throbber

`
`1\vlati�ix Co:n1.p11tations
`
`THIRD EDI'flON
`
`Gen.e FL G·olub
`
`Department of Computer Science
`
`Stanford University
`
`Charles F. \lan Loan
`
`Department of Con�puler Science
`Cornell UniverBity
`
`Thr, Johns Hopki11s University Press
`
`Ibltimore �nd London
`
`ZTE, Exhibit 1016-0001
`
`

`

`©]�iB). 19s,;;, i·�f�;::·-; Th�� John8 }{,;>r:kins l
`.!n�vc.::rshy Frt�ss
`•,.,;-;·\·c<
`.. Pt:bhbcd 1996
`All right� n,
`Pdr..ted i:! ti:-::: ��--::��
`'.::'d St��t{?':'.' of Ar.n�dca on nc!d�-frt'j�
`pup-<.�r
`9 8 7 6
`
`:'..\,t;i}oging-in-Pubik'.ation
`Daw will be found
`=::.r.,-,,
`· .. : .. :,:,:,
`
`• ':., ·� j •• ,;_
`
`•·:;,p••,'.
`
`ZTE, Exhibit 1016-0002
`
`

`

`
`
`CHAPTER 2. MA'i'lUX ANALYSIS
`
`2.a. ◊RTHOGONA!XfY AND THE SVD
`
`69
`
`
`
`mdoff error, Wt\ rncommeud
`
`RP. Brent. (1970). ''Error A11a.lysis of Algorithms for Mati-ix �.foltiplicatim, u,id T'dan­
`
`
`
`
`
`
`
`
`
`
`gulnr D«:ompO£lUon l;i,;ing \Vinograd'B Identity," Nv.m,ir. M,ith. 16, 145--lofj,
`
`
`
`
`W.Miller (1975), "Computational Complexity and NBmmic.-.J Stability/' SIAM .J. C(,m.­
`
`puting 4, 97-10'7.
`
`
`
`N,J. High,,m (1992). "Stability of a �fothtld for Mu!t.iplying Complex ,_,fot.rke;; with
`'l'hi-ee Rea!
`
`
`
`
`
`ll'!Mrix Anal. App;: 13, l58l·-1587. '.\fot.rlx Multip!icatio11s," .91.AIV! J,
`
`
`
`
`J.W. D<:,mmel and N.J. Higham (1992). ''8:,abllily cf Block Al
`
`g,,rlt.hrrn, with Past Leve\--3
`-is;' BIA.Al Review 1B, 548-u8.
`
`
`
`BLAS," AC'AJ 7hm.s. Mc.th. Soft. 18, 274---291.
`
`
`'um�:rical l\1ethod.s a-nd Sof/.warr:, Prer,tk:e--
`
`olve intervn.l analysis, the building of sta­
`
`Orthogonality and the SVD
`2.5
`
`
`
`
`
`
`Orthogonality hBs a very ptmnin�mt role to play 1n matrL'<{ cornpufations.
`ysis hselI:
`
`lWLillg of Ihe anal
`
`
`
`
`After establishing a few definitions WB prove the extremdy useful singu1ar
`.Pt·obabili1,tic Modds for Propagation of
`
`
`
`
`
`
`va1ue decomposition (SVD). Among other things: the SYD enables uti to
`
`
`
`
`intelligently hiu1dlt� foe matrix rank problem. 'X'he concept of rank, though
`
`
`
`1Jlat.ion of the Effects of Roundnff Errors,.,
`
`
`
`
`
`perfoctly clear in the exact arit.hmetk context, is trkky in the ptesen<:e of
`
`
`
`
`roundoff error and fuzzy data, '\Vith th{� SVD we can intrnduce the practical
`
`
`notiori of numerical rank
`
`=
`
`=
`
`=
`
`::1:
`=
`
`.iint nel.lds a tlwrnngh undr.1:st,mding of
`
`
`Orthogonality
`2.5.1
`
`
`
`
`: Mquirinf; knowledge in. this dlrec.tion \.�
`
`p} in. JR'"' is orthog onal if x{ :z:
`0 whenever
`
`A set of vectors {x1,, \., :i:
`I in
`:i
`
`
`-i l- j and orthonoruwl'=· if xf:1:j l>iJ• Intuitively,
`
`
`orthogonal vectors are
`
`
`Scientist Should Know About Floating
`
`
`
`
`
`maximaUy independent for they point i:n totally different directions.
`S1, .• , , Sp in m?n is mut·1wll
`
`A collection of subspaces
`
`r1 orthogonal if
`
`
`
`
`rs:7 y 0 whenever :i; E Si and y E Sj for i # j. The orthogonal compkrnent.
`
`of a subspace S � 1rrm is defined by
`slon Arithmetic Pr.cir.age," A C!V 1hms.
`
`
`
`,r<n Mu!t.\ple Pa�ision Arithmetic Pack-­
`
`
`thlnty of Num,irical Software," SIAlJ.,f J.
`and it is n<it ha-rd to show tha.t ran(A)J.. ""'rmU(..tf
`
`1, ... , t?fo
`r). ThEi ved;orn -v
`
`
`
`form an orihcmormal basis for a subspace S � JR"' if they ate orthonormal
`
`
`e ArithrneUc of the Digital Computer,"
`and span S,
`
`{AR: A Subr-:)utine to DynamicaJly De-­
`A matrix Q E 111rr,xm is sa.kl
`to be) ortJwgonoJ, if Q'l'Q I. If Q
`
`U, 303-311.
`Afal.h.
`Soft.
`
`
`[ ,11, . , , , <Jm ) is orthogonal, then the (Ji form an arl:hm,ormal bwL"I for Jitn,
`
`
`,uts (H}89), "Floatfog PniJ;t, Arithmetic
`
`
`
`
`It ls always possible to extend such a basis to a full (Jrthonormal basis
`
`rnputing A ;r,plc 3, 86---ilil.
`'':
`{v1, � ..
`1 �u,.,i} for JR!
`
`
`sion 1r,�-ill:ili.•.ti-::m and Exenition of FOR-
`19, :zsg .. 319,
`Theorem 2.5,l If
`
`
`of high-quality soft.wm·e, even for '"slm­
`Vi E JI-rx(n-r) such that
`
`
`: the design of a subro,.itine ;;a comp1Jt.e
`V={ViVi]
`
`
`
`S;,. "" {y E JI{'n : �;r 0 for ;:1,jj x E S}
`
`=
`
`=
`
`
`
`Vi E If'x;-- has on'.lwnormal cvlumm.s, then them e:1:iBts
`
`
`
`
`
`gram to FlnJ tJw Etwllde,�n Nnrm of a
`
`Proof. Thls is a standard result frorn introdnr.tmy lhiear algd)ra., It is
`
`
`
`her "fast" lineal' alg,;brn. proce<Jurei,;
`!lr?ll
`
`
`
`thH.t 'SVe present in �fi.2. CJ also a comllary or the QR fadori:1;ation
`
`ZTE, Exhibit 1016-0003
`
`

`

`'!O
`
`
`
`CHAP,'ER 2. Iv1ATlUX A':< ALYS!S
`
`
`2.5. 0R!TiOGONAUTY ANI
`
`Norms and Orthogonal Transformations
`tJ{insform>.ttion, for
`if qrq ""' l,
`.hogonal
`inv,i.ria.nt
`nndex o:rt
`The 2-norrn b
`'T' ,,"·o ·r I' ... , ,1·,1 · 2 d
`'l<" "''at·e·.v .
`i l""' : 1 , . .,. ,.
`l ·1 .,, 11·'
`.. ,i {:.,,.,.,
`'•J.
`••-
`,.,, ... � ... J>..J'. .......
`Av,
`..,.,..,
`: >.tJ 1:::
`,.,:, • .:.,
`....,..,, j
`:J.;' t.J' ,,.. .. _ ,.,, . ,., - : ,,. :: �
`,_
`.;"',{./
`-.::
`'SJI
`-''OJ:'l''
`•, -.,,..,�
`:i ·�:,._,(._; )1
`tlw Fi-di(m\us nonn &re a.foo inwnfant. vv'ith re;,ped. to
`transfor­
`orthogona.l
`.41·n,
`1n pn.rt.ieuhw, it l.s ern,y to show tl:wt for ,ill orthogonal Q
`and Z
`niatlons.
`dim{!milot1s w;� luwe
`
`It i;; convenfont to bwe the f
`of >.i.pprnprh:te
`1ms;
`
`V
`
`= jlA!ir
`ilQAZll
`p
`
`(25.2)
`
`oi(A) -· Ui
`trm.;,:.: (A)
`,_ th
`<'.lmi.n(A)
`-··
`th
`
`values of ,t matrl
`The t,ingob.r
`2,5.3 The Si.H[?;ulur VtiJue Decomposition
`
`
`psoid .l!J defirH�
`cf t.}1� hyperelH
`
`
`in the prtivious two tll'K'.t:iorn:; om be used t,) The Ui<,,ory of uorn1s developed
`
`
`
`
`pr�.-,w the {\Xtr.emdy useful singnfa.r value decomposition.
`
`
`
`Theo:rmn 2.5.2 (Singulaa· VahH,! Decomposition (SVD)) .lfA i,q a rwl
`rn--by ... n, rna.tri ...
`
`1:) then. there e�tist or1hogon{f.1 rn.,atri{.�r-:,!�
`arid v· "" ['Vi,,.', 'V,.-,] E Jf·C·Xn
`
`snch dud
`
`.96
`�L�::g
`
`The SVD revea.ls a. f�re;.'\.t <
`
`
`SVD of A io given by Tieormx
`
`{1 ·u/r l
`0 13 J ---A;.
`UTAV f
`l
`
`...
`
`rank(A)
`null(A)
`ra.n(A)
`
`.A=
`
`Voriou,; 2-xwrm and Frnbenit
`
`D ii:
`l]Ai ([ .:,
`SVD. lf A E :iR:""'", then
`!1:? > fo·2 .; ... ,,,
`'1 "'' '
`., A i:2
`,', A Jl1 "" II A
`1 ,i,I� &'lU' l'\O V'�'
`T-wi BFt ""
`we J·,"ve :I ,1-
`,;al j '" � 4,,.
`.. .,
`. '
`., �;
`: t�_,-
`.
`.r.,
`.
`!, Hp
`., -"-.!,. ; �· .:.,.... \
`:,.;._, ' :;
`B.rg-umenL compl!�tes the
`proof of
`induction
`haw� w "� D. An ohv1ous
`rrnrnt:
`the theorem. u
`/iAJh
`j/A:i;/)
`min
`The O'i am the singular Dalu.e8 of A and the vectors 1.1.i a.nd ·1..1i ?l.rn the
`
`
`
`
`(.
`. H :i: Ji:,
`;"t:'�{J
`
`
`
`
`ith left sinag[ar vector a.nd the it:h right Hingnlar wiclor reBpective'ly. It
`
`2
`
`ZTE, Exhibit 1016-0004
`
`

`

`'ransfort:nations
`
`qro .
`
`•
`
`t,
`
`.
`.
`
`:tvfxnux AJ<A
`.: .. ·
`!APTER 2.
`.
`
`7l
`Li:i. ORTHOGONALITY
`AND TEE SVD
`'.5 em,:v to v�)rify by
`comparing
`colunms
`in the (-,q,rntions
`AV -·
`A 'I' U '"' VY.;
`T foat
`r,urnfonna,tion. for if
`' ' ' J
`, ... lj � rr'l
`:J.. i.2 . . w mat:nx 2--noun
`,:,.
`_A1;i "" i'.L(Ui
`AT U; .... (t,t!; } ·i :z; 1:min{m.,,
`n}
`rnspect
`to orthogonal
`tran<
`ttEJ.t
`for nil mthogmHil
`q a,>'.
`:� is
`conv�ml.ent.
`to hu:ve thi following
`noto.tion
`.for desigrniting
`singnhr va.l­
`•i�,s:
`the ith large,<:t
`singular value
`of A,
`... the hugest singu1a1· value of
`A,
`u.,,w,.(A.)
`the smal1e1;;t
`singnh:u·
`v«-lne of
`A.
`i1mir:.(A) �
`.xes
`The i,ingul
`ar values
`of a nwtr;x A are
`prndsely
`the lengths of the semi-a
`l } .
`>t the hypm·dlipsoid
`E defined by E :z; { Ar : li :i: i! 2
`)HS tvlo :sectio1u•�
`cH.:n
`be usE.;d --:
`lCOmpo:iition.
`l f ,8 .fi
`r ') 0
`L 2.23 .f1{; .l -
`l lJL,'V
`A:=
`}\ ,f; l0 1 .6 --.8
`iµoaithm (SVD)) If
`Ai.&{!<.
`l i!
`[.6 -.8
`f
`rrmt1'i{:.f.!j
`l
`· = [ -u1 v 1 ,::: 1nnxn
`The SVD reveals
`a grne.t
`deal abrn1t the strndure of a mn.t.'ix.
`If the
`SVD of A is given by Theorem
`·2.5.2,
`imd we define
`r by
`
`{2.�·
`
`mposition
`
`1 ' • • � n � ... _ .ttt.r
`
`Example 2�5�1
`,tH3 J.72 ;
`r
`
`T
`�!-:
`
`=
`
`; L
`
`J
`
`p&,n{t1r+1,
`,., ,v,.}
`=
`1, .. , ,ur},
`spm1{,t
`
`(2.5.:3)
`('2.5.4)
`(2.f).5)
`
`r s
`
`� '
`
`-.�
`.:. l
`
`•:i c• ,.
`( .,,;. �-
`
`rank(A)
`?xrn. ve<:.tors
`Ui�t sat.isl\, A:r '·"
`null(A.)
`�iler<:l exist Vi
`i c 1R:"s:(n-1) �i.nd
`ml u ;:::; f ·11 U,, l .:
`lH:" X ,;·,.
`r;--u1(/I)
`i. F hm; the following structure:
`'·••· .d.:,
`
`(2,5.6)
`A
`Various 2--norm
`arid Frobenhrn
`norm properties
`hu:ve conn.edfong t0 the
`1Rm x '1, then
`If A. E
`S\/fJ.
`l A HB
`ii A.1 ii� , and so we
`I. , r"
`i /1 r;.,
`;ument cornpletPs the proof of
`\j;b:\12
`minxf.O
`. the vectors ·u.
`., H:t1d 1;i gn, the
`, , mg,wxr wx:trJr
`" ___ .} __ _
`respectively.
`It
`Ii X Jhi
`
`=
`
`li A i:2
`
`(2.t�.8)
`
`(m?:: n). (2.15,9)
`
`ZTE, Exhibit 1016-0005
`
`

`

`310
`
`7. L PROPEK!TBS AND 1
`------------···-··-·-------
`.:;;.re referred to as eigent•e(
`
`
`LAPACK: Um;ymmet.ric Eigenproblm:n
`~ GEBAL Bi,lam.:e t,nmsform
`lf Aa: = >.:i: and a left eig,
`_GEB1\K Und<) bala-nce tra.nsfonn
`
`"eigenvector" mea.rrn "rigl
`1 AV"" ll
`_@1mD Hes.-,imberg reduction U'
`
`An elgenvect.or defines
`
`_or.MM U (fact<:m0<.l form) times matl'i-'< (n1al G:J.:::e)
`respect to preniultiplicatl,
`_ ORGmt Gm-iemtf!S U { re«l cac;;i)
`
`t!w property that
`
`��l'lllltV ( factor<,xl form) times matrix { eomplex <:i;;,e)
`!, ..
`,_ .. _m_,_a_m_t.....,""""G"'eueratoo U (,,r,mpl0,'<
`eai,;_e�)
`_________ _
`! _ HSEQR Sdmr cJ1..,composltJ,m. of Hessenbtirg rrnitrix
`
`
`ls @-id to be in:variard {fo
`!-.:_HSEIN
`
`
`Eigenvector;; <>f Hessenberg matrlx by inverse lterat.icn_i ______ .........-:
`i .. GRES
`Schur doe◊ltl}'.;�;_r genern.l matrix with o, vahi<i .,ord;;,fiig
`i _ i.lEESX Sa.me but with <:onditlon estlmat.es
`·-<lEEV
`Eigenvah;e,;; and ldt and xi�ht. eig1;mvect.orn of genar;:,,l nmtrix
`then ra.n(X) is invarlant 1
`l_GEEVX SilX(lf.l but with cor.difam r,stirrlli.tfls
`Sel�:teci eigimv&:t�)i·s of ur-,p-e_x_q_u_s_s-it-r
`.,,lat"--m-a-t.-ri.Jc--
`"'k-\r-
`1g-11
`j .. TREVC
`foll column rnr.k, t,hen A)
`u. TRSW\ Cowl estiimi.t,31,
`of il!lle-cted eigeuvalue,; of upper qua$itl'iang11h·w matrix
`:,n.<l nonsingufa.r, then ,\(,
`TREXC Unita1·y r.eordic!ri?lg of Sd-air deu,1ts1posltimi
`_Ji
`::.re similar. In this (:ontm
`'l'RSEil Ssxr,e but with ,�onditi(rn estimntns
`TRSYL Solve$ A...-Y + X B "'. C. for _upper q:rn;;ltrlangu\m: .4 and B
`
`......... ·-··--·-
`Decoupling
`
`[i�4-PA?K: Unsymmeti-k, Genei·alfa:ed Eigenpi·oblmn
`\J.imy eigenvalue compuh
`! _ GGBAL J3al2.nce tzansform
`i .. GGHaD
`
`
`;;1,,0 a collection of smalh.i,
`Reduct-km. to H.ei;senberg�Triangul;u- fnrm
`1 .. HGEQZ
`
`
`Cenerll.lfa1> .. d Sdmr <lecorupositkm
`'.<:;;-these reductions.
`i .. TGEVC Elgenvectoi-s
`[;11
`t:ndc h,,Jarice t;:;mi,forra
`l .. GGBAK
`.Len:nrm 7. L 1 If '1' E
`
`Properties and Dettornpositions
`7.1
`'
`
`
`In this sedion we survey the mathematical back,_;;,;ro1md necessary to develop
`
`
`and analyze the eig(m.vaJue algorithms that fo11ow.
`
`Proof. Suppose
`7.l. l Eigenvalues and Invariant Subspaces
`Tx = [
`Tht, eigenvalues of a ixrn.trix A. E (i'.
`
`nxn are the n roots of lki chm-r.tcterfatic
`potynO'mia.l p(z) "" det(zl �- A.). The set oftlwse roots is called the sped:rnm
`
`·.=:here �r1 E (fJV and :1>2 E �
`
`
`and is denoted by ,\(A), If ,\(A)"" {.\1, .. , then it fo1lo•Ns tha.t
`,.\;J,
`
`· .1:n), If :rz = O, then �
`det(A) ""' .1\1 ),2 • • • -><n .
`
`T) C A(T, 1) u ,\('.l'.22), E
`
`,.,,me cardinality, the two
`Moreover, if we defimi the tmce of A. by
`
`tr(A) z:, L.::0+i,
`
`·n
`
`The Basic l
`::,.-using tiimHarity tnrnsfr
`
`then tr(A.) :::: A>.,,, This folfows by looking at the eoefHdent of
`1 + · •, +
`t,D.y one of severn,1 earn
`
`
`z11·~1 in the cha.rnderl.stic polynomial.
`displi.w the eigmrvalu,
`
`If .\ f::. ), (A.), then the nonzero vectors :r E-: (1;11 that satisf:v
`: :-, th.at they provide. E
`
`
`: :,,:ussirig the reductions 1
`
`i,:;,-'...:.l
`
`ZTE, Exhibit 1016-0006
`
`

`

`7'. L PROPERTIES ANO DECOMPOSlTJONS
`
`,,re referred to as eige.·irnectors. More preci.seiy, :r is a right. eigenvector for ,\
`
`
`;f fi.x ,,, ).x and a left ei_qe1wecto, if xothenvise stat,d, H.A = Ai.!1• Unless
`
`"eigenvector" means «right eigenvector."
`An eigenvector defines a·one-dhnensional subspace that is invariant with
`respect to premultip!ica.ti.on by A Morn genera.Hy, a subspace S ;; (G" with
`
`th<:\ property that
`
`x ES=¢- Ax ES
`is sajd to he w.vadant (for A). Noto that if
`
`AX,,, XB,
`
`g inatr_ix
`: by invei-,m
`ittu:atlon
`itii' e. w.hw m:dmfog
`
`then rnn(X) ls invariant a.nd By"'" ),;y A.(Xy) = >.{Xy). Thus, if X has
`
`
`
`full column rnnk, then AX 0,, XB implies that ,\(B) C A(A). 1f Xis square
`sittiangu[ar rni,t.rix ···-·--··
`1.1x
`
`�Jues of up.!}€'.r qu11;;1tdan,;ular matrix
`
`ll.nd nonsingular, then >.(A) >.(B) and we say that A and .B = x-
`positlon
`
`am Bim'ilar. In this context1 X is caHe.d a similarity transfarnw.tfon.
`
`iasilt.r.iangular A and B
`-----.:
`
`*
`
`=
`
`;
`
`·kj.nguia::.� fnrrn
`
`sition
`
`7.1.2 Decoupling
`Many eigenvaJue computations involve breaking the given problem down
`
`
`into a �olhx::tfon of smaller dgenprobleirw. I'k1 follmving result is thi bru;is
`
`for these reductions.
`
`
`
`--�----···-�---'
`
`Lemma 7,1.1 If TE C'\"'1 is partitionf'.d f.W follows,
`
`:nnpositions
`background necessiU'v to devdnn
`.. •
`.t. follow.
`then A(T) "">.(Tll) LJ >.(T:n).
`Proof. Suppose
`
`,..,,, l p,. l2
`f I
`Tn
`'1' -�
`0
`J T22 q
`1
`L
`{J
`p
`
`;nt Subspaces
`, t.he n roots of its ch<1,ra,cterisl:ic
`
`these roots is caHe<l the spectrum
`, ),n}, then it follows that
`wlwre XJ. E {If and :t>4 E (L"!, If :t2 ): 0, Hien T222:2 = ..\;:r:2 and so >. E
`
`
`
`
`,\('.Ib). If ;:i:2 "" O; then 111:r1 = >,�-r::1 and so .\ E ,\(Tu). It follow,i t.h,tt
`
`-\(1') C ..:\(T11)UA(122),. But since both .\(T) a.nd >.(T11)u>.(T22) btve the
`
`Sf\-nH: card.hrn.Uty, the t:\!'10 sets a.re aquaL O
`
`.,
`
`7.l.3The Basic Unitary Decomposi.ti.ons
`
`
`By using shx1H.i.rity transformations, it is possible to re<luce a given matrix
`by looking at; the coefficient of
`
`
`
`
`to any one of several canonical fornu,. The canonical furms differ ln how
`
`
`t:hey display tho eigenvalues and in the kind of invariant sub$pace informa-­
`
`
`tion that they _provide. Because of their numetkal stability we begin by
`slmilMity.
`discussing the reductions that can be ad1ievod with u11itar)r
`
`
`
`: E {l�n that satisfy
`
`
`
`m::,:�••·"::��... . ... �..,,,....� ..... ..,... ...... •.•··· .. �·-····· - -
`
`ZTE, Exhibit 1016-0007
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket