throbber
1111111111111/IIHlllrll'~mr,111111 II 111111111111111
`3 0611 00098 2817
`
`IPR2019-00129
`Qualcomm 2030, p. 1
`
`

`

`l t
`
`Design of Analog CMOS
`Integrated Circuits
`
`rd
`
`Behzad Razavi
`Professor of .Electrical Engineering
`University of California, Los Angeles
`
`llLINOIS INSTITUTE OF TECHNOLOGY
`PA.UL V. GA.LV!N LIBRARY
`35 \~EST 33RD STHEET
`CHICAGO, IL 60616
`
`Boston Burr Ridge, IL Dubuque, IA Madison, WI
`New York San Francisco St. Louis
`Bangkok Bogota Caracas Lisbon London Madrid Mexico City
`Milan New Delhi Seoul Singapore Sydney Taipei Toronto
`
`IPR2019-00129
`Qualcomm 2030, p. 2
`
`

`

`McGr~w-Hill Higher Education zz
`
`A Divisio11 ofTheMcGru1v•HilLCur11pt111i~)
`
`DESIGN OF ANALOG CMOS INTEGRATED CIRCUITS
`Published by McGraw-Hill, an imprint of The McGraw-Hill Companies , Inc. 1221 Avenue of the Americas,
`New York, NY, 10020. Copyright© 2001 , by The McGrawaHill Companies, Inc. All rights reserved. no part of
`this publication may be reprodut:ed or distributed in any form or by any means, or stored in a database or retrieval
`system, without the prior writren consent of The McGraw-Hill Companies, Inc. , including, but not limited to, in
`any network or other ciectronic storage or transmission, or broadcast tor distance learning.
`Some ancillaries, including electronic and print components, may not be available to customers outside the United
`States.
`
`This book is printed on acid-free paper.
`
`7 8 9 0 FGR/FGR O 9 8 7
`
`ISBN-13: 978-0-07-238032-3
`ISBN-10: 0-07-238032-2
`Vice president/Editor-in-chief: Kevin T. Kane
`Publisher: T'l10111as Casson ·
`Sponsoring editor: Caiherine Fields
`Developmental editor: Mic/ie/le L. Flomenh.oft
`Senior marketing manager: John T Wannemach.er
`Project manager: Jim. Labeots
`Production supervisor: Gina Hangns
`Senior designer: Kiera Cu1111ingh.am
`New mtdia: Phillip Meek
`Compositor: illleractive Composition Corporation
`Typeface: 10/12 Times Roman
`Printer: Quebecor World Fairfield
`
`Library of Congress Cataloging-in-Publication Data
`
`Razavi, Behzad.
`Design of analog CMOS integrated circuits/ Behzad Razavi.
`p. cm.
`ISBN 0-07-238032-2 (alk. paper)
`l. Linear inlegrale<l t:ircuits-Design and construction. 2. Metai oxide semiconductors,
`Complementary. I. Title.
`
`TK7874.654. R39 2001
`621.39'732-dc2J
`
`00-044789
`
`IPR2019-00129
`Qualcomm 2030, p. 3
`
`

`

`Contents
`
`About the Author. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
`Preface. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`1x
`xi
`
`1 Introduction to Analog Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`1 . 1 Why Analog? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`1.2 Why Integrated? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`1.3 Why CMOS?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`1.4 Wny This Book? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`1.5 General Concepts . .... ... ................... . .. ................... . . ,
`1.5.1 Levels of Abstraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`J .5 .2 Robust Analog Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`1
`1
`6
`6
`;
`7
`7
`7
`
`9
`2 Basic lVIOS Device Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`l 0
`2.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`10
`2.1 . l MOSF'.2T as a Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`2.1.2 MOSFET Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
`2.1.3 MOS Symbols............................ . .... . ....... . .......
`12
`2.2 MOS IJV Characlerislics. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`13
`2:2.1 Threshold Voltage . ....................... . ....... . ..... . .. . . ...
`13
`2.2.2 Derivation of Lrv Characteristics.. ... ........... . .. . ...... .... . . .
`15
`2.3 Second-Order Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
`2.4 MOS Device Models. . ................................. ...... .... . ... 28
`2.4.1 MOS Device Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
`2.4.2 MOS Device Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`29
`2.4.3 MOS Small-Signal tv!odel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
`2.4.4 MOS SPICE models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
`2.4.5 NMOS versus PMOS Devices ... ·.:':;." ·.·. .......................... 37
`2.4.6 Long-Channel versus Short-Ch~'iiheh:5evices.. . . . . . . . . . . . . . . . . . . . . 38
`
`xv
`
`IPR2019-00129
`Qualcomm 2030, p. 4
`
`

`

`xvi
`
`Contents
`
`3 Single-Stage Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
`3.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`47
`3.2 Common-Source Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`48
`3.2. l Common-Source Stage with Resistive Load...... . .. . ..... ... .... . 48
`3.2.2 CS Stage with Diode-Connected Load.. ... . ..... .. . ........... . .. 53
`3.2.3 CS Stage with Current-Source Load .... . . . . . . . . . . . . . . . . . . . . . . . . . . 58
`3.2.4 CS Stage with Triode Load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
`3.2.5 CS Stage with-Source Degeneration .... . . ........... . . .. ....... . .
`60
`67
`3.3 Source Follow·cr . . ....... .
`3.4 Common-Gale Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`76
`3.5 Cascade Stage . ... ... ....... .. .. . .. .. . , .. , .... ,. . . .. . .. . ........ . .. . .
`83
`3.5. l Folded Cascode..... .. . .. . . ... .. . .... . . . .. . . ... ....... . ........ 90
`3.6 Choice of Device Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`92
`
`4 Differential Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
`4.1 Single-Ended and Differential Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
`4.2 Basic Differential Pair .. ... · . ... .. ... ........ . ..... .......... ...... ..... 103
`104
`4.2.1 Qualitative Analysis ...... . .... .... .. .
`4.2.2 Quantitative Analysis.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
`4.3 Common-Mode Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l 18
`4.4 Differential Pair with MOS Loads.. ..... .. ... .... ..... . .... . .. . .. .. . . .. 124
`' ",,.
`4.5 Gilbert Cell .. . ..... ....... .. ... ...... . .. . ..... . ... .. ... . . ..... .. .. . . .
`11-Q
`
`5 Passive and Active Current Mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
`5.1 Basic Current Mirrors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
`5.2 Cascode Current MiITors ..... .. . . .......... .... . ... ........ . .. . .... ... l 39
`5.3 Active CmTent :tv1in-ors .. . . .......................... . ... . .... .... .. . .. 145
`5.3.l Large-Signal Analysis . ....... . .. .... .. . .... .. ......... . ....... .
`149
`Small-Signal Analysis ........ .. . . .. .. .. . .... ... . . . . .. ... . .. ... .
`15 1
`5.3.3 Conm10n-Mode Properties . ..... . ..... . . ...... . ........ ... ...... 154
`
`6 Frequency Response of Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
`6.1 General Considera tions . . . .. ...... . ... . . . . ... . .. . ...... .. ....... ... . , . 166
`6.1. l Miller Effect . . . . . . .. . .. . . . . . .. . . .. . . . . . . .. .. . .. . . . . . . .. . . . . . .. . 166
`6.1.2 Association of Poles with Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
`6.2 Common-Source Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
`6.3 Source Followers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
`6.4 Common-Gate Stage ...... . . ...... . .. , . .. .. : . . . . . . . . . . . . . . . . . . . . . . . . . 183
`6.5 Cascade Stage . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
`6.6 Differential Pair . ... ... ... . . . ..... .... . .. .. . .. ....... . ................ 187
`Appendix A: Dual of Miller's Theorem .. · .. ... . . . .... . .... . . . .. .. . . .... .. .. 193
`
`IPR2019-00129
`Qualcomm 2030, p. 5
`
`

`

`Contents
`
`xvii
`
`7 Noise . . . . .. ....... ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
`7.1 Statistical Characteristics of Noise.. .. .. . .. . .. . .. . . .... . .... . . . . ....... 201
`7. i. l Noise Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
`7.1.2 Amplitude Distribution . ... . , , , , . .. , . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
`7 .1.3 CoD'elated and Uncon-elated Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
`7 .2 Types of Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
`7.2.1 Thermal Noise .. .. .... . . ... : . . . .. . . .. . . .. · .. . ....... .. ........ .. 209
`7.2.2 Flicker Noise . .. . . . . . .. . .. ... ...... . .... . . ... .. ....... . .... .. .. 21S
`7.3 F.epresentatic1n c,f Nc,ise 1n Circuits . . . . ..... . . . . . .. ... . .. . . .... . .... ... 218
`7.4 Noi se in Single-~tage Amplifiers... . ..... . ... . .... . . . ................. 224
`7.4. 1 Common-Source Stage ......... . . . ....... .. .. , .,., ... . ....... .. 225
`7.4.2 Common-Gate Stage ...... . . .. ... . .. ... . . . . .. . . . .. . ...... . .. . . . . 228
`7.4.3 Source Followers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1
`7 .4.4 Cascade Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
`7.5 Noise in Differential Pairs . .... . . . . . . . .. .. . ... . ... . . . ............ . .. . .. 233
`7.6 Noise Bandwidth . . . . .. . . ... .. .. .............. .. . . . . .. . .. . .. ... .... .. . 239
`
`8 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
`8.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
`8.1. 1 Properties of Feedback Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
`8.1.2 Types of P\rr1plifiers . . . . .. . . . . .... . _ . .. .. . .. . .. . , . . . . . . . . . . . . . . . . 254
`8.2 Feedback Topologies . ... ... ... ... . . .. . ... . . . .. . ... . . . .. . ... . ..... .. . . 258
`8.2.1 Voltage-Voltage Feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 8
`8.2.2 Current-Voltage Feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
`8.2.3 Voltage-Current Feedback .. ........... .. . . . ' : . . . . . . . . . . . . . . . . . . . . 266
`8.2.4 Current-Current Feedback.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
`8.3 Effect of Loading .. .. ... . . ... . ..... . .. ... . . , . . . . . . . . . . . . . . . . . . . . . . . . . 270
`8.3.1 Tvvo-Port i'\Jetvlork iv1o<lels . . .. . .. . . , . . .. . .... . . .. . . .. . .. , , , . . . . . 270
`8.3.2 Loading in Voltage-Voltage Feedback . . . . ,.. . .. . ..... .... ..... . .. 272
`8.3.3 Loading in Current-Voltage Feedback.. . . . .. ... .. .. . ..... . .. . .. . . 275
`8.3.4 Loading in Volmge-Current Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
`8.3.5 Loading in Current:Current Feedback . . . . .. ...... . . .. . . .. . . . .. . , . 28 i
`8.3.6 Summary of Loading Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
`8.4 Effect of Feedback on Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
`
`9 Operational Amplifiers: . .. _,. ......... , . . . . . .... .. .. ; . .. ... .. .. .. .. .. 291
`9 .1 General J; onsiderntions .. , : . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . 29 l
`9.1. ( P~rformar,ce Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
`9.2 One-Stage Op Amps .... ;}·<· , .• ; . . • . .. : ... .. ... . .. . . . .. . ... : ........... . .. 296
`9.3 Two-Stage OpAmps . . .. . , ... . .. . ... . .. . ........... . . . .. ... .. . ... . ... 307
`· 9·.4 Gain Boosting . . .. . , . .. :; i , .. ,, . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . • . . . . . . . . 309
`9 .5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
`9.6 Common-Mode Feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
`
`IPR2019-00129
`Qualcomm 2030, p. 6
`
`

`

`xviii
`
`Contents
`
`9.7 Input Range Limit(cid:143) tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
`9.8 Slew Rate ............ . · . ............... . . . .. , . . . . . . . . . . . . . . . . . . . . . . . . 326
`9.9 Power Supply Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
`9.10 Noise in Op Amps ... . .... ... . . ... . ............. . . ........ ...... .... 336
`
`10 Stability and Frequency Compensation ... . ... ................... __ . . 345
`10.1 General Considerations . . .. . . ........ . . . . . ... . .. .. . .... . . . . .... .. .. . . 345
`10.2 Multipole Systems ... .. . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
`10.3 Phase Margin ......... . . . . . . ... . .. . ...................... .... ...... . 351
`10.4 Frequency Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
`10.5 Compensation of Two-Stage Op Amps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
`l 0.5. l Slewing in Tw·o-Stage Op Amps... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
`10.6 Other Compensation Techniques .. .. ...... . ...... . .... . ............... 369
`
`11 Bandgap References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
`11. l General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
`11.2 Supply-Independent Biasing . . . .. ............ .. ..... .. .... ..... , . . . . . 377
`1 l.3 Temperature-Independent References..... . ... . .... . . . . ... . .. . ... .. .. . 381
`,.,,,,
`11.3.1 NP0-<1ti'1P -'T'r ""lt-:,n"'
`.JC .l
`..... O_" ... T .....
`11.3.2 Positive-TC Voltage . . .... . ....... .. ..... . ..... ... . . . ..... .. .. 382
`11.3.3 Bandgap Reference .......... . . ..... . ................ . ........ 384
`11.4 PTAT Current Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
`11.5 Constant-Gm Biasing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
`11 .6 Speed and Nnise lssues.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
`11.7 Case Study . .. ..... . .......... . ....... .. ...... . . . . . .. . .. .. ... . .. . . . . 397
`
`.o.
`
`•
`
`.&. . ._
`
`1 V.J l.UE,"-'
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`,
`
`•
`
`•
`
`•
`
`•
`
`o
`
`o
`
`•
`
`,
`
`•
`
`o
`
`o
`
`o
`
`,
`
`o
`
`o
`
`•
`
`o
`
`o
`
`•
`
`o
`
`•
`
`•
`
`•
`
`•
`
`o
`
`•
`
`o
`
`o
`
`,
`
`o
`
`o
`
`,
`
`o
`
`12 Introduction to Switched-Capacitor Circuits . . . . . . . . . . . . . . . . . . . . . . . 405
`12.1 General Considerations.... . . . ................. . . . .. . ......... . ...... 405
`12..2 Sampling SwiLches .... .. . ..... . .... . ................................ 410
`12.2.1 MOSFETS as Switches ........ ..... . ..... . . ... ..... .. ........ 410
`12.2.2 Speed Considerations . . ...... .. .. . . . . . ... ... . ................. 414
`12.2.3 Precision Considerations .......... .. ....... . . . . . .. . ........... 417
`12.2.4 Charge Injection Cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
`12.3 Switched-Capacitor Amplifiers... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423·
`12.3.1 Unity-GainSampler/Buffer .... ... ... .. . .. ....... .. . .. . ....... 424
`12.3.2 Noninverting Amplifier . .. .. .. . .. ... .. . . . .. .. .. . ...... . ....... 432
`12.3.3 Precision Multiply-by-Two Circuit .... . .. ............ . . .... .. . . 438
`12.4 Switched-Capacitor lntc.grator ..... .. .. .. : . , . . . . . . . . . . . . . . . . . . . . . . . . . . 439
`12.5 Switched-Capacitor Common-Mode Feedback . .. . ............ .. .. . .... 442
`
`13 Nonlinearity and Mismatch ..... . ....... , :'. . . . . . . . . . . . . . . . . . . . . . . . . 448
`. 13.1 Nonlinearity . . ............ . ......... . .. . • .............. . ....... . .... . 448
`13 .1.1 General Considerations . .... . , ,: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
`
`IPR2019-00129
`Qualcomm 2030, p. 7
`
`

`

`Contents
`
`xix
`
`13. l .2 Nonlinearity of Differential Circuits ... .. . . .......... ... . .. ..... 452
`13.1.3 Effect of Negative Feedback on Nonlinearity .......... . ..... . ... 454
`13.1.4 Capacitor Nonlinearity ........... . ... .. . .. ... .. .. . . . .... ..... 457
`13.1.5 Linearization Techniques ... .. .... .. ... .... ........... . .. . .... 458
`13.2 Mismatch ............ ... . .. .... . . . . . ..... . ............. .. . ......... 463
`13 .2. 1 Offset Cancellation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 71
`13.2.2 Reduction of Noise by Offset Cancellation . . .. ... . .. . .. .. .. . .... 476
`13.2.3 Alternative Definition of CMRR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
`
`14 Oscillators . . _ . ........... , .. .. . .. ~ . . ~ ... ....... . . ... . . . ... ........ 482
`14.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
`14.2 Ring Oscillators ...... . ..... ... . ......... .. . . .. ......... .... .. . . . .... 484
`14.3 LC Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
`14.3 .1 Crossed-Coupled Oscillator .................. ·... ....... .......
`499
`14.3.2 Colpitts Oscillator ............. . .... . ....... . . . .. . ... . ...... .. 502
`14.3.3 One-Port Oscillators ....... ..... ... . . .. ...... .. .. . .. ... . ...... 505
`14.4 Voltage~Controlled Oscillators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
`14.4.1 Tuning in Ring Oscillators .... . ..... .. ..... ... ......... ... .... 512
`14.4.2 Tuning in LC Oscillators .......... . ....... . . . . . . ....... . ...... 521
`14.5 Mathematical Model of VCOs ... ... .. .... .. . .. ... . ... ....... . .. ... ... 52:'i
`
`15 Phase-Locked Loops . .... .... ....... .... . .............. . ... . . ..... 532
`15,1 Simple PLL .... . . ... ..... . . .. .. .. . ... . . .. .. . . .. . ........ ..... . ..... 532
`15 .1. 1 Phase Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
`15.1.2 Basic PLL Topology .. ·........................ . . . . .. .... .... . 533
`15.1.3 Dynamics of Simple PLL .... . ........ . . . . ............... ..... 542
`15,.2 Charge-Pump PLLs . ............ . . .. ... . ..... ..... .. , , . . . . . . . . . . . . . . 549
`15 .2.1 Problen1 of Lock .. t\cquisition ........... .. . , .. .. . ..... ....... .. 549
`15.2.2 Phase/Frequency Detector and Charge Pump ., .... .. . . , . ....... . 550
`15.2.3 Basic Charge-Pump PLL . . .. .. ... ........... ·,. .. .. . . . . . . . . . . . . 556
`15.3 l'~onideal Effects in PLLs. . . .. . .. . .. ... . . . . .... .. ........... .. .. . .... 562
`15.3.l PFD/CPNonidealities . .... . ......... ...... ...... · ... .. . .... . . . _ 562
`15.3.2 Jitter in PLLs ............ . . ... . ... . .. . .. . .... ..... . .... . ..... 567
`15.4 Delay-Locked Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
`15.5 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572
`15.5.1 Frequency Multiplication and Synthesis .. .. ......... ....... . ... 572
`15.5.2 Skew Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
`15.5.3 Jitter Reduction .... ................................ .. .. ... . .. 576
`
`16 Short-Channel Effects and Device Models . ... . ... . .... . .... ...... . . 579
`16.1 Scaling Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
`16.2 Short-Channel Effects ..................... . .. ... .'............... ... . 583
`
`IPR2019-00129
`Qualcomm 2030, p. 8
`
`

`

`.,,xx
`
`Contents
`
`16.2.1 Threshold Voltage Variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
`16.2.2 Mobility Degradation with Vertical Field.... . ... ... .. . ...... . . . 585
`i 6.2.3 Velocity Saturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
`16.2.4 Hot Carrier Effects... ... . .. ... . ... . .... .. . .. . .. . . ..... ....... 589
`16.2.5 Output Impedance Variation with Drain-Source Voltage ......... . 589
`16.3 MOS Device Models ......... .. ....... ................. . ............ 591
`16.3.1 Level 1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
`16.3.2 Level 2 Model ......... .. .. .... .... . .- .... .. .......... ..... .. . 593
`16.3.3 Level 3 Model ... .. . ..... . .... . ..... ... . ..... ... ............ . <:()<:
`. ,:-,.)
`16.3.4 BSITvi Series . . . . . . . . .. .... ..... .... .. . ..... ... .. . . ... ...... .. 596
`16.3.5 Other Models ..... .. . .. .... . . .... . ..... . . . .. . . . ..... . .. .. .... 597
`16.3.6 Charge and Capacitance J\.1qdeling . .... . .... . .... .. ............ 598
`16.3.7 Temperature Dependence................ . ... . ........ .. ... . .. 599
`Process Corners ......... . .......... . ........... . ........... .. ...... . 599
`1 C. A
`iv . ...,.
`16.5 Analog Design in a Digital World ............. . .... . . ......... .. . . . . . . 600
`
`17 CMOS Processing Technology . ... . ................ ........... ..... 604
`17 .1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
`17 .2 Wafer Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
`606
`17.3
`Photolithography ...... .. . ....... ... . ... .. ...... . ..... . .. . ... . ..... . .
`,~ 4
`Oxidation ........ . . . ... ....... . ... . ......... ... . .... . . .... .. .. ... . .
`608
`1 I .
`Ion Impl antation . .. . . . , ... _ ........ . . ........ . . .... . .. ... ... .. . ... . .
`17.5
`t:J)Q
`vvu
`17.6
`Deposition and Etching .......... . .. . .. .. ...... . . .... ... ... .. ..... .. .
`L1 1 Ull
`Device Fabrication .. .... . .... .. .................................... .
`17.7
`611
`17. 7 .1 Active Devices ............... .. ... . ............... . . ... .. .. . .
`611
`17.7.2 Passive Devices .... . ... . ............................ . . . . .. ... 616
`17.7.3 Interconnects....... . .................. ... . . . ..... .. . .. . . .. .. 624
`17.8 Latch-Up . . . ........................ . ................ . .. ... . ........ 627
`
`18 Layout and Packaging ........ .... . ..... .. . .... . . .. . ......... . .... 631
`18.1 General Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
`18.1.1 Design Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
`18. l .2 Antenna Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
`18.2 Analog Layout Techniques .. . .. . ..... .. .. .. . . ........... ..... ; ... . ... 635
`18.2.1 Multifinger Transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635
`18.2.2 Symmetry ... . .. .......................... : . . . . . . . . . . . . . . . . . . 637
`18.2.3 Reference Di'.stribution.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
`18.2.4 Passive Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
`18.2.5 lnterconnects .. .... .. .... .. ... . . ..... . ............ . .......... 653
`18.3 Substrate Coupling..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
`
`Index . ............................... · .. . .... .. . .. . . . ..... .... .. . .. 677
`
`IPR2019-00129
`Qualcomm 2030, p. 9
`
`

`

`Sec. 6.5
`
`Cascode Stage
`
`185
`
`If a common-gate stage is driven by a relatively large source impedance, then the output
`impedance of the circuit drops at high frequencies . This effect is better described in the
`context of cascode circuits.
`
`6.5 Cascode Stage
`
`As explained in Chapter 3, cascoding proves beneficial in increasing the voltage · gain of
`amplifiers and the output impedance of current sources while providing shielding as well.
`The invention of the cascode (in the vacuum tuqe era), huweVef, was motivated by the
`need for high-frequency amplifiers with relatively high input impedance. Viewed as a cas(cid:173)
`cade of a corrtlTion-source stage and a con1n1on.-gate stage, a cascade circuit offers the
`speed of the latter-by suppressing the Miller effect- and the input impedance of the
`former.
`Let us consider the cascade shown in Fig. 6.25, first identifying all of the device ca(cid:173)
`pacitances. At node. A, Ccs1 is connected to ground and Ccm to node X. At node X,
`Cv 81 , Cs 82 , and Ccs2 are tied to ground, and at node Y, Cvs2, Cc02, and CL are con(cid:173)
`nected to ground. The Miller effect of Cc Dl i.s determined by the gain from A to X. As an
`approximation, we use the low-frequency value of this gain, which for low values of RD
`(or negligible channel-length modulation) is equal to -gm1/(gm2 + gmbz) . Thus, if M1 and
`M 2 have roughly equal dimensions, CcDl is multiplied by approximately 2 rather than the
`large voltage gain in a simple comn1on-source stage. We therefore say Miller effect is less
`significant in cascade amplifiers than in common-source stages. The pole associated with
`node A is estimated as
`
`Wp,A = Rs [ccs1 + (1 +
`gml
`gm2 + gmb2
`
`1
`
`) CGm].
`
`(6 .64)
`
`.J..
`
`M1 I Coe1 + Cse2
`-
`
`A
`
`ICGS1
`
`-
`
`Figur~6.25 High-frequency model of
`a cascade stage.
`
`IPR2019-00129
`Qualcomm 2030, p. 10
`
`

`

`186
`
`Chap. 6
`
`Frequency Response of A.mp!ifiers
`
`We can also attribute a pole to node X. The total capacitance at this node is roughly
`equal to 2CcDI + CDst + Csm + Ccs2, giving a pole
`f?m2 + gmb2
`2CcD! + CDBl + CsB2 + Ccs2
`Finally, the output node yields a third pole:
`
`Wp ,X =
`
`(6.65)
`
`r f.. f..f.. \
`
`\ V ,VV /
`
`The relative magnitudes of the three poles in a cascode circuit depend on the actmtl
`design parameters, but wp ,x is typically chosen to be farther from the origin than the other

`A'
`' '
`. . r.1


`1

`lf) h' · h
`~
`1wo. _ s exp1a1ned 1n l..._., ... 1apter .=- .... , L.:.1s c .. ;01ce p ... ays an 1mportant ro1c H1 tne staou1ty 01 op
`amps.
`But what if Ro in Fig. 6.25 is replaced by a current SO\.!rce so as to achieve a higher de
`gain? We know from Chapter 3 that the impedance seen at node X reaches high values if the
`load impedance at the dl'ain of M 2 is large. For example, Eq. (3.11 0) predicts that the pole
`cit node X · may be quite lo'wer than (g1112 + gmb2 ) / C x if RD itseif is the output impedance
`of a PMOS cascode current source. Interestingly, however, the overall transfer function is
`negligibly affected by this phenoiih::-.IJun. This can be better seen by an example.
`
`1
`
`•
`
`1
`
`' . , . .
`
`Consider the cascode stage shown in Fig. 6.26(a), where the load resistor is replaced by an ideal
`
`If i7
`
`M2J_ •
`I
`·-
`-· I
`l '02
`vb ---i~
`XHI I
`I
`Rs
`r-AM--it'.M1 ~ Cv
`- I . l "
`I -
`If ~+
`'
`--
`~in V
`-::-
`J. -
`-
`
`I
`• o V~ .. +
`vu,
`=6
`.,- Cy
`J_
`
`(a)
`
`(b)
`
`Figure 6.26 Simplified model of a cascode stage.
`
`cuJTent source. Negiecting the capacitances associated with Mi, represen1ing V111 and M1 by a Norton
`equivalent as in Fig. 6.26(b), and assuming y = 0, compute the transfer function.
`Solution
`fin, we have Vx = - ·(V0 urCys + f in)/(Cxs),
`Since the current through Cx is equal t? -V0 urCrs -
`and the small-signal drain current of M2 is -g,,)2(- V0 u1Cys -
`fin )/(Cxs). The current through ro2
`
`IPR2019-00129
`Qualcomm 2030, p. 11
`
`

`

`Sec. 6.6
`
`Differential Pair
`
`187
`
`is then equal to -V0 utCys - gm2CVaiaCys + IinJ/(Cxs) . Noting that Vx plus the voltage drop across
`ro2 is equal to Vaut , we write
`
`]
`/"
`' V
`., _L I ) gm2
`,...,
`1,,7
`-ro2 L' ~~outLY.:,
`in - - -r out1...,yS
`,
`Cxs
`
`-
`
`\ 1
`I /
`/"
`(TT
`•1;u11...,YJ,
`in ; - - =
`Cxs
`
`n
`
`V:
`ow-
`
`(6.67)
`
`That is,
`
`Vaut
`
`-
`
`'
`
`, -
`
`,._,.,_,
`
`,
`
`(6.68)
`
`(6.69)
`
`(6.70)
`
`C
`1 -i-- (1 -+- o_~,,rnl"I )~ -t- rv r 1y·,S
`' - .L
`1 Qll~s.,, • V£..,' r
`~x
`\:vhicb, for gm2ro2 >> 1 and g7,,.,,2ro2Cy/Cx >> 1 (i.e., Cy > Cx)~ reduces to
`
`and hence
`
`Vaut
`ft.~
`
`l
`gm2
`:::::: - r:vs Cy
`_
`-C gm2 + Cys
`· "
`,x
`
`Vaut
`Vin
`
`l
`gmlgm2
`CyCxs gm2/Cx + s
`
`The n1agnitude of the pole at node X is still given by gm2/ C x . This is because at high frequencies
`(as Vile approach this pole) Cy shunts the output node~ dropping the gain and suppressing the ~1i1ler
`effect of r02 .
`
`---------------------------·''""""""..,_""""'""""'"""""""""""·=
`
`If a cascode structure is used as a current source, then ihe variation of its output impedance
`with frequency is of interest. Neglecting CGDl and Cy in Fig. 6.26(a), we have
`
`Zau t = (1 + gm2r02)Zx + r02,
`
`(oc ,...,1 \
`
`. I l)
`
`where Zx = ro1 ! l(Cxs')·t: Thus, Zaut contains a pole at (ro1 Cx)- 1 and falls at frequencies
`higher than this value:
`
`6.6 Differential Pair
`
`The versatility of differential pairs and their extensive use in analog systems motivate us to
`characterize their frequency response for both differential and common-mode signals.
`Consider the simple differential pair shown in Fig. 6.27(a), with the differential half cir(cid:173)
`cuit and the common-mode equivalent circuit depicted in Figs. 6.27(b) and (c), respectively.
`For differential signals, the response is identical to that of a common-source stage, exhibit(cid:173)
`ing Miller multiplication of Ccv- Note that since+ Vi 112/2 and -V; 112/2 are muitiplied by
`the same transfer function, the number of poles in Vaur / Vin is equal to that of each path
`(rather than the sum of the number of the poles in the two paths).
`For common-mode sjgnals, thy, total capacitance at node P. in Fig., 6.27 ( c) determines ihe
`high-frequency gain. Arising irom CGv3 , Cv 8 3·, Css 1, and Cs 8d: this capacitance can be
`
`IPR2019-00129
`Qualcomm 2030, p. 12
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket