates to a digital signal cJetecl:ing mett1od whid1 permits t!1e reception of signals mod(cid:173)
`ulated by different modulation schemes and send signals of various symbol transmission rates and a detector therefor.
`[00021 To realize future multimedia communications, there is a demand tor techniques of transmitting data, speech
`and images over tt1e same digital radio channel. One possible means for effec1ively trnnsmitting data, speecl1 and
`images by digital radio communication is to use symbol transmission rates and modulationidemodulat1on scl1emes
`optimum fo;· the objects to be transmitted. In the field of mobiie communication, for instance, il is to be wished t~1at ti1e
`base station offer a service of providing still pictures of television, data bank or the like, whereas the n1obiie station be
`capabie of receiving such still pictures from the base station by simple operation with simple equipment as well as
`conducting usuai voice communications. in t~1is instance, a QPSK modulation scheme is usually employed for the voice
`communication but a QAM or similar multilevel modulation scheme is needed for the transmission of still pictures
`because of ll,e necessity for transmitl!ng a larger amount of information ti,an that required fo1·the voice communication.
`This requimrnernl could b,, met by providing indeperndenl: trans;,1itlers and mce;ivers each corresponding to a par1icuiar
`modulation/demoduiation scheme as shown in Fig. 4A. in which the transmtting station is provided with a transmitter
`group 10 consisting of, for example, QAM, PSK and FSK modulating transmitters 11, 12 and 13 and the receiving
`st,il:ion is provid,,d with a rnci,ivHr group 20 consisting of QAM, PSK and FSK receiive,rs. Anothe,r met11od is common
`to the above in !he provision of the independent transmtters 11, 12 and 13 at the transmitting side but differs therefrom
`in t!1at Hie receiving station is equipped witt1 a single; receiver 21 with QAM, PSK and FSK detec1ors 22, 23 and 24
`built therein as shown in Fig. 1 B. One possibie method for providing a plurality of detHctors in the same radio as shown
`in Fig. 1 Bis to buiid therein independent detectors each designed specifically for one modulationldernoduiation scheme.
`[0003] At present, mobile communication services are allocated 800 and 1500 MHz bands bu1 cannot be switci1ed
`back and forth betweHn them. if the bands can be switched by a simple opmation with a simplEl structure, however,
`cochannel interference can be reduced by using the 800 MHz band outdoors and the 1500 MHz band indoors and in
`closed spaces through utilization of a property that the linearity of electric waves in the 1500 MHz band is higher than
`in the 800 MHz band.
`[00041 Tf1e device configuration depicted in Fi,J. 1 B ~1as a plurnlity of independent detectors buiil--in, and hence it is
`inevi1ably bulky and complex. Furthermore, in the digital radio communication for transmitting data. speech and images,
`it is hard to instantaneously switch tl1e independent detectors by dynamicaily changing t1-1e dernoduiating scheme and
`the carrier frequency. The receiver21 quadrature--demodulales the received signal, for which it is necessary lo generate
`a local oscillation signal synchronized with the carrier of the input received signal. In 1his instance, if the carrierfrequency
`of t1-1e received signai vanes from f1 to f2, f3 , and f4 with the lapse ot time as shown in Fig. 2A. the frequency of the
`local oscillation signal also needs to vary correspondingly. To meet ti1is requirement, it is general practice in ti1e prior
`art to employ such a method as shown in Fig. 2B, in which the oscillation frequency of a PLL. local oscillator 25 is
`switched by switching means 17 to f1, f2 , f3 and t4 one after another as indicated by locai osciilators 251, 252 , 253 and
`25 4, then the output from the svvilched local oscillator and ti1e input modulated signal are multiplied by an multipiier 18
`and the multiplied output is applied to a filter 19 to obtain a base band signal. The frequency switching speed in the
`F'LL local oscillator 25 is several milliseconds at the highest even by the use of a digital ioop preset type frequency
`synthesizer. With such a low response speed, it is impossible to fully respond to tt1e frequency switching during corn-
`munication,
`[0005] For example, when tile symboi transmission rate ot the received signal varies from B1 to B2 , 8 3, and B4 with
`tt1e lapse of time as s!1own in Fig. 2C, i1 is conven1ional that filters 261, 262, 263 and 264 for filtering the output frorn
`a quadrature demodulator are switched one after another by switching means 27 and 28 in response to the variation
`in the transmission rate of the received signal as depicted in Fig. 20. Since 1he filters are formed by hardware, the filler
`switching speed cannot be increased because of transient characteristics of the filters.
`[00061 US-A-5,259,000 discloses a modulator-demodulator constructed of digitai circuits that is intended to provide
`a simple, economical modulator-demodulator apparatus, wherein tvvo MODEMs are provided for G3 facsirniie and
`G2iG1 facsimile which are selectiveiy used by controlling a switch in accordance with the received signal. The functions
`of the respective facsimile modes are impiemenled by a digital signal processor, but it is assumed that different algo ..
`rithms are used for different facsimile modes and the characteristics of each function that implements a corresponding
`facsimile mode are not changed. The document also shows the use of interpolation; however, the mterpoiation is
`performed to increase Signal--to--Noise Power Ratio to thereby avoid degradation in detection when the eye--patlern is
`closed by change in transmission rate or increase the in number of values of multi-value modulation (M-ary modulation
`scheme)
`[0007] Tf1e cJocument Fines Pet al: "Fully Digital fvl-ary PSK and M-ary QAM demodulators for iand mobile satellite
`communications'' Electronics and Communication Engineering Journal, Vo!.3, No. 6, 1December1991, pages 291-298,
`XP000277949 discloses the use of an adaptive filter, and sets of coefficients ot the adaptive fiiter are predetermined
`and stored in a memory. Tt1e document also leaches U1e use of interpola1ion, but 1he purpose is tt,e sarrn, as t!1at in
`
`2
`
`DEF0000276
`
`IPR2020-00033 Page 01655
`
`

`

`EP O 774 850 81
`
`US-.&.-5,259,000.
`[0008] US-A-3,497,625 relates to digital modulation and demodulation, wherein a desired one of plural types of
`modulation scheme (and dernodulation scherne) is selectively opernteci.
`[0009] Tr,e document D4 SAMUEL! H ET AL: "VLSI architectures for a high-speed tunabie digitai modulator!demod-
`uiatolibandpass filter chip set", ·J 992 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (CA!: No.
`92Cf-J.'3139-3), SAN OiEGO, CA, USA, 10--1.'3 MAY 1992, ISBN 0-7803--0593--0, 1992, NEW YORK, NY. USA, pages
`1065-·J 068 vo/.3, XP002069780 relates to an all-digital multi rate modulator/demodulator of a 3-chip set, wherein in the
`first chip a double--sideband IF signal is subjected to a Hilbert transform to obtain a complex single--sideband signal,
`in the second chip the single-sideband signal is quadrature-demodulated to produce a baseband signal and in the third
`chip the baseband signal 1s decimated to effect lowpass-filtering of a selected bandwidth. The document 04 does not
`teach the use of interpolation and decimation for en~1ancin9 tirne--resolution of quadrature-demodulation.
`[001()]
`It is therefore an object of the present invention to provide a digital signal detecting method and a detector
`tl1eretor which enable digital communication equipment having a plurality of detecting means built-in to be used in
`co1,1mon to pluralities of modula1ionidHrnodulation sct1emes, local oscillation frequencie,s and symbol transmission
`rates.
`[00111 Another object of the present invention is to provide a digital signal detecting method and a detector therefor
`wt;ich am capable; of rnsponding fas1 to tt1e swil:c:t1ing of tt;;, modulation sct1emes and a c:tiange, in the, symbol trans(cid:173)
`mission rate.
`
`5
`
`rn
`
`15
`
`20
`
`SUMMARY OF THE INVEi'ffiON
`
`25
`
`30
`
`ab
`
`40
`
`45
`
`so
`
`55
`
`[0012] The;se objec1s are achieved by a meti10d as cl,iimed in claim 1 and a cietedm as claimed in Glairn 20. Preferrnd
`embodiments of the invention are subje,ot-matter of the dpendent clrnms.
`[00131 A feature of the present invention is to obtain a base band signal by subjecting an AD converted received
`signal lo digital signal proce;ssing irnpie;me;nled by soflvvare.
`[00141 The digital signal detecting method according to the present invention comprises: a quadrature-demodulating
`step of per-forming a quadrature-dernodulatir1g operation of an AD converted received modulated signal; a filtering step
`of performing a filtering opera1ion of the quadrature-demodulated signal to obtain a base band signal; and a control
`step of changing at least one process variable in at least one of tl1e quadrature-demodulating step and the filtenng
`step in response to a request for· diangir;g the process variable.
`[0015] The quadrature--demodulal:ing step rnmprises: an interpolaling step of perforrning an n--poinl interpolation of
`tl1e input modulated digital signal to interpolate therein samples at n points (n being a real number equal to or greater
`than i ); a multiplying step of cornplex--multiplying the interpolation result by a iocal oscillation signal; and a decimating
`step of performing an n-point decimation of the multiplication result to decimate therefrom samples at n points The
`process variables that can be changed in the quadrature demodulation step are the frequency, amplitude and phase
`of the local oscillation signal and ti1e value of the above-mentioned n.
`[0016] The filtering step comprises a smoothing step of smoothing the result of the quadrature-den1oduiating oper(cid:173)
`ation to reduce the number of samples; and a digital filtering step of pe1forming a band-limiting operation of the result
`of tt;e smoott1ing operation. Tiie process variables in Uie band-limiting s1ep are the number of smoott1ing points and
`the characteristic of the digital filter used.
`[0017] Further, the input rnoduiated signal is gain contrniled by an automatic gain controller for input into an AD
`converter as a signal of a predeterrnined levei range.
`[00181 The above-mentioned various processes are performed by a microprocessor which decodes and executes
`programs.
`
`BRIEF DESCRIFYrlON OF THE DRAWINGS
`
`[0019]
`
`Fig, 1A is a block diagram scht1matically shovving an example of a digita! n1obi!e radio communication system
`employing a piurality of different modulationidemodulation schemes;
`Fig. 1 B is a block diagram schematically showing an example of a digital mobile radio communication system
`employing a receiver which contains a plurality of detectors each corresponding to one of the modulationidemod(cid:173)
`ulation schemes in Fig. 1A;
`Fig. 2A is a grnpt; st;owing varia1ions in th,, carrier frnquency of a received signal with the lapse of tirne;
`Fig. 2B is a diagram showing a conventional method for changing the locai oscillation frequency of a detector in
`response to the variations in the carrier frequency shown in r:ig. 2A;
`Fig. 2C is a graph si10wing variations in tt,e symboi transmission rate of U1e received signal wi1h tiie lapse of l:irne;
`
`3
`
`DEF0000277
`
`IPR2020-00033 Page 01656
`
`

`

`EP O 774 850 81
`
`Fig. 2D is a diagram showing a conventional method for switching band-!imiting filters of a detector in response
`to the variations in the symbol transmission rate shovvn in Fig. 2C;
`Fig. 3 is a block diagram i!!ustrating the functional GOnfiguration of tiie detector accorciing to U1e present invention;
`Fig. 4A is a b!ock diagram illustrating a concrete examp!e of the functional construction of quadrature ciemodulating
`means 33 in Fig. 3;
`Fig. 4B is a flowchart st1owing an example of a prncedure for automatic synct1ronization of the local oscillation
`signal witl1 the input received signal;
`Fig. 5A is a diagram explanatory of r1--point interpolation processing by an FFT tedrnique;
`Fig. 5B is a diagram explanatory of a method for performing then-point interpolation processing by an interpolation
`algorithm using an m-order function;
`Fig. 5C is a diagram explanatory of a mett1od for performing the n--point interpolation processing by a mett1od of
`estimating samples to be interpolated by an interpolation algorithm;
`Fig. GA is a diagram explanatory of n-point decimation processing by a simple decimation meti1od;
`Fig. 6B is a diagram explanatory of n-point dHcimation processing by a vv<ligt1te;d substitution ,rn,thod;
`Fig. 7 is a block diagram illustrating a concrete example of the functiona! configuration of filter means 43 in F!g. 3;
`Fig. SA is a diagram explanatory of smootl1ing processing by a simple extraction metl1od;
`Fig. 8B is a block diagram st,owing an eixarnple of Hie functional configuration for· anothe,r smoott1ing scr;em1e;
`Fig. 8C is a d!agram for explaining the operation of the Fig. 88 configuration;
`Fig. 9A througr1 9H are diagrams showing tt1e states of signals occurring at respective parts of tt1e digital detector
`according to the present invention;
`Fig. 1 0A is a block diagram illustrating an example of the functional configuration for switching the oscillation
`frequency in the quadrature demodulating means 33 in Fig. 3;
`Fig. 1 OB is a b!ock diagram showing an exam pl El of the functionai configurat!on for switching the local oscillation
`frequency in the filter means 34 in Fig. 3;
`Fig. 11
`is a block diagram illustraling an example of the functional configuration for carrying out tr1is invention
`rnelhod;
`Fig. 12 is a flowchart st1owing an example of the p;·ocedure of the detecting metr1od according lo the present
`invHnlion:
`Fig. 13 is a flowchart showing an example of the digital detecting procedure;
`Fig. 14 is a diagram showing an example of the frame structure of the received signal;
`Fig. 15 is a block diagram illustraling an example of the functional configuration in which a microprocessor for use
`in the present invention is utilized for otl1er processing;
`Fig. 16 is a block diagram illustrating the functional configuration of a transceiver embodying the present invention;
`Fig. 17A is a tablH showing, by way of example, stored contents of a process variable storage part;
`Fig. 17B is a table showing, by way of example, some of other stored contents of the process variable storage
`part; and
`Fig. 17C is a table showing. by way of example, stored contents in other areas of the storagH part of Fig 17B.
`
`DESCRIPTION OF THE PREFERRED EMBODIMENT
`
`[0020]
`r.:;eferring now to Fig. 3, an embodiment of the present invention will be described below. An analog signal
`received at an input terminal 30 is provided via a band pass filte,;· (not shown) to an automatic ga!n controller 31 wt1ich
`controls, with its amplification gain, the received signal so that its amplitude varies within a fixed range. The output
`analog signal from the autornatic gain controiler 31 is converted by an AD converter 32 to a digital signai. The received
`signa! thus converted into digita! form is subjHcted to demodulating operation by quadrature demodulating means 33
`and is spectrum shaped by filtering operation by digital filter means 34, from which a demodulated digital base band
`signal is p;·ovided at an output terminal 40. The base band signal is provided to decision means 39. wherein its in(cid:173)
`phase component and quadrature component are each decided in tmms of the symbol period, and based on these
`decision results, it is determined which signal point on the IQ--diagram tl1e base band signal corresponds to. For ex--
`amp!e, in the case of a QPSK signal, it is decided vvhether its in-phase compont1nt and quadrature compone-:nt are +1
`or -1, and based on the decision results, it is determined which of four signal points on the IQ-diagram the baseband
`signai corresponds to.
`[00211
`In Fig. 3, the arithmHtic processing for th., digital signal by th., quadrature demodulating means 33 and th.,
`digital filter means '.34 is implemented by software whicl1 uses the sampling frequency, the symbol transmission rate,
`tt1e modulalion sct1eme and tt1e local oscillation frequency as arguments (variables), Control rrn,ans 35 r1as software
`for controiling the automatic gain controller 34, the quadrature dernoduiating means 33 and the digital filler means 34.
`The control means 35 controls the automatic gain controller 3: to vary its amplification gain to lirnit the amplitude
`vmiation of t!1e base bancJ s!gnal to a fixed range. The control means 35 controls arguments set in the quadrature
`
`5
`
`rn
`
`15
`
`20
`
`25
`
`30
`
`""
`
`40
`
`45
`
`50
`
`55
`
`4
`
`DEF0000278
`
`IPR2020-00033 Page 01657
`
`

`

`EP O 774 850 81
`
`demodulating means 33 and the digital fiiter means 34 in response to ohanges in the sampling frequency, the symbol
`transmission rate and the modulation scheme of the digitized modulated signal and the local oscillation frequency, A
`keyboard or similar set!input means 36 is connected to ti1e GOntrol rneans 35, Tt1e set/input means 36 has pluralities
`of keys indicating several sampling frequencies, several symbol transmission rates and several local oscillation fre-
`quencies, respectively, and a desired parameter is input by pressing the corresponding one of the keys indicating
`several pmamelers of each category. Alterrialively, ti1e inpul means 36 is provided wilh keys each indicaling the s,im(cid:173)
`pling frequency, the symbol transmission rate and the local oscillation frequency and has a construction in which a
`desired parameter can be input by pressing the corresponding key and its numerical value can be set and input by
`manipulating ten keys. Further, the setlinput means 36 has a plurality of keys respectively indicating modulation
`schemes so that the modulation scheme ot the received signal can be input.
`[0022] As described above, t~1e digital signal processing by the quadrature demodulating means 33 and the digital
`filter means 34, which uses the sampling frequency, the symbol transmission rate, lhe modulation scheme and the
`iocai oscillation frequency as variables, can be implemented by software. By controlling the gain of ti1e automatic gain
`controlle,r 31 and thEl variablEis with l:t;e, software of l:hEl control rrn,ans 35, it is possiblEl to construct a digilal signal
`detector which performs an operation corresponding to a parameter specified in one of the groups of modulation
`schemHs, iocai oscillation frequenciHs and symbol transmission rates.
`[0023] Fig. 4A st10ws a prefemed configuration of the, quadrature dernoduiating means 33 in Fig. 3. The, outpul digital
`signai from the A.D converter 32 is subjected to an n-point inte1·polation by n-point interpolation means 41 1 and 41 0 ,
`whereby samples are inlerpolated in the digital signal al n points on the lime base. Ti1e interpolated signals are fed to
`multiplying means 42 1 and 420 , wherein they are muitipliEid by 90"-out-of-phase signals fu(k) and fLo(k)from local
`oscillation means 45. The outputs from the multiplying means 421 and 420 are subjected to an n-point decimation by
`n .. poin1 dEicimation means 431 and 430 , whereby samples are decimatEid from tr1e multiplied outputs at n points on the
`time base. By this decimation processing, the samples interpolated by then-point interpolation means 41 1 and 41 0 are
`decimated from the multiplied outputs, 'Nhereby the in-phase and quadrature components of the demodulated signal
`from the quadrature demodulation means 33 can be oblained. The time resoiution for the multiplication processing
`can be scaled up by the n-pOint interpolation means 41 1 and 41 0 . The scaied-up time resolution permits the establish(cid:173)
`ment of synchronization between the digitized modulated signals and the local oscillation signals with r1igh accuracy,
`and the time resolution of the multiplied outputs is scaled down by then-point decimation means 43i and 430 , lessening
`tl1e load of subsequent digitai signal processing. The multiplying means 421 and 420 constitute a complex multiplying
`means 42.
`[0024] A description wili be given of the arithmetic operation by the quadrature demodulating means 33. The input
`analog signal (an IF signal) y(t) to the AD converter 32 can be expressed by the foliowing equation
`
`y(t) "'A(t)cos{cot+cp(t)}
`
`(1)
`
`where tis time.mis 2:rrf (where f is the carrier frequency), A(t) is the envelope and ql(t) is the phase. The analog signal
`y(t) iS sampled by the AO converter 32 every sampling tirne T8 and eacl1 sample value is converted to a digital signal.
`Letting m denote an integer, the time t and tl1e sampling time T8 bear the foliowing relationship.
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket