throbber
111111111111111111111111111111111111111111111111111111111111111111111111111
`US008058069B2
`
`(12) United States Patent
`Yaworski et al.
`
`(IO) Patent No.:
`(45) Date of Patent:
`
`US 8,058,069 B2
`Nov. 15, 2011
`
`(54) LIPID FORMULATIONS FOR NUCLEIC ACID
`DELIVERY
`
`(75)
`
`Inventors: Edward Yaworski, Maple Ridge (CA);
`Kieu Lam, Surrey (CA); Lloyd Jeffs,
`Delta (CA); Lorne Palmer, Vancouver
`(CA); Ian MacLachlan, Mission (CA)
`
`(73) Assignee: Protiva Biotherapeutics, Inc., Bumaby,
`B.C. (CA)
`
`( * ) Notice:
`
`Subject to any disclaimer, the term of this
`patent is extended or adjusted under 35
`U.S.C. 154(b) by 0 days.
`
`(21) Appl. No.: 12/424,367
`
`(22) Filed:
`
`Apr. 15, 2009
`
`(65)
`
`Prior Publication Data
`
`US 2010/0130588 AI
`
`May 27,2010
`
`Related U.S. Application Data
`
`( 60) Provisional application No. 61/045,228, filed on Apr.
`15, 2008.
`
`(51)
`
`Int. Cl.
`C07H 21104
`(2006.01)
`C12N 15188
`(2006.01)
`(52) U.S. Cl .
`....................................... 435/458; 536/24.5
`(58) Field of Classification Search ................. 536/24.5;
`435/458
`See application file for complete search history.
`
`(56)
`
`References Cited
`
`U.S. PATENT DOCUMENTS
`4,394,448 A
`711983 Szoka, Jr. et aL
`4,438,052 A
`311984 Weder et al.
`511985 Deamer
`4,515,736 A
`4,598,051 A
`711986 Papahadjopoulos et al.
`1/1990 Eppstein et aL
`4,897,355 A
`5,013,556 A
`511991 Woodle et aL
`5,171,678 A
`1211992 Behr et aL
`5,208,036 A
`5/1993 Eppstein et aL
`7 I 1993 Martin et aL
`5,225,212 A
`5,264,618 A
`11/1993 Feigner et aL
`5,279,833 A
`1/1994 Rose
`5,283,185 A
`211994 Epand et al.
`5,320,906 A
`6/1994 Eley et aL
`5,545,412 A
`811996 Eppstein et aL
`5,578,475 A
`11/1996 Jessee et aL
`611997 Debs et aL
`5,641,662 A
`5,656,743 A
`8/1997 Busch et aL
`5,703,055 A
`1211997 Feigner et aL
`5,705,385 A
`1/1998 Bally et aL
`5,820,873 A
`10/1998 Choi et aL
`5,976,567 A
`1111999 Wheeler et aL
`1111999 Wheeler et aL
`5,981,501 A
`6,534,484 B1
`312003 Wheeler et aL
`712003 Wheeler et aL
`6,586,410 B1
`6,649,780 B1
`1112003 Eibl et aL
`6,815,432 B2
`11/2004 Wheeler et aL
`212005 Wheeler et aL
`6,858,224 B2
`7,422,902 B1
`912008 Wheeler et aL
`7,799,565 B2 *
`912010 MacLachlan et aL
`7,807,815 B2 *
`1012010 MacLachlan et aL
`7,838,658 B2 *
`11/2010 MacLachlan et aL
`
`........ 4351458
`536/24.5
`..... 536/24.5
`
`..... 4241450
`
`1212001 Tousignant et al.
`412003 MacLachlan
`7/2003 Fosnaugh et aL
`412004 Davis et al.
`712004 Finn et al.
`12/2004 Tachas et aL
`1212004 Tuschl et al.
`312005 MacLachlan et aL
`612005 MacLachlan et aL
`1/2006 MacLachlan et aL
`212007 MacLachlan et aL
`11/2009 Maclachlan et aL .
`
`2001/0048940 A1
`200310077829 AI
`200310143732 A1
`200410063654 A1
`2004/0142892 A1
`200410253723 A1
`200410259247 A1
`2005/0064595 A1
`200510118253 A1
`200610008910 A1
`200710042031 AI
`200910291131 A1 *
`FOREIGN PATENT DOCUMENTS
`WO 91/16024 A1
`1011991
`WO
`WO 93105162 A1
`311993
`WO
`WO 93112240 A1
`611993
`WO
`WO 93112756 A2
`711993
`WO
`WO 93124640 A2
`1211993
`WO
`WO 93125673 A1
`1211993
`WO
`WO 95102698 AI
`1/1995
`WO
`WO 95118863 A1
`7/1995
`WO
`WO 95/35301 A1
`1211995
`WO
`WO 96102655 A1
`2/1996
`WO
`WO 96110390 A1
`411996
`WO
`WO 96140964 A2
`1211996
`WO
`WO 96/41873 A1
`1211996
`WO
`WO 01/05374 A1
`112001
`WO
`WO 021034236 A2
`512002
`WO
`WO 02/087541 A1
`1112002
`WO
`WO 03/097805 A2
`1112003
`WO
`WO WO 2004/065546 A2
`812004
`WO WO 20041110499 A1
`1212004
`(Continued)
`
`OTHER PUBLICATIONS
`
`Arpicco, S., et al., "Preparation and Characterization of Novel
`Cationic Lipids Developed for Gene Transfection," Proceed. Int'l
`Symp. ControL Rei. Bioact. Mater. (Controlled Release Society,
`Inc.), 1999, voL 26, pp. 759-760.
`Arpicco, S., et al., "Synthesis, characterization and transfection activ(cid:173)
`ity of new saturated and unsaturated cationic lipids," IL Farmaco,
`2004, voL 59, pp. 869-878.
`Ballas, N ., et aL, "Liposomes bearing a quaternary anunonium deter(cid:173)
`gent as an efficient vehicle for functional transfer ofTMV-RNA into
`plant protoplasts," Biochimica et Biophysica Acta, 1988, voL 939,
`pp. 8-18.
`
`(Continued)
`
`Primary Examiner- Brian Whiteman
`(74) Attorney, Agent, or Firm Kilpatrick Townsend &
`Stockton LLP
`
`(57)
`
`ABSTRACT
`
`The present invention provides novel, stable lipid particles
`comprising one or more active agents or therapeutic agents,
`methods of making the lipid particles, and methods of deliv(cid:173)
`ering and/or administering the lipid particles. More particu(cid:173)
`larly, the present invention provides stable nucleic acid-lipid
`particles (SNALP) comprising a nucleic acid (such as one or
`more interfering RNA), methods of making the SNALP, and
`methods of delivering and/or administering the SNALP.
`
`22 Claims, 24 Drawing Sheets
`
`Moderna Ex 1001-p. 1
`Moderna v Arbutus
`
`

`

`US 8,058,069 B2
`2
`
`wo
`wo
`wo
`wo
`wo
`wo
`wo
`wo
`wo
`
`FOREIGN PATENT DOCUMENTS
`WO 2005/007196 A2
`112005
`WO 2005/026372 A1
`3/2005
`WO 2005/120152 A2
`12/2005
`WO 2009/086558 A1
`712009
`W02009/111658 A2
`912009
`WO 2010/042877 AI
`4/2010
`WO 2010/048228 A2
`412010
`WO 2010/088537 A2
`8/2010
`WO 2010/105209 A1
`9/2010
`
`OTHER PUBLICATIONS
`
`Barinaga, M., "Step Taken Toward Improved Vectors for Gene Trans(cid:173)
`fer," Science, 1994, vol. 266, p. 1326.
`Bass, Nature, 2001,411: 428-9.
`Beale, G., et al., ''Gene Silencing Nucleic Acids Designed by Scan(cid:173)
`ning Arrays: Anti-EGFR Activity of siRNA, Ribozyme and DNA
`Enzymes Targeting a Single Hybridization-accessible Region using
`the Same Delivery System," Journal ofDmg Targeting, 2003, vol. 11,
`No.7, pp. 449-456.
`Behr, J.-P., "Synthetic Gene-Transfer Vectors," Ace. Chern. Res.,
`1993, vol. 26, pp. 274-278.
`Brigham, K., eta!., "Rapid Communication: In vivo Transfection of
`Murine Lungs with a Functioning Prokaryotic Gene Using a Lipo(cid:173)
`some Vehicle," The American Journal of the Medical Sciences, vol.
`298,No.4,pp.278-281, 1989.
`Bmmmelkamp, et a!., "A System for Stable Expression of Short
`Interfering RNAs in Mammalian Cells," Science, 2002, V. 296. pp.
`550-553.
`Cevc, G., "How Membrane Chain-Melting Phase-Transition Tem(cid:173)
`perature is Affected by the Lipid Chain AsymmetJy and Degree of
`Unsaturation: An Effective Chain-Length Model," BiochemistJy,
`1991, vol. 30, pp. 7186-7193.
`Cortesi, R., et a!., "Effect of cationic liposome composition on in
`vitro cytotoxicity and protective effect on carried DNA," Interna(cid:173)
`tional Journal of Pharmaceutics, 1996, vol. 139, pp. 69-78.
`Crystal, R., "Transfer of Genes to Hwnans: EaTly Lessons and
`Obstacles to Success," Science, 1995, vol. 270, pp. 404-410.
`Culver K., "The First Human Gene Therapy Experiment," Gene
`Therapy: A Handbook for Physicians, 1994, pp. 33-40.
`Duzgnnes, N., ''Membrane Fusion," Subcellular BiochemistJy, 1985,
`vol. 11, pp. 195-286.
`Dwarki, V.J., et a!., "Cationic Liposome-Mediated RNA Transfec(cid:173)
`tion," Methods in Enzymology, 1993, vol. 217, pp. 644-654.
`Enoch, H., et a!., "Formation and properties of 1000-A-diameter,
`single-bilayer phospholipid vesicles," Proc. Nat!. Acad. Sci. USA,
`1979, vol. 76, No. I, pp. 145-149.
`Feigner, J., eta!., "Cationic Lipid-Mediated Transfection in Mam(cid:173)
`malian Cells 'Lipofection,"' J. Tiss. Cult. Meth., 1993, vol. 15, pp.
`63-68.
`Feigner, J., eta!., ''Enhanced Gene Delivery and Mechanism Studies
`with a Novel Series of Cationic Lipid Formulations," The Jomnal of
`Biological ChemistJy, 1994, vol. 269, No.4, pp. 2550-2561.
`Feigner, P., et a!., "Lipofection: A highly efficient, lipid-mediated
`DNA-transfection procedure," Proc. Nat!. A cad. Sci. USA, 1987, vol.
`84, pp. 7413-7417.
`Feigner, P.L., et a!., "Cationic Liposome Mediated Transfection,"
`Proc. West. Pharmacal. Soc., 1989, vol. 32, pp. 115-121.
`Gao, X., et a!., "A Novel Cationic Liposome Reagent for Efficient
`Transfection of Mammalian Cells," Biochem. Biophys. Res. Comm.,
`1991, vol. 179, No.1, pp. 280-285.
`Gershon, H., et a!., "Mode of Formation and Structmal Feature of
`DNA-Cationic Liposome Complexes Used for Transfection," Bio(cid:173)
`chemistry, 1993, vol. 32, pp. 7143-7151.
`Guy-Caffey, J., et al., "Novel Polyaminolipids Enhance the Cellular
`Uptake of Oligonucleotides," The Journal of Biological ChemistJy,
`1995,vol.270,No. 52,pp.31391-31396.
`
`Hawley-Nelson, P., et a!., "LipofectAmine™ Reagent: A New,
`Higher Efficiency Polycationic Liposome Transfection Reagent,"
`Focus, 1993, vol. 15, No.3, pp. 73-80.
`Hyde, S., et al., "Correction of the ion transport defect in cystic
`fibrosis transgenic mice by gene therapy," Nature, 1993, vol. 362, pp.
`250-255.
`Jiang, L., et a!., "Comparison of protein precipitation methods for
`sample preparation prior to proteomic analysis," Journal of Chroma(cid:173)
`tography A, 2004, vol. 1023, pp. 317-320.
`Juliano, R., et a!., "The Effect of Particle Size and Charge on the
`Clearance Rates of Liposomes and Liposome Encapsulated Dmgs,"
`Biochem. Biophys. Res. Commun., 1975, vol. 63, No. 3,pp. 651-658.
`Keough, K., "Influence of chain unsaturation and chain position on
`thermotJ·opism and intermolecular interactions in membranes,"
`Biochem. Soc. Transactions, 1990, vol. 18, No.5, pp. 835-837.
`Legendre, J.-Y. eta!., "Delivery of Plasmid DNA into Mammalian
`Cell Lines Using pH- Sensitive Liposomes: Comparison w1th
`Cationic Liposomes," Pharm. Res., 1992, vol. 9, No. 10, pp. 1235-
`1242.
`Leventis, R., eta!., "Interactions of mammalian cells with lipid dis(cid:173)
`persions containing novel metabolizable cationic amphiphiles,"
`Biochem. Biophys. Acta, 1990, vol. 1023, pp. 124-132.
`Lin, et a!., "Cationic Liposome-mediated Intravenous Gene Deliv(cid:173)
`ery", J. Bioi. Chern., 1995, V. 270, pp. 24864-24870.
`Marshall, E., ''Gene Therapy's Growing Pains," Science, 1995, vol.
`269,pp. 1050-1055.
`Orkin, S., eta!., NIH Report, Report and Recommendations of the
`Panel to Assess the NIH Investment in Research on Gene Therapy,
`1995.
`Paul, C., et al., "Effective expression of small interfering RNA in
`hwnan cells," Natme Biotech., 2002, vol. 20, pp. 505-508.
`Puyal, C., et a!., "A new cationic liposome encapsulating genetic
`material: A potential delivery system for polynucleotides," Eur. J.
`Biochem., 1995, vol. 228, pp. 697-703.
`Sorensen, et al., "Gene Silencing by Systemic Delivery of Synthetic
`siRNAs in Adult Mice", J. Bioi. Chern., 2003, V. 327, pp. 761-766.
`Spagnou, S., et al., "Lipidic Carriers of siRNA: Differences in the
`Formulation, Cellular Uptake, and Delivery with Plasmid DNA,"
`Biochemistry, 2004, vol. 43, pp. 13348-13356.
`Stamatatos, L., et al., ''Interactions of Cationic Lipid Vesicles with
`Negatively Charged Phospholipid Vesicles and Biological Mem(cid:173)
`branes," BiochemistJy, 1988, vol. 27, pp. 3917-3925.
`Szoka, F., eta\., "Comparative Properties and Methods ofPreparation
`ofLipid Vesicles (Liposomes)," Ann. Rev. Biophys. Bioeng., 1980,
`vol. 9, pp. 467-508.
`Szoka, F., eta!., "Procedure for preparation ofliposomes with large
`internal aqueous space and high capture by reverse-phase evapora(cid:173)
`tion," Proc. Nat!. Acad. Sci. USA, 1978, vol. 75, No.9, pp. 4194-
`4198.
`Templeton, "Cationic Liposome-mediated Gene Delivery In vivo",
`Bioscience Reports, 2002, vol. 22, No.2, pp. 283-295.
`VanDerWoude, I., eta!., "Parameters influencing the introduction of
`plasmid DNA into cells by the use of synthetic amphiphiles as a
`carrier system," Biochimica et BiophysicaActa, 1995, vol. 1240, pp.
`34-40.
`Wheeler, et a!., "Stabilized Plasmid-lipid Particles: Constructions
`and Characterization," Gene Therapy, V. 6, pp. 271-281, 1999.
`Wilson, R., et a!.,
`"Counterion-Induced Condensation of
`Deoxyribonucleic Acid," A Light-Scattering Study, Biochemistry,
`1979, vol. 18, No. 11, pp. 2192-2196.
`Woodle, M.C., et a!., ''Versatility in lipid compositions showing
`prolonged circulation with sterically stabilized
`liposomes,"
`Biochimica et Biophysica Acta, 1992, vol. 1105, pp. 193-200.
`Zhu, N., et a!., "Systemic Gene Expression After Intravenous DNA
`Delivery into Adult Mice," Science, 1993, vol. 261, pp. 209-211.
`Elbashir, eta!.; Duplexes of21-nucleotideRNAsmediate RNA inter(cid:173)
`ference in cultmed mammalian cells; Nature; May 2001; pp. 494-
`498; vol. 411.
`* cited by examiner
`
`Moderna Ex 1001-p. 2
`Moderna v Arbutus
`
`

`

`-
`.!!J. a:;
`0
`"'C .e
`.... -s::
`cu
`CIJ
`:::J
`-
`~ 0
`~
`:.c
`C'G >
`
`1.2
`
`1
`
`0.8
`
`0.6
`
`0.4
`
`0.2
`
`0
`
`1
`
`Activity of SNALP on HT29 Cell Line
`
`10
`
`nM Total siRNA
`
`FIG. 1A
`
`......._ Sample 1
`......,....._ Sample 2
`~ Sample 3
`~ Sample 4
`-e- Sample 5
`-+- Sample 6
`Sample 7
`-+- Sample 8
`
`100
`
`Moderna Ex 1001-p. 3
`Moderna v Arbutus
`
`

`

`1.2
`
`1
`
`-.!!!.
`-a;
`0
`-c
`.s
`cu
`....
`(l)
`~ c:
`::::>
`~ 0.6
`
`0.8
`
`0 -~ 0.4
`:s cu
`>
`
`0.2
`
`Activity of SNALP on HT29 Cell Line
`
`.....,..._ Sample 10
`~ Sample 11
`-*- Sample 12
`
`--- Sample 9
`--- Sample 13
`
`-I- Sample 14
`Sample 15
`-+-- Sample 16
`
`0
`
`1
`
`10
`
`nM Total siRNA
`
`100
`
`FIG. 18
`
`Moderna Ex 1001-p. 4
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 3 of24
`
`US 8,058,069 B2
`
`Activity of SNALP Upon Intravenous Administration in Mice
`group mean± SD (n=4)
`
`T
`
`-r-T
`
`T
`
`IT
`
`TT T
`
`T
`
`-rT
`
`rr
`nil
`
`~ 2.5
`a:::
`<(
`~ 2.0
`E
`0
`~ 1.5
`(.9
`ci:i
`0
`~ 1.0
`.....
`Q)
`>
`:J 0.5
`
`FIG. 2
`
`Moderna Ex 1001-p. 5
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 4 of24
`
`US 8,058,069 B2
`
`3 .0 . . - - - - - - - - - - - - - - - - - - - - - - - - ,
`
`2.5
`
`0
`~
`0:::
`~ 2.0
`0:::
`E
`0 a. 1.5
`~
`Cri
`0
`~ 1.0
`
`I-
`(!)
`>
`:J
`
`0.5
`
`-47% vs PBS Control
`
`1
`
`-77% vs PBS Control
`
`0.0 - \ - - l - - - - - - - - l - . . , . - l - - - - - - . . . . J . ._ , - -L - - - - - -L . . . . . . j
`PBS
`2:30 SNALP 5x1 mg/kg 1:57 SNALP 5x0.1 mg/kg
`
`FIG. 3
`
`Moderna Ex 1001-p. 6
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 5 of24
`
`US 8,058,069 B2
`
`Activity of SNALP Upon Intravenous Administration in Mice
`group mean ±SO (n=4)
`
`2.0
`
`1
`
`0
`:.;::;
`co
`0::
`<( 1.5
`z
`0:::
`E
`0
`0.. 1.0
`<(
`~
`CCI
`0
`0..
`<(
`
`.... 0.5
`Q)
`.i::=
`....J
`
`0.0
`
`1
`
`1
`
`T
`
`I ~
`I
`II
`I
`PBS Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8
`
`l
`
`I
`
`1
`
`FIG. 4
`
`Moderna Ex 1001-p. 7
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 6 of24
`
`US 8,058,069 B2
`
`Activity of SNALP Upon Intravenous Administration in Mice
`group mean± SO (n=4)
`
`~
`
`~ 2.0 IT
`<( z
`~
`E 1.5
`0
`CL
`~
`~ 1.0
`0..
`<(
`1-
`~
`:.J 0.5
`
`FIG. 5
`
`Moderna Ex 1001-p. 8
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 7 of24
`
`US 8,058,069 B2
`
`Tolerability of IV 1:57 SNALP in Female BALB/c Mice, n=4, SO error
`140.----~----A-I-an-in_e_A_m-in-o-tr-an_s_re-ra_s_e ___________ 1_6_8~~~2~0-5------,
`D
`Aspartate Aminotransferase
`[&l
`Sorbital Dehydrogenase
`
`120
`
`lncr'd SDH, ALT levels indicate hepatocyte damage.
`96
`
`100
`
`81
`
`79
`
`53
`
`59
`
`.....1 80
`......
`;2
`
`60
`
`40
`
`20
`
`0
`
`r:o~
`<?
`
`FIG. 6A
`
`Tolerability of IV 1:57 SNALP in Female BALB/c Mice,
`SD
`
`Alanine Aminotransferase
`Aspartate Aminotransferase
`Sorbital Dehydrogenase
`
`2-fold increase ("3xULN") is considered clinically
`significant
`
`8.7
`
`7.9
`
`ro
`E
`0 z
`'0 -.E
`
`:.J .._
`
`(J)
`0.
`0.
`::>
`"C
`0
`1.1...
`><
`
`Lipid dose
`siRNA dose
`
`96
`7 mg/kg
`
`79
`
`99
`
`123
`9 mg/kg
`
`Gear PBS
`
`102
`
`FIG. 68
`
`Moderna Ex 1001-p. 9
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 8 of24
`
`US 8,058,069 B2
`
`FIG. 7A
`
`FIG. 7B
`
`FIG. 7C
`
`SNALP Activity From Different Manufacturing Processes
`IV, 48 h, ApoB-10048 U2/2 G1/2 (Dow),
`female BALB/c mice, n=4, SD error
`
`0
`~ 2.0
`0:::
`<(
`~ 1.5
`E
`0
`CL 1.0
`<(
`(!)
`
`cl:i 0 0.5
`
`0.
`<(
`
`SNALP Re-Formulation - Activity Assessment in BALB/c Mice
`48 h time point, n=4, SD error bars
`
`0.6
`0
`~ 0.5
`cb
`g_ 0.4
`~
`co 0.3
`E
`en
`~ 0.2
`Q)
`> 0.1
`~
`-0.1 PBS
`(i3
`0:::
`
`1:57
`Gear
`Press Pump
`0.05 mg/kg
`
`1:57
`Syringe
`Press Pump
`0.1 mg/kg
`
`::J
`32
`Ol
`
`E -e
`
`2 en
`Q)
`0
`.r.::
`()
`I§
`0
`I(cid:173)
`CO
`
`E en ro
`0::
`
`Efficacy of SNALP Formulations
`Fresh Terminal Plasma, n=4 female Balb/c mice, SD Error Bars
`70
`60
`50
`40
`30
`20
`10
`
`o~~~~~~~~~~~~~
`1:57
`Syringe
`Press Pump
`0.05 mg/kg
`
`Moderna Ex 1001-p. 10
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 9 of24
`
`US 8,058,069 B2
`
`I
`
`.--
`(!)
`tfl
`0
`0
`@
`0.
`tfl >
`.......-
`'<:!"
`N ....
`:::J
`0
`
`I -C\'l
`
`tfl
`tfl
`0
`....1
`.....
`..r:
`C)
`~
`>-
`"8 co
`
`Tolerability of 1157 SNALP IV in BALB/c Mice, n=4 (Grp1-3 n=3), SD error
`
`6%
`
`4%
`
`2%
`
`0%
`
`-2%
`
`PBS
`
`-4% .
`
`-6%
`
`9:1
`6:1
`9:1
`6:1
`6:1
`6:1
`9:1
`9mg/ 11 mg 11mg 13mg/ 15mg/ 17mg/ 11 mg/
`kg
`/kg
`. /kg . "kg . kg· . kg· ... ·kg·
`
`9:1
`7mg/kg
`. ......... 9:1 PBS ..
`
`11mg/kg
`
`FIG. 8
`
`Moderna Ex 1001-p. 11
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 10 of 24
`
`US 8,058,069 B2
`
`Tolerability of IV 1157 SNALP Prepared at 9:1 Lipid:Drug Ratio
`
`1 ,40Ci-r--------------------~
`
`1'
`
`1'
`
`~ Platelet Count
`
`PBS
`
`Gear PBS In Line at
`7 (71) mg/kg
`
`Gear PBS lnLine at
`11 (112) mg/kg
`
`FIG. 9
`
`Moderna Ex 1001-p. 12
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 11 of 24
`
`US 8,058,069 B2
`
`Tolerability of IV 1:57 Gear PBS In-Line SNALP in Female BALB/c
`Mice, n;;;;4, SO error
`
`lZl Alanine Aminotransferase
`D Aspartate Aminotransferase
`~ Sorbital Dehydrogenase
`Samples taken at 24 h time point except
`for last grp (48 h).
`
`893
`
`1,200
`
`1,000
`
`::::! 800
`::J
`
`600
`
`400
`
`200
`
`FIG. 10A
`
`Moderna Ex 1001-p. 13
`Moderna v Arbutus
`
`

`

`Tolerability of IV 1:57 Gear PBS In-Line SNALP in Female BALB/c Mice, n=4, SD error
`
`50
`
`40 .............. .
`
`Alanine Aminotransferase
`Aspartate Aminotransferase
`Sorbital Dehydrogenase
`
`2-fold increase ("3xULN") is considered clinically significant
`
`30
`
`20
`
`,_
`(])
`0..
`0..
`::>
`"'0
`0 u_
`I
`X
`
`siRNA dose
`Lipid dose
`PBS
`
`11 mg/kg
`9mg/kg
`112
`92
`9:1 SNALP (10)
`
`11mg/kg
`78
`
`15mg/kg
`13mg/kg
`107
`93
`6:1 SNALP (7)
`
`17mg/kg
`121
`
`11mg/kg
`112
`9:1 (10)
`
`FIG. 10B
`
`Moderna Ex 1001-p. 14
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 13 of 24
`
`US 8,058,069 B2
`
`FIG. 11A
`1157 Gear PBS In-Line SNALP Activity From Different Input Lipid:Drug Ratios
`IV, 48 h, ApoB-10048 U2/2 G1/2 (Dow}, female BALB/c mice, n=4, SD error
`
`3.0
`
`2-tailed T -test: p=0.078
`
`[
`
`1-35%
`
`SNALP Re-Formulation -Activity Assessment in BALB/c Mice
`DOW ApoB lead siRNA, 48 h time point, n=4, SD error bars
`LLQ =9%
`
`-28%
`
`0
`~ 2.5
`.::( z
`~ 2.0
`0
`fl.
`~ 1.5
`Cci
`0
`Q.
`.::( 1.0
`....
`ell >
`:.J
`
`0.5
`
`FIG. 118
`
`0.40
`
`I
`
`0.35
`g 0.30
`.-
`CD 8. 0.25
`::f.
`E o.2o
`Ill en
`0::: 0.15
`(])
`>
`~
`(i5
`0::
`
`0.10
`
`0.05
`
`0.00
`
`PBS
`
`Moderna Ex 1001-p. 15
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 14 of 24
`
`US 8,058,069 B2
`
`Efficacy of SNALP Reformulations
`Fresh Terminal Plasma, n=4 female Balb/c mice, SD Error Bars
`
`Cl)
`
`:!2 50
`5
`-e 4o
`
`60 -...J
`(I) -(/)
`
`(I)
`
`:g 30
`(.)
`$
`~ 20
`ro
`E
`(/) ro 10
`a::
`
`0
`
`PBS
`
`New 1:57 SNALP (7:1)
`
`FIG. 12
`
`Moderna Ex 1001-p. 16
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 15 of 24
`
`US 8,058,069 B2
`
`120%~--------------------------------------,
`-+- Luc
`-.tr- PLK1424
`
`115%
`
`......
`.s::
`.Q'l 110%
`~
`>-
`"'C 105%
`0 co
`
`100%
`
`95%
`
`90%~~--~~--~~~~--~~--~~--~~~
`8
`12
`16
`20
`24
`28
`32
`36
`40
`44
`48
`52
`56
`60
`Study Day
`
`FIG. 13
`
`Moderna Ex 1001-p. 17
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 16 of 24
`
`US 8,058,069 B2
`
`-..-- Control SNALP
`
`---<>- Active SNALP
`
`-ro
`>
`·~
`::I
`C/)
`
`80%
`
`60%
`
`40%
`
`20%
`
`0%,+-~~~~~--~~-,--~~--~~~r-~~~
`15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
`Days after seeding
`
`FIG. 14
`
`Moderna Ex 1001-p. 18
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 17 of 24
`
`US 8,058,069 B2
`
`2.0 -
`
`<(
`-
`~ 1.6
`E
`~ 1.2
`<(
`(!)
`.c 0.8
`~
`...J
`2: 0.4
`-
`c
`('lj
`~ 0.0
`
`T
`
`T
`
`T
`
`I
`
`I
`
`I
`
`PBS
`
`Luc
`
`PLK1424
`
`FIG. 15
`
`Moderna Ex 1001-p. 19
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 18 of 24
`
`US 8,058,069 B2
`
`1
`
`2
`
`3 4
`
`5 6 7
`
`8
`
`9 10
`
`200
`100
`
`.......- PLK1424 5'RACE
`product
`476bp
`
`FIG. 16
`
`Moderna Ex 1001-p. 20
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 19 of 24
`
`US 8,058,069 B2
`
`x200 mag
`
`x400 mag
`
`x200 mag
`
`x400 mag
`
`FIG. 17
`
`Moderna Ex 1001-p. 21
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 20 of 24
`
`US 8,058,069 B2
`
`6x2mg/kg Mean tumor volume
`
`-+-Luc-DMA
`-11- PLK-DMA
`-+-PLK-DSA
`
`(L)
`E
`::::l
`0
`> .._
`0
`E
`::::l
`I-
`
`0~--~----~----~----~--~----~----.---~
`8
`10
`12
`14
`16
`18
`20
`22
`24
`Days
`
`FIG. 18
`
`Moderna Ex 1001-p. 22
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 21 of 24
`
`US 8,058,069 B2
`
`PLK mRNA silencing in scid /beige mice treated with 2mg/kg 1 :57 SNALP against
`subcutaneous Hep3B tumors
`
`100%
`
`-15%
`
`-30%
`
`-37%
`
`-52%
`
`-65%
`
`0.70
`
`0.60
`
`0
`tii
`~ 0.50
`0
`•Q..
`<?5 0.40
`<E
`~ 0.30
`Q..
`i .J::
`c
`~ 0.20
`:2
`
`0.10
`
`FIG. 19
`
`Moderna Ex 1001-p. 23
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 22 of 24
`
`US 8,058,069 B2
`
`6x2mg/kg Mean tumor volume
`2200~----------------------------------------~
`
`Crossover dosing of Luc
`l
`cOMA group with 6 x 2
`m~kgPLKcDSA SNALP ~
`
`-+- Luc-DMA
`-+- PLK-DMA
`-+- PLK-DSA
`
`Initial 6 x 2 mg/kg
`SNALP
`
`2000
`
`1800
`
`(!) 1600
`E
`..=! 1400
`0
`> 0 1200
`~ 1000
`800
`
`600
`
`400
`
`200
`
`o+-~~~~~~4-~~~~~~~~~~~
`8 1 0 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
`Days
`
`FIG. 20
`
`Moderna Ex 1001-p. 24
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 23 of 24
`
`US 8,058,069 B2
`
`1.20
`
`Mean hPLK (1 :4) : hGAPDH (1 :40) minus "background"
`
`0.99
`
`0.61
`
`0.42
`
`0.23
`
`0.23
`
`- 1.00
`
`0
`
`'-""
`
`~ ....
`:::c 0.80
`0
`CL
`<:(
`(9
`.c 0.60
`..
`
`,-..
`
`~ .... -~ 0.40
`__J
`CL
`.c
`c:: co 0.20
`(].)
`::2:
`
`0.00
`
`24h Luc 1 :57 24h PLK 1:57 24h PLK 1 :57 96h PLK 1 :57 96h PLK 1 :57
`cOMA
`cOMA
`cOSA
`cOMA
`cOSA
`
`FIG. 21
`
`Moderna Ex 1001-p. 25
`Moderna v Arbutus
`
`

`

`U.S. Patent
`
`Nov. 15, 2011
`
`Sheet 24 of 24
`
`US 8,058,069 B2
`
`80
`
`70
`
`60
`
`-+- 1 :57 PEG-cO SA SNALP
`
`--.-- 1 :57 PEG-cOMA SNALP
`
`50
`
`Q)
`C/)
`0
`"C
`"C
`Q) 40
`t5
`Q) :s 30
`
`::::1(
`0
`
`20
`
`10
`
`0
`0
`
`1
`
`2
`
`3
`
`5
`4
`Time (h)
`
`6
`
`7
`
`8
`
`9
`
`FIG. 22
`
`Moderna Ex 1001-p. 26
`Moderna v Arbutus
`
`

`

`US 8,058,069 B2
`
`1
`LIPID FORMULATIONS FOR NUCLEIC ACID
`DELIVERY
`
`CROSS-REFERENCES TO RELATED
`APPLICATIONS
`
`T11e present application claims priority to U.S. Provisional
`Application No. 61/045,228, filed Apr. 15, 2008, the disclo(cid:173)
`sure of which is herein incorporated by reference in its
`entirety for all purposes.
`
`STATEMENT REGARDING FEDERALLY
`SPONSORED RESEARCH OR DEVELOPMENT
`
`Not applicable.
`
`NAMES OF PARTIES TO A JOINT RESEARCH
`AGREEMENT
`
`Not applicable.
`
`REFERENCE TO A "SEQUENCE LISTING"
`
`Not applicable.
`
`BACKGROUND OF THE INVENTION
`
`10
`
`2
`vehicles (Feigner, Scientific American, 276:102 (1997);
`Choun et a!., Current Opinion in Biotechnology, 6:698
`(1995)). For instance, cationic liposome complexes made of
`an amphipathic compound, a neutral lipid, and a detergent for
`transfecting insect cells are disclosed in U.S. Pat. No. 6,458,
`382. Cationic liposome complexes are also disclosed in U.S.
`Patent Publication No. 20030073640.
`Cationic liposome complexes are large, poorly defined
`systems that are not suited for systemic applications and can
`elicit considerable toxic side effects (Harrison eta!., Biotech(cid:173)
`niques, 19:816 (1995); Li eta!., The Gene, 4:891 (1997); Tam
`eta!, Gene Ther., 7:1867 (2000)).As large, positively charged
`aggregates, lipoplexes are rapidly cleared when administered
`in vivo, with highest expression levels observed in first-pass
`15 organs, particularly the lungs (Huang eta!., Nature Biotech(cid:173)
`nology, 15:620 (1997); Templeton eta!., Nature Biotechnol(cid:173)
`ogy, 15:647 (1997); Hofland eta!., Pharmaceutical Research,
`14:742 (1997)).
`Other liposomal delivery systems include, for example, the
`20 use of reverse micelles, anionic liposomes, and polymer lipo(cid:173)
`somes. Reverse micelles are disclosed in U.S. Pat. No. 6,429,
`200. Anionic liposomes are disclosed in U.S. Patent Publica(cid:173)
`tion No. 20030026831. Polymer liposomes that incorporate
`dextrin or glycerol-phosphocholine polymers are disclosed in
`25 U.S. Patent Publication Nos.
`20020081736
`and
`20030082103, respectively.
`A gene delivery system containing an encapsulated nucleic
`acid for systemic delivery should be small (i.e., less than
`about 100 nm diameter) and should remain intact in the cir-
`30 culation for an extended period of time in order to achieve
`delivery to affected tissues. This requires a highly stable,
`senun-resistant nucleic acid-containing particle that does not
`interact with cells and other components of the vascular com(cid:173)
`partment. The particle should also readily interact with target
`35 cells at a disease site in order to facilitate intracellular delivery
`of a desired nucleic acid.
`Recent work has shown that nucleic acids can be encapsu(cid:173)
`lated in small (e.g., about 70 nm diameter) "stabilized plas(cid:173)
`mid-lipid particles" (SPLP) that consist of a single plasmid
`40 encapsulated within a bilayer lipid vesicle (Wheeler et a!.,
`Gene Therapy, 6:271 (1999)). T11ese SPLPs typically contain
`the "fusogenic" lipid dioleoylphosphatidylethanolamine
`(DOPE), low levels of cationic lipid, and are stabilized in
`aqueous media by the presence of a poly( ethylene glycol)
`(PEG) coating. SPLPs have systemic application as they
`exhibit extended circulation lifetimes following intravenous
`(i.v.) injection, accumulate preferentially at distal tumor sites
`due to the enhanced vascular penneability in such regions,
`and can mediate transgene expression at these tun1or sites.
`The levels of trans gene expression observed at the tumor site
`following i.v. injection of SPLPs containing the luciferase
`marker gene are superior to the levels that can be achieved
`employing plasmid DNA-cationic liposome complexes (li(cid:173)
`poplexes) or naked DNA.
`Thus, there remains a strong need in the art for novel and
`more efficient methods and compositions for introducing
`nucleic acids such as siRNA into cells. In addition, there is a
`need in the art for methods of downregulating the expression
`of genes of interest to treat or prevent diseases and disorders
`such as cancer and atherosclerosis. The present invention
`addresses these and other needs.
`
`RNA interference (RNAi) is an evolutionarily conserved
`process in which recognition of double-stranded RNA
`(dsRNA) ultimately leads to posttranscriptional suppression
`of gene expression. This suppression is mediated by short
`dsRNA, also called small interfering RNA (siRNA), which
`induces specific degradation of mRNA through complemen(cid:173)
`tary base pairing. In several model systems, this natural
`response has been developed into a powerful tool for the
`investigation of gene function (see, e.g., Elbashir eta!., Genes
`Dev., 15:188-200 (2001); Hammond eta!., Nat. Rev. Genet.,
`2:110-119 (2001)). More recently, it was discovered that
`introducing synthetic 21-nucleotide dsRNA duplexes into
`manunalian cells could efficiently silence gene expression.
`Although the precise mechanism is still unclear, RNAi
`provides a potential new approach to downregulate or silence
`the transcription and translation of a gene of interest. For
`example, it is desirable to modulate (e.g., reduce) the expres(cid:173)
`sion of certain genes for the treatment of neoplastic disorders 45
`such as cancer. It is also desirable to silence the expression of
`genes associated with liver diseases and disorders such as
`hepatitis. It is further desirable to reduce the expression of
`certain genes for the treatment of atherosclerosis and its
`manifestations, e.g., hypercholesterolemia, myocardial inf- 50
`arction, and thrombosis.
`A safe and effective nucleic acid delivery system is
`required for RNAi to be therapeutically useful. Viral vectors
`are relatively efficient gene delivery systems, but suffer from
`a variety oflimitations, such as the potential for reversion to 55
`the wild-type as well as immune response concerns. As a
`result, nonviral gene delivery systems are receiving increas(cid:173)
`ing attention (Worgall et a!., Human Gene Therapy; 8:37
`(1997); Peeters eta!., Human Gene Therapy, 7:1693 (1996);
`Yei eta!., Gene Therapy, 1:192 (1994); Hope eta!., Molecular 60
`Membrane Biology, 15:1 (1998)). Furthennore, viral systems
`are rapidly cleared from the circulation, limiting transfection
`to "first-pass" organs such as the lungs, liver, and spleen. In
`addition, these systems induce innmme responses that com(cid:173)
`promise delivery with subsequent injections.
`Plasmid DNA-cationic liposome complexes are currently
`the most connnonly employed nonviral gene delivery
`
`65
`
`BRIEF SUMMARY OF THE INVENTION
`
`The present invention provides novel, serum-stable lipid
`particles comprising one or more active agents or therapeutic
`agents, methods of making the lipid particles, and methods of
`
`Moderna Ex 1001-p. 27
`Moderna v Arbutus
`
`

`

`US 8,058,069 B2
`
`4
`ing to a mammalian subject a lipid particle described herein
`such as a nucleic acid-lipid particle (e.g., SNALP).
`In a further aspect, the present invention provides methods
`for treating a disease or disorder in a mammalian subject in
`need thereof, the method comprising administering to the
`manm1alian subject a therapeutically effective amount of a
`lipid particle described herein such as a nucleic acid-lipid
`particle (e.g., SNALP).
`Other objects, features, and advantages of the present
`10 invention will be apparent to one of skill in the art from the
`following detailed description and figures.
`
`BRIEF DESCRIPTION OF THE DRAWINGS
`
`3
`delivering and/or administering the lipid particles (e.g., for
`the treatment of a disease or disorder).
`In preferred embodiments, the active agent or therapeutic
`agent is fully encapsulated within the lipid portion of the lipid
`particle such that the active agent or therapeutic agent in the
`lipid particle is resistant in aqueous solution to enzymatic
`degradation, e.g., by a nuclease or protease. In other preferred
`embodiments, the lipid particles are substantially non-toxic
`to mammals such as humans.
`In one aspect, the present invention provides lipid particles
`comprising: (a) one or more active agents or therapeutic
`agents; (b) one or more cationic lipids comprising from about
`50 mol % to about 85 mol % of the total lipid present in the
`particle; (c) one or more non-cationic lipids comprising from 15
`about 13mol% to about 49.5 mol% of the total lipid present
`in the particle; and (d) one or more conjugated lipids that
`inhibit aggregation of particles comprising from about 0.5
`mol % to about 2 mol % of the total lipid present in the
`particle.
`More particularly, the present invention provides serum(cid:173)
`stable nucleic acid-lipid particles (SNALP) comprising a
`nucleic acid (e.g., one or more interfering RNA molecules
`such as siRNA, aiRNA, and/or miRNA), methods of making
`the SNALP, and methods of delivering and/or administering 25
`the SNALP (e.g., for the treatment of a disease or disorder).
`In certain embodiments, the nucleic acid-lipid particle
`(e.g., SNALP) comprises: (a) a nucleic acid (e.g., an interfer(cid:173)
`ing RNA); (b) a cationic lipid comprising from about 50 mol
`%to about 85 mol% of the total lipid present in the particle; 30
`(c) a non-cationic lipid comprising from about 13 mol% to
`about 49.5 mol % of the total lipid present in the particle; and
`(d) a conjugated lipid that inhibits aggregation of particles
`comprising from about 0.5 mol% to about 2mol% of the total
`lipid present in the particle.
`In one preferred embodiment, the nucleic acid-lipid par(cid:173)
`ticle (e.g., SNALP) comprises: (a) an siRNA; (b) a cationic
`lipid comprising from about 56.5 mol% to about 66.5 mol%
`of the total lipid present in the particle; (c) cholesterol or a
`derivative thereof comprising from about 31.5 mol% to about 40
`42.5mol% of the total lipid present in the particle; and (d) a
`PEG-lipid conjugate comprising from about 1mol% to about
`2mol% of the total lipid present in the particle. This preferred
`embodiment of nucleic acid-lipid particle is generally
`referred to herein as the "1 :62" formulation.
`In another preferred embodiment, the nucleic acid-lipid
`particle (e.g., SNALP) comprises: (a) an siRNA; (b) a cat(cid:173)
`ionic lipid comprising from about 52 mol% to about 62 mol
`% of the total lipid present in the particle; (c) a mixture of a
`phospholipid and cholesterol or a derivative thereof compris- 50
`ing from about 36 mol % to about 4 7 mol % of the total

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket