`
`(12) United States Patent
`US 7,511,523 B2
`(10) Patent No.:
`Chen et al.
`(45) Date of Patent:
`Mar. 31, 2009
`
`(54) CANTILEVER MICROPROBES FOR
`CONTACTING ELECTRONIC COMPONENTS
`AND METHODS FOR MAKING SUCH
`PROBES
`
`60/582,690. filed on Jun. 23. 2004. provisional appli-
`cation No. 60/609,719. tiled on Sep. 13. 2004. provi-
`sional application No. 60/611789. filed on Sep. 20.
`2004.
`
`(75)
`
`Inventors: Richard T. Chen. Burbank. CA (US):
`Ezekiel J. J. Kruglick. San Diego. CA
`(US): Christopher A. Bang. San Diego.
`CA (US): Dennis R. Smalley. Newhall.
`CA (US): Pavel B. Lembrlkov. Santa
`Monica. CA (US)
`
`(73) Assignee: Microfabrica lnc.. Van Nuys. CA (US)
`
`( * ) Notice:
`
`Subject to any disclaimer. the term ofthjs
`patent is extended or adjusted under 35
`U.S.C. 154(b) by 0 days.
`
`(21) App]. No.: 11/695577
`
`(22)
`
`Filed:
`
`Apr. 2. 2007
`
`(65)
`
`Prior Publication Data
`US 2007/0170943 Al
`Jul. 26. 2007
`
`Related US. Application Data
`
`(63) Continuation of application No. 11/028,960. filed on
`Jan. 3. 2005. now Pat. No. 7.265.565. and a continua-
`tion-in-part of application No. 101949.738. filed on
`Sep. 24. 2004. now abandoned. which is a continua-
`tion-in-part of application No. 10/772943. filed on
`Feb. 4. 2004. now abandoned.
`
`(60)
`
`Provisional application No. 60/441186. filed on Feb.
`4. 2003. provisional application No. 60/506.015. filed
`on Sep. 24. 2003. provisional application No. 60/533.
`933. filed on Dec. 31. 2003. provisional application
`No. 60/533947. filed on Dec. 31. 2003. provisional
`application No. 60/536865. filed on Jan. 15. 2004.
`provisional application No. 60/540511. [lied on Jan.
`29. 2004. provisional application No. 60/582689.
`filed on Jun. 23. 2004. provisional application No.
`
`(51)
`
`Int. Cl.
`(2006.01)
`601R 31/02
`(52) U.S. (Tl.
`........................ 324/762: 324/754: 324/761
`(58) Field of Classification Search ....................... None
`See application file for complete search history.
`
`(56)
`
`References Cited
`U.S. PATENT DOCUMENTS
`
`5.190.637 A
`
`31993 Guckcl
`
`205s‘ll8
`
`(Continued)
`O'l'llljR l’UBLlCA‘l‘lONS
`
`Cohen. el al.. “EFAB: Batch Production of Functional. Fully-Dense
`Metal Parts with Micron-Scale Features". Proc. 9th Solid Freet‘ornr
`Fabrication. The University ofTexas at Austin. Aug 199s. pp. 161.
`
`(Continued)
`
`Primarjr Examiner Minh N Tang
`(74) Altomqt'. Agent. or Firm Dennis R. Smalley
`
`(57)
`
`ABSTRACT
`
`Embodiments disclosed herein are directed to compliant
`probe structures for making temporary or pemianent contact
`with electronic circuits and the like. In particular. embodi-
`ments are directed to various designs ofcantilever-like probe
`structures. Some embodiments are directed to methods for
`fabricating such cantilever structures. In some embodiments.
`for example. cantilever probes have extended base structures.
`slide in mounting structures. multi-beam configurations. oil'-
`sct bonding locations to allow closer positioning of adjacent
`probes. compliant elements with tensional configurations.
`improved over travel. improved compliance. improved semb-
`bing capability. and/or the like.
`
`9 Claims, 37 Drawing Sheets
`
`/1828 /182b
`
`
`
`Page 1 of 55
`
`Feinmetall Exhibit 2016
`
`FormFactor, Inc. v. Feinmetall, GmbH
`lPR2019—00082
`
`
`
`
`
`
`US 7,511,523 B2
`
`Page 2
`
`
`
`6,771,084 B2
`
`6,794,890 B1
`
`6,811,406 B2
`
`6,817,052 B2
`
`6,838,893 132
`
`6,856,156 B2
`
`6,945,827 B2
`
`6,967,493 52
`
`7,265,565 B2
`
`2002/0017915 A1
`
`2005/0108876 A1
`
`
`8/2004 Di Stefano .................. 324/754
`
`
`
`
`
`
`9/2004 Tokumo etal.
`. 324/761
`
`
`
`
`
`
`
`
`11/2004 Grube ......................... 439/66
`
`
`
`
`
`11/2004 Grube ............................. 15/3
`
`
`
`
`
`
`1/2005 Khandros,]r. et a1.
`. 324/754
`
`
`
`
`
`
`
`
`2/2005 Liang etal.
`................. 324/758
`
`
`
`
`
`
`
`9/2005 Grube etal.
`................ 439/700
`
`
`
`
`
`
`
`
`
`11/2005 Mori et a1.
`..
`324/754
`
`
`
`
`
`
`
`9/2007 Chen et a1.
`.................. 324/762
`
`
`
`
`
`
`
`2/2002 Kamiya ...................... 324/754
`
`
`
`
`
`5/2005 Mathicu ct a1.
`............... 29/854
`
`
`
`
`
`
`
`OTHER PUBLICATIONS
`
`
`
`
`
`
`et at, “EFAB: Rapid, Low—Cost DesktOP
`Adam L. Cohen,
`
`
`
`
`
`
`
`
`
`Micromachining oinghAspect Ratio True3-DMEMS”,Proc. 12th
`
`
`
`
`
`
`
`
`
`
`IEEE Micro Electro Mechanical Systems Workshop, IEEE, Jan.
`
`
`
`
`
`
`
`
`17-21, 19921313344451.
`
`
`
`
`“MicrofabricationiRapid Prototyping’s Killer Application", Rapid
`
`
`
`
`
`Prototyping Report, CAD/CAM Publishing, incl, Jun. 1999,1311 1-5~
`
`
`
`
`
`
`
`
`
`Adam L. Cohen. “3-DMicromachiningbyElectrochemical Fabrica-
`
`
`
`
`
`
`
`tion”, Micromachine Devices, Mar. 1999, pp. 6-7.
`
`
`
`
`
`
`
`Gang Zhang, 0t ale “EFAB: Rapid Dcskt0p Manufacturing of True
`
`
`
`
`
`
`
`
`
`3-D Microstructures”, Proc. 2nd International Conference on Inte-
`
`
`
`
`
`
`
`grated MicroNanotechnology for Space Applications, The Aero-
`
`
`
`
`
`
`Space C0.,Apr. 1999.
`
`
`
`
`F. Tseng, et a1, “EFAB: High ASpect Ratioi Arbitrary 3-D Metal
`
`
`
`
`
`
`
`
`
`
`
`Microstructures Using a Low-Cost Automated Batch Process”, 3rd
`
`
`
`
`
`
`
`
`International Workshop on High Aspect Ratio Microstructure Tech-
`
`
`
`
`
`
`
`nology(HARMST’99),Jun.1999.
`
`
`
`
`Adam L, Cohen, et al., “EFAB: Low-Cost, Automated Electrochemi-
`
`
`
`
`cal Batch Fabrication of Arbitrary 3-D Microstructures”,
`
`
`
`
`
`
`
`Micromachining and Microfabrication Process Technology, SPIE
`
`
`
`
`
`
`1999 Symposium on Micromachining and Microfabrication. Sep.
`
`
`
`
`
`
`
`1999.
`
`F. Tseng, et 31., “EFAB: High Aspect Ratio, Arbitrary 3-D Metal
`
`
`
`
`
`
`
`
`
`
`Microstructures Using a Low-Cost Automated Batch Process”,
`
`
`
`
`
`
`MEMS Symposium, ASME 1999 International Mechanical Engi-
`
`
`
`
`
`
`neering Congress and Exposition, Nov. 1999.
`
`
`
`
`
`
`Adam L. Cohen, “Electrochemical Fabrication (:EFABTM)”, Chap-
`
`
`
`
`
`
`ter 19 of the MEMS Handbook, edited by Mohamed Gad-E1—Hal<,
`
`
`
`
`
`
`
`
`
`CRC Press, 2002, pp. 19/1-19/23.
`
`
`
`
`
`
`
`
`
`
`
`
`US. PATENT DOCUMENTS
`
`
`
`
`
`5,286,208 A
`
`
`5,476le A
`
`
`5,545,045 A
`
`
`
`
`5,599,194 A
`5,772,451 A
`
`
`5,806,181 A
`
`
`5,811,982 A
`
`
`
`
`5,820,014 A
`5,829,128 A
`
`
`5,917,707 A
`
`
`5,974,662 A
`
`
`5,994,152 A
`
`
`6,023,103 A
`
`
`6,027,630 A
`
`
`6,043,563 A
`
`
`6,064,213 A
`
`
`6,184,053 B 1
`
`6,208,225 B1
`
`6,218,910 B1
`
`6,268,015 B1
`
`6,278,284 B1
`
`6,336,269 B 1
`
`6,344,752 B1
`
`6,426,638 B1
`
`6,441,315 B1
`
`6,456,099 B1
`
`6,482,013 B2
`
`6,483,328 B1
`
`6,491,968 B1
`
`6,509,751 131
`
`6,520,778 B1
`
`6,539,531 B2
`
`6,627,483 B2
`
`6,640,415 B2
`
`6,672,875 B1
`
`6,676,438 B2
`
`6,690,185 B1
`
`6,705,876 B2
`
`6,713,374 B2
`
`6,729,019 B2
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`2/ 1994 Matsuoka ~~~~~~~~~~~~~~~~~~~~ 439/72
`
`
`
`12/ 1995 Khandros ~~~~~~~~~~~~~~~~ 228/1805
`
`
`
`
`8/1996 Wakamatsu .................. 439/70
`
`
`
`
`
`
`
`
`
`
`
`3/1997 Ozawaetai
`~439/72
`-~
`6/1998 Dozier eta1~
`439/70
`
`
`
`
`
`
`
`9/1998 KhalldJ‘OS et a1.
`29/874
`
`
`
`
`
`
`
`9/1998 Bearnan et at
`~~ 324/762
`
`
`
`
`
`
`
`
`
`
`
`
`
`10/1998 DOZier eta1~ ~-
`~228/563
`11/ 1998 Eldridge etaii
`29/855
`
`
`
`
`
`
`
`6/1999 Khandros et al.
`361/776
`
`
`
`
`
`
`. 29/842
`11/1999 Eldridge et a1.
`
`
`
`
`
`
`
`. 29/842
`11/1999 Eldridge et al.
`
`
`
`
`
`
`.. 257/781
`2/2000 Chang et a1.
`
`
`
`
`
`
`
`
`N 205/135
`2/2000 Cohen .....
`
`
`
`
`3/2000 Eldridge et a1.
`.. 257/784
`
`
`
`
`
`
`
`5/2000 Khandros et a1.
`.. 324/754
`
`
`
`
`
`
`2/2001 Eldridge et a1.
`. 438/52
`
`
`
`
`
`
`
`3/2001 Miller
`.....
`.. 333/202
`
`
`
`
`
`.....
`4/2001 Miller
`. 333/33
`
`
`
`
`7/2001 Mathicu ct a1.
`. 427/96
`
`
`
`
`
`
`
`8/2001 Mori et a1.
`.....
`324/755
`
`
`
`
`
`
`
`1/2002 Eldridge et a1.
`29/885
`
`
`
`
`
`
`2/2002 Hagihara et 31.
`.. 324/754
`
`
`
`
`
`
`
`7/2002 Di Stefano
`.. 324/754
`
`
`
`
`
`8/2002 Eldridge et a1.
`174/260
`
`
`
`
`
`
`9/2002 Eldridge et a1.
`........... 324/754
`
`
`
`
`
`
`11/2002 Eldridge et a1.
`439/66
`
`
`
`
`
`
`
`11/2002 Eldridge et a1.
`........... 324/754
`
`
`
`
`
`
`12/2002 Mathieu et 31,
`............. 29/842
`
`
`
`
`
`
`1/2003 Mathieu er 31,
`324/754
`
`
`
`
`
`
`
`2/2003 Eldridge et 31.
`............. 439/66
`
`
`
`
`
`
`3/2003 Miller et 31,
`,,,,,,,,,,,,,,,, 716/15
`
`
`
`
`
`
`9/2003 Ondricek et all
`438/117
`
`
`
`
`
`
`
`11/2003 Eslamy etal.
`.............. 29/593
`
`
`
`
`
`
`
`1/2004 Mathieu et al.
`....... 439/66
`
`
`
`
`
`
`1/2004 Zhou et al,
`.....
`.. 439/482
`
`
`
`
`
`
`
`2/2004 Khandros et a1.
`324/758
`
`
`
`
`
`
`3/2004 Eldridge ...................... 439/66
`
`
`
`
`3/2004 Eldridge et a1.
`.. 438/611
`
`
`
`
`
`
`
`5/2004 Grube et a1.
`....... 29/830
`
`
`
`
`
`
`
`Page 2 of 55
`
`Page 2 of 55
`
`
`
`US. Patent
`
`Mar. 31, 2009
`
`Sheet 1 of 37
`
`US 7,511,523 B2
`
`12 "
`1O
`
` .'/////WWW/MW: '
`I {\\\\\\\\\\\W e268
`226D
`
`10
`
`WWN
`
`FIG. 1A
`(PRIOR ART)
`
`12
`
`“9- “3
`(PR'OR ART)
`
`
`
`22
`
`FIG. 1C
`
`(PRIOR ART)
`
`8'<
`
`
`I7//////A
`
`\
`
`
`:///—////// W//{J
`1/
`
`
`
`
`,/
`
`FIG. 1 D
`
`(PRIOR ART)
`
`FIG. 1 E
`
`6
`
`(PRIOR ART)
`
`
`
`
`7
`’f 8'
`
`, .__.r.
`
`\
`
`
`
`FIG. 1F
`(PRIOR ART)
`
`6
`
`FIG. 1G
`(PRIOR ART)
`
`6
`
`Page 3 of 55
`
`
`
`
`US. Patent
`
`
`
`Mar. 31, 2009
`
`
`
`
`
`Sheet 2 of 37
`
`
`
`
`
`
`
`US 7,511,523 B2
`
`
`
`16
`
`16
`
`16
`
`18k
`
`\§\\\\\\w \\\\§ \\\\\§§
`
`
`
`
`
`
`FIG. 2A
`
`(PRICBlR ART)
`
`
`
`
`
`
`
`
`FIG. zc
`
`(PRIOR ART)
`
`
`
`
`
`
`
`6
`
`
`
`
`
`
`FIG. 23
`
`(PRIOR ART
`
`
`
`
`
`2
`
`
`
`
`
`
`
`
`
`FIG. 20
`
`(PRIOR ART)
`
`
`
`
`
`
`
`}.
`
`
`
`
`
`
`
`V
`
`
`
`
`
`
`
`FIG. 2E
`
`(PRIOR ART)
`
`
`
`
`
`
`
`FIG. 2F
`
`(PRIOR ART)
`
`
`
`Page 4 of 55
`
`
`
`US. Patent
`
`Mar. 31, 2009
`
`Sheet 3 of 37
`
`US 7,511,523 32
`
`4
`
`
`
`
`FIG. 3A
`
`(PRIOR ART)
`
`
`
`
`
`
`32
`
`8
`
`.
`
`.fi,’ ......
`-
`I
`Il.\\\\\\\\\\\\\\\‘ v
`
`
`36
`
`0 ‘‘
`
`72
`
`56
`
`32
`
`FIG. 3B
`
`(PRIOR ART)
`
`FIG. 3C
`(PRIOR ART)
`
`Page 5 of 55
`
`
`
`
`U..S Patent
`
`
`
`Mar.3
`
`
`
`eet40f37
`
`
`
`
`
`
`
`US7511523132
`
`
`
`
`
` W V/////////////
`
`
`32
`
`92(a)
`
`FIG. 4A
`
`(PRIOR ART)
`86
`92(b)/092()
`
`
`
`
`
`
`
`FIG- 4C
`
`
`
`
`
`
`
`
`IDES-SEW
`
`
`
`
`)
`(
`
`
`
`
`
`
`FIG. 4D
`
`
`
`
`
`
`
`
`
`
`
`FIG- 4E
`
`(PR'OR A34?
`
`
`
`
`94
`94
`94
`96
`
`
`
`95
`
`96
`
`
`
`
`FIG. 4F
`(PRIOR ART)
`
`
`
`
`
`
`
`
`
`
`
`
`
`(PRIOR ART)
`
`
`
`
`
`(PRIOR ART)
`
`
`
`
`/.FIG 4G
`FIG. 4H//
`
`
`mm
`‘4““W m:mm 98W
`m
`
`3&4“
`
`«.1
`
`
`
`
`
`FIG. 4|
`
`(PRIOR ART)
`
`
`
`Page 6 of 55
`
`Page 6 of 55
`
`
`
`
`US. Patent
`
`
`
`Mar. 31, 2009
`
`
`
`Sheet 5 of 37
`
`
`
`
`
`
`
`US 7,511,523 B2
`
`
`
`
`
`
`
`FIG. 5A
`
`
`FIG. SB
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`FK3.6
`
`
`
`108
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`FK3.7
`
`
`
`
`1628
`
`
`
`‘”//
`
`162a
`
`
`
`~///
`
`
`
`
`FIG. 9
`
`
`
`142a
`
`*’/I
`
`142b
`
`~///
`
`
`
`FK3.8
`
`
`
`
`Page 7 of 55
`
`Page 7 of 55
`
`
`
`
`US. Patent
`
`
`
`Mar. 31, 2009
`
`
`
`Sheet 6 of 37
`
`
`
`
`
`
`
`US 7,511,523 B2
`
`
`
`
`
`
`
`
`
`
`
`
`
`“(3- 10
`
`
`
`FIG. 11
`
`
`
`
`
`
`
`
`
`FIG. 12
`
`
`
`FIG- 13
`
`
`
`
`
`
`
`
`
`
`
`FIG. 14
`
`
`
`FIG. 15
`
`
`
`Page 8 of 55
`
`Page 8 of 55
`
`
`
`
`US. Patent
`
`
`
`Mar. 31, 2009
`
`
`
`Sheet 7 of 37
`
`
`
`
`
`
`
`US 7,511,523 B2
`
`
`
`
`
`302
`
`
`
`306 304
`
`
`
`304
`
`
`W302
`
`
`FIG. 163
`
`
`
`
`
`308
`
`
`
`
`FIG. 16A
`
`
`
`304
`
`308
`
`
`
`fifl
`
`15:52::
`
`
`
`
`FIG. 16C
`
`
`3
`
`03
`
`
`
`E
`W 302
`E
`
`
`FIG. 16D 308
`
`
`
`
`
`304
`
`
`
`
` 304 x
`
`
`
`
`
`
`
`-
`
`
`
`
`FIG. 16F
`
`
`
`304
`
`308
`
`E
`W
`fi
`|
`308 / FIG. 16E
`
`
`
`fi
`
`fi
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Page 9 of 55
`
`Page 9 of 55
`
`
`
`US. Patent
`
`Mar. 31, 2009
`
`Sheet 8 of 37
`
`US 7,511,523 32
`
`
`
`FIG. 18A
`
`
`
`FIG. 183
`
`Page 10 of 55
`
`
`
`US. Patent
`
`Mar. 31. 2009
`
`Sheet 9 0f37
`
`US 7.511.523 32
`
`312A 3123
`
`306
`
`FIG. 20A 326A
`
`
`
`Page 11 of 55
`
`
`
`
`US. Patent
`
`
`
`Mar. 31, 2009
`
`
`
`Sheet 10 of 37
`
`
`
`
`
`
`
`
`US 7,511,523 B2
`
`
`
`
`
`Version 1
`
`
`Solder Bump
`
`
`
`
`Version 2
`
`
`FIG. 223
`
`
`
`Page 12 of 55
`
`Page 12 of 55
`
`
`
`
`
`Page 13 of 55
`
`
`
`US. Patent
`
`Mar. 31. 2009
`
`Sheet 12 M37
`
`US 7,511,523 32
`
`FIG 25A
`
`522C
`
`5220
`
`1/_::%:_::i“
`
`
`
` 7
`
`55gz____g%g5_____.5“
`
`______ h
`
`FIG 253
`
`Page 14 of 55
`
`
`
`US. Patent
`
`Mar. 31. 2009
`
`Sheet
`
`13 of
`
`37
`
`US 7,511,523 32
`
`/
`
`FIG 25C
`
`@Z
`
`
`
`Z//_ll
`
`Tl
`
`Page 15 of 55
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Page 16 of 55
`
`Page 16 of 55
`
`
`
`US. Patent
`
`Mar. 31. 2009
`
`Sheet 15 of 37
`
`US 7.511.523 32
`
`‘ —-m FIG. 28A
`
`'—\
`
`FIG. 283
`
`
`
`FIG. 28C
`
`Page 17 of 55
`
`
`
`
`US. Patent
`
`
`
`Mar. 31, 2009
`
`
`
`
`
`Sheet 16 of 37
`
`
`
`
`
`
`
`
`US 7,511,523 B2
`
`
`
`726P
`
`
`722
`
`
`
`
`
`
`
`
`
`
`724
`
`7260
`
`8
`
`
`
`8
`
`
`
`
`FIG 29A
`
`
`
`
`
`
`FIG 293
`
`
`
`
`
`
`
`
`
`32
`
`
`
`FIG 30A
`
`
`
`
`
`
`FIG 303
`
`
`
`Page 18 of 55
`
`Page 18 of 55
`
`
`
`
`US. Patent
`
`
`
`Mar. 31, 2009
`
`
`
`Sheet 17 of 37
`
`
`
`
`
`
`
`
`US 7,511,523 B2
`
`
`
`
`
`
`
`FIG 31
`
`
`
`FIG 32
`
`
`
`Page 19 of 55
`
`Page 19 of 55
`
`
`
`
`US. Patent
`
`
`
`Mar. 31, 2009
`
`
`
`
`
`
`Sheet 18 of 37
`
`
`
`
`
`US 7,511,523 132
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Page 20 of 55
`
`Page 20 of 55
`
`
`
`
`US. Patent
`
`
`
`Mar. 31, 2009
`
`
`
`Sheet 19 of 37
`
`
`
`
`
`
`
`
`US 7,511,523 B2
`
`
`
`
`
`
`FIG 34A
`
`
`
`
`
`
`FIG 34B
`
`
`
`Page 21 of 55
`
`Page 21 of 55
`
`
`
`US. Patent
`
`Mar. 31.2009
`
`Shee‘ 20 0f 37
`
`US 7,511,523 82
`
`
`
`Page 22 of 55
`
`
`
`U.S. Patent
`
`Mar. 31, 2009
`
`Sheet 21 0f37
`
`US 7,511,523 32
`
`
`
`Page 23 of 55
`
`
`
`
`US. Patent
`
`
`
`Mar. 31, 2009
`
`
`
`Sheet 22 of 37
`
`
`
`
`
`
`
`
`US 7,511,523 B2
`
`
`
`
`752
`
`
`
`756-3
`
`
`
`////// /////////W //
`
`
`
`
`
`
`
`
`%
`
`
`
`756- 1
`
`756-2
`
`fl?
`
`
`
`
`
`
`
`
`
`FIG 36F
`
`
`
`
`
`
`
`F
`
`7////////////////////////////////64// ///%
`
`
`FIG 366
`
`
`
`Page 24 of 55
`
`Page 24 of 55
`
`
`
`
`US. Patent
`
`
`
`Mar. 31, 2009
`
`
`
`
`
`
`Sheet 23 0f 37
`
`
`
`
`
`US 7,511,523 B2
`
`
`
`766-1
`
`
`
`766-1
`
`
`
`766-1
`
`
`
`
`
`
`FIG 36H
`
`
`
`766-2
`
`
`
`766—2
`
`
`
`762
`
`
`
`
`
`
`
`FIG 36|
`
`
`766-3 766-4
`
`
`
`766-5
`
`
`
`—u-'_
`-__
`
`'--‘
`
`
`FIG 36J
`
`
`
`766—6
`
`
`
`766-7
`
`
`
`766-8
`
`
`
`766—9
`
`
`
`-_.'-'-'-
`"--
`'.--
`
`
`
`
`FIG 36K
`
`
`
`Page 25 of 55
`
`Page 25 of 55
`
`
`
`
`
`Page 26 of 55
`
`
`
`
`
`FIG 37D
`
`Page 27 of 55
`
`
`
`US. Patent
`
`Mar. 31, 2009
`
`Sheet 26 of 37
`
`US 7,511,523 32
`
`
`
`gal}—
`
`JH M #J"
`
`——
`
`wr-<_25.oo
`
`FIG 37F
`
`Page 28 of 55
`
`
`
`Sheet 27 0‘ 37
`
`9»
`US"! =’11
`
`g-
`523 32
`
`
`
`Page 29 of 55
`
`
`
`
`US. Patent
`
`
`
`Mar. 31, 2009
`
`
`
`Sheet 28 of 37
`
`
`
`
`
`
`
`
`US 7,511,523 B2
`
`
`
`
`
`
`FIG 39A
`
`
`
`
`
`
`FIG 393
`
`
`
`Page 30 of 55
`
`Page 30 of 55
`
`
`
`
`US. Patent
`
`
`
`Mar. 31, 2009
`
`
`
`Sheet 29 of 37
`
`
`
`
`
`
`
`
`US 7,511,523 B2
`
`
`
`
`
`
`
`FIG 39C
`
`Page 31 of 55
`
`Page 31 of 55
`
`
`
`
`US. Patent
`
`
`
`Mar. 31, 2009
`
`
`
`Sheet 30 of 37
`
`
`
`
`
`
`
`
`US 7,511,523 B2
`
`
`
`
`_,
`cu
`
`
`
`2
`u.
`
`
`m ‘
`
`.
`
`
`
`
`
`Dc
`
`»m 9u
`
`
`
`
`
`3':
`on
`
`
`‘2
`u.
`
`
`
`
`
`(D
`01
`co
`
`
`‘2
`u.
`
`
`
`LIJ
`c»
`
`on
`
`
`
`.
`
`
`9u
`
`
`
`Ia
`
`s
`on
`
`
`
`
`
`9u
`
`.
`
`u.
`
`c»
`
`
`
`.
`
`
`m 9u
`
`Page 32 of 55
`
`Page 32 of 55
`
`
`
`
`US. Patent
`
`
`
`Mar. 31, 2009
`
`
`
`Sheet 31 0f 37
`
`
`
`
`
`
`
`
`US 7,511,523 B2
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`FIG 40A
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`FIG 40B
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`FIG 400
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Page 33 of 55
`
`Page 33 of 55
`
`
`
`
`
`US. Patent
`
`
`
`Mar. 31, 2009
`
`
`
`Sheet 32 of 37
`
`
`
`
`
`
`
`
`US 7,511,523 B2
`
`
`
`
`
`
`
`
`
`
`
`
`
`FIG 41
`
`Page 34 of 55
`
`Page 34 of 55
`
`
`
`US. Patent
`
`Mar. 31, 2009
`
`Sheet 33 of 37
`
`US 7,511,523 B2
`
`832
`
`834
`
`‘/ %/ 838
`
`FIG. 423
`
`_,/ /%
`
`8‘32 840'
`834
`I
`,x
`
`
`844R
`
`> 83“
`
`////////W/////////////////////////////////////
`
`17/”ngI
`
`FIG. 43B
`
`FIG 430
`
`Page 35 of 55
`
`
`
`
`US. Patent
`
`
`
`Mar. 31, 2009
`
`
`
`Sheet 34 of 37
`
`
`
`
`
`
`
`
`US 7,511,523 B2
`
`
`
`
`
`
`
`
`
`1‘
`
`860
`
`
`
`
`
`
`
`
`
` 856
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`%
`,
`
`
`
`FIG 440
`
`
`
`
`
`
`
`Page 36 of 55
`
`Page 36 of 55
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`...,‘
`4
`
`*K‘Erfi
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`(“Minn-lyn-
`
`
`
`
`
`
`
`
`Page 37 of 55
`
`Page 37 of 55
`
`
`
`U.S. Patent
`
`Mar. 319 2009
`
`Sheet 36 0f 37
`
`us 7,511,523 “2
`
`
`
`FIG 46A
`
`
`
`“ Ax 474
`
`F|G 463
`
`472
`.t/'\"-
`
`FIG 46C
`
`Page 38 of 55
`
`
`
`
`US. Patent
`
`
`
`Mar. 31, 2009
`
`
`
`Sheet 37 of 37
`
`
`
`
`
`
`
`
`US 7,511,523 B2
`
`
`
`
`
`
`
`
`FIG 46D
`
`
`
`
`FIG 46E
`
`
`
`Page 39 of 55
`
`Page 39 of 55
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`2
`
`herein. Since the filing ofthe patent application that led to the
`
`
`
`
`
`
`
`
`
`
`
`above noted patent, various papers about conformable con-
`
`
`
`
`
`
`
`tact mask plating (i.e. INSTANT MASKINGTM) and el ectro-
`
`
`
`
`
`
`
`chemical fabrication have been published:
`
`
`
`
`
`1. A. Cohen, G. Zhang, F. Tseng, F, Mansfeld, U. Frodis
`
`
`
`
`
`
`
`
`
`
`and P. Will, “EFAB: Batch production of functional, fully-
`
`
`
`
`
`
`
`
`dense metal parts with micro-scale features”, Proc. 9th Solid
`
`
`
`
`
`
`
`
`
`Freeforrn Fabrication, The University of Texas at Austin, 3
`
`
`
`
`
`
`
`
`
`161,Aug. 1998.
`
`
`
`2. A. Cohen, G. Zhang, l-'. Tseng, F. Mansfeld, U. Frodis
`
`
`
`
`
`
`
`
`
`
`and P. Will, “EFAB: Rapid, Low-Cost Desktop Microma-
`
`
`
`
`
`
`
`
`cl1ir1ing of High Aspect Ratio True 3-D MEMS”, Proc. 12t1
`
`
`
`
`
`
`
`
`
`
`
`
`IEEE Micro Electro Mechanical Systems Workshop, IEBE, 3
`
`
`
`
`
`
`
`244, Jan. 1999.
`
`
`
`3. A. Cohen, “3-D Micrornachining by Electrochemical
`
`
`
`
`
`
`Fabrication”, Micromachine Devices, Mar. 1999.
`
`
`
`
`
`4. G. Zhang, A. Cohen, U. Frodis, F. Tseng, F. Mansfelc,
`
`
`
`
`
`
`
`
`
`
`
`and P. Will, “EFAB: Rapid Desktop Manufacturing of True
`
`
`
`
`
`
`
`
`
`3-D Microstructures”, Proc. 2nd International Conference 0 1
`
`
`
`
`
`
`
`Integrated MicroNanotechnology for Space Applications,
`
`
`
`
`
`The Aerospace Co. ,A.pr 1999.
`
`
`
`
`
`5. F. Tseng, U. Frodis, G. Zhang, A. Cohen, F. Mansfelc,
`
`
`
`
`
`
`
`
`
`
`and P. Will, “EFAB: High Aspect Ratio Ar,bitrary 3-D Metal
`
`
`
`
`
`
`
`
`
`Microstructures using a Low-Cost Automated Batch Pro-
`
`
`
`
`
`
`cess”,3rd International Workshop on High Aspect Ratio
`
`
`
`
`
`
`
`
`MicroStructure Technology (HARMST’ 99), J1m.1999.
`
`
`
`
`
`6. A. Cohen, U. Frodis, F. Tseng, G. Zhang, F. Mansfeld,
`
`
`
`
`
`
`
`
`
`
`and P. Will, “EFAB: Low-Cost, Automated Electrochemical
`
`
`
`
`
`
`Batch Fabrication ofArbitrary 3—D Microstructures”, Micro—
`
`
`
`
`
`
`
`machining and Microfabrication Process Technology, SPIE
`
`
`
`
`
`1999 Symposium 011 Micrornachining and Microfabrication,
`
`
`
`
`
`Sep. 1999.
`
`
`7. F. Tseng, G. Zhang, U. Frodis, A. Cohen, F. Mansfeld,
`
`
`
`
`
`
`
`
`
`
`and P. Will, “EFAB: High Aspect Ratio, Arbitrary 3-D Metal
`
`
`
`
`
`
`
`
`
`Microstructures using a Low-Cost Automated Batch Pro-
`
`
`
`
`
`
`cess”, MEMS Symposium, ASME 1999 International
`
`
`
`
`
`Mechanical Engineering Congress and Exposition, Nov.
`,
`
`
`
`
`
`
`1999.
`
`8. A. Cohen, “Electrochemical Fabrication (EFABTM)”,
`
`
`
`
`
`Chapter 19 of The MEMS Handbook, edited by Mohamed
`
`
`
`
`
`
`
`
`Gad-EI-IIak, CRC Press, 2002.
`
`
`
`
`
`9. VIicrofabricationiRapid Prototyping’ s KillerApplica-
`
`
`
`
`tion”,pages 1-5 ofthe Rapid Prototyping Report, CAD/CAM
`
`
`
`
`
`
`
`
`Publishing, Inc., June 1999.
`
`
`
`
`he disclosures of these nine publications are hereby
`
`
`
`
`
`
`
`
`incorporated herein by reference as if set forth1n full herein.
`
`
`
`
`
`
`
`
`
`
`
`The electrochemical deposition process may be carried out
`
`
`
`
`
`
`
`
`in a number of different ways as set forth in the above patent
`
`
`
`
`
`
`
`
`
`
`
`
`anc publications. In one form,
`this process involves the
`
`
`
`
`
`
`
`
`
`execution ofthree separate operations during the fon11ation of
`
`
`
`
`
`
`
`
`
`each layer of the structure that is to be formed:
`
`
`
`
`
`
`
`
`
`
`1. Selectively depositing at least one material by elec-
`
`
`
`
`
`
`
`
`trodeposition upon one or more desired regions of a substrate.
`
`
`
`
`
`
`
`
`
`2. Then, blanket depositing at least one additional material
`
`
`
`
`
`
`
`
`
`by electrodeposition so that the additional deposit covers both
`
`
`
`
`
`
`
`
`
`the regions that were previously selectively deposited onto,
`
`
`
`
`
`
`
`
`and the regions of the substrate that did not receive any
`
`
`
`
`
`
`
`
`
`
`
`previously applied selective depositions.
`
`
`
`
`3. Finally, planarizing the materials deposited during the
`
`
`
`
`
`
`
`
`first and second operations to produce a smoothed surface of
`
`
`
`
`
`
`
`
`
`a first layer of desired thickness having at least one region
`
`
`
`
`
`
`
`
`
`
`
`containing the at least one material and at least one region
`
`
`
`
`
`
`
`
`
`
`
`containing at least the one additional material.
`
`
`
`
`
`
`
`After formation of the first layer, one or more additional
`
`
`
`
`
`
`
`
`
`
`layers may be formed adjacent to the immediately preceding
`
`
`
`
`
`
`
`
`
`layer and adhered to the smoothed surface of that preceding
`
`
`
`
`
`
`
`
`
`
`layer. These additional layers are formed by repeating the first
`
`
`
`
`
`
`
`
`
`
`
`
`
`US 7,511,523 B2
`
`
`
`1
`
`CANTILEVER MICROPROBES FOR
`
`
`
`CONTACTING ELECTRONIC COMPONENTS
`
`
`AND YIETHODS FOR MAKING SUCH
`
`
`
`
`PROBES
`
`
`
`
`RELATED APPLICATIONS
`
`
`
`
`
`
`10
`
`
`
`15
`
`
`
`20
`
`
`
`25
`
`
`
`30
`
`
`
`35
`
`
`
`40
`
`
`
`45
`
`
`
`50
`
`
`
`55
`
`
`
`60
`
`
`
`65
`
`
`This application is a continuation of U.S. application Ser.
`
`
`
`
`
`
`
`
`
`No. 11/028,960 which was filed Jan. 3, 2005. now U.S. Pat.
`
`
`
`
`
`
`
`
`
`
`
`No. 7,265,565, issued on Sep. 4, 2007 which in turn claims
`
`
`
`
`
`
`
`
`
`
`
`benefit ofU.S. application Ser. Nos. 60/582,689, filed Jun. 23,
`
`
`
`
`
`
`
`
`2004; 60/582,690, filed Jun. 23, 2004; 60/609,719 filed Sep.
`
`
`
`
`
`
`
`
`
`13, 2004; 60/611,789 filed Sep. 20, 2004; 60/540,511 filed
`
`
`
`
`
`
`
`
`
`Jan. 29, 2004; 60/533,933 filed Dec. 31, 2003; 60/536,865
`
`
`
`
`
`
`
`
`
`filed Jan. 15. 20, 2004; and filed Dec. 31, 2003 60/533,947
`
`
`
`
`
`
`
`
`
`
`
`and is a continuations-in—part ofU.S. patent application Ser.
`
`
`
`
`
`
`
`
`
`No. 10/949,738 filed Sep. 24, 2004 now abandoned which in
`
`
`
`
`
`
`
`
`
`
`turn is a continuation-in—part of U.S. patent application Ser.
`
`
`
`
`
`
`
`
`
`No. 10/772,943 filed Feb. 4, 2004; which in turn claims
`
`
`
`
`
`
`
`
`
`
`benefit ofU.S. application Ser. Nos. 60/445,186 filed Feb. 4,
`
`
`
`
`
`
`
`
`
`
`2003 now abandoned 60/506,015 filed Sep. 24, 2003; 60/533,
`
`
`
`
`
`
`
`
`
`933; and 60/536,865; furthermore the ’738 application claims
`
`
`
`
`
`
`
`
`
`benefit of U.S. application Ser. Nos.: 60/506,015; 60/533,
`
`
`
`
`
`
`
`
`933; and 60/536,865. Each of these applications is incorpo-
`
`
`
`
`
`
`
`
`rated herein by reference as if set forth in full herein including
`
`
`
`
`
`
`
`
`
`
`
`any appendices attached thereto.
`
`
`
`
`FIELD OF THE INVENTION
`
`
`
`
`
`
`
`
`Embodiments of the present invention relate to micro-
`
`
`
`
`
`
`
`probes (e.g. for use in the wafer level testing of integrated
`
`
`
`
`
`
`
`
`
`
`circuits, such as memory or logic devices), and more particu—
`
`
`
`
`
`
`
`
`
`larly related to cantilever microprobes. In some embodi-
`
`
`
`
`
`
`
`ments, microprobes are fabricated using electrochemical fab-
`
`
`
`
`
`
`rication mcthods (c.g. EFAB® fabrication proccsscs).
`
`
`
`
`
`
`BACKGROUND OF THE INVENTION
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`A technique for forming three-dimensional structures (e.g.
`
`
`
`
`
`
`
`parts, components, devices, and the like) from a plurality of
`
`
`
`
`
`
`
`
`
`adhered layers was invented by Adam L. Cohen and is known
`
`
`
`
`
`
`
`
`
`
`
`as Electrochemical Fabrication. It is being commercially pur-
`
`
`
`
`
`
`
`sued by Microfabrica® Inc. (formerly MEMGen corpora-
`
`
`
`
`
`
`tion) of Van Nuys, Califomia under the name EFAB®. This
`
`
`
`
`
`
`
`
`technique was described in U.S. Pat. No. 6,027,630, issued on
`
`
`
`
`
`
`
`
`
`Feb. 22, 2000. This electrochemical deposition technique
`
`
`
`
`
`
`allows the selective deposition of a material using a unique
`
`
`
`
`
`
`
`
`masking technique that involves the use of a mask that
`
`
`
`
`
`
`
`
`
`includes patterned conformable material on a support struc-
`
`
`
`
`
`
`ture that is independent of the substrate onto which plating
`
`
`
`
`
`
`
`
`
`
`will occur. When desiring to perform an electrodeposition
`
`
`
`
`
`
`
`
`using the mask,
`the conformable portion of the mask is
`
`
`
`
`
`
`
`
`
`
`brought into contact with a substrate while in the presence of
`
`
`
`
`
`
`
`
`
`
`a plating solution such that the contact of the conformable
`
`
`
`
`
`
`
`
`
`
`portion of the mask to the substrate inhibits deposition at
`
`
`
`
`
`
`
`
`
`
`selected locations. For convenience, these masks might be
`
`
`
`
`
`
`
`
`generically called conformable contact masks; the masking
`
`
`
`
`
`
`
`technique may be generically called a conformable contact
`
`
`
`
`
`
`
`
`mask plating process. More specifically, in the terminology of
`
`
`
`
`
`
`
`
`
`Microfabrica® Inc. (formerly MEMGen Corporation) ofVan
`
`
`
`
`
`
`Nuys, California such masks have come to be known as
`
`
`
`
`
`
`
`
`
`
`INSTANT MASKSTM and the process known as INSTANT
`
`
`
`
`
`
`
`
`MASKINGTM or INSTANT MASKTM plating. Selective
`
`
`
`
`
`
`depositions using conformable contact mask plating may be
`
`
`
`
`
`
`
`
`used to form single layers of material or may be used to form
`
`
`
`
`
`
`
`
`
`
`
`
`
`multi-layer structures. The teachings of the ’630 patent are
`
`
`
`
`
`
`
`
`
`hereby incorporated herein by reference as if set forth in full
`
`
`
`
`
`
`
`
`
`
`
`
`Page 40 of 55
`
`
`
`Page 40 of 55
`
`
`
`
`
`US 7,511,523 B2
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`3
`
`through third operations one or more times wherein the for-
`
`
`
`
`
`
`
`
`
`mation of each subsequent layer treats the previously formed
`
`
`
`
`
`
`
`
`layers and the initial substrate as a new and thickening sub-
`
`
`
`
`
`
`
`
`
`
`strate.
`
`Once the formation of all layers has been completed, at
`
`
`
`
`
`
`
`
`
`
`least a portion of at least one of the materials deposited is
`
`
`
`
`
`
`
`
`
`
`
`
`generally removed by an etching process to expose or release
`
`
`
`
`
`
`
`
`
`
`the three-dimensional structure that was intended to be
`
`
`
`
`
`
`
`
`formed.
`
`The preferred method of performing the selective elec-
`
`
`
`
`
`
`
`trodeposition involved in the first operation is by conformable
`
`
`
`
`
`
`
`
`contact mask plating. In this type of plating, one or more
`
`
`
`
`
`
`
`
`
`
`conformable contact (CC) masks are first formed. The CC
`
`
`
`
`
`
`
`
`masks include a support structure onto which a patterned
`
`
`
`
`
`
`
`
`conformable dielectric material is adhered or formed. The
`
`
`
`
`
`
`
`conformable material for each mask is shaped in accordance
`
`
`
`
`
`
`
`
`with a particular cross-section of material to be plated. At
`
`
`
`
`
`
`
`
`
`least one CC mask is needed for each unique cross-sectional
`
`
`
`
`
`
`
`
`
`pattern that is to be plated.
`
`
`
`
`
`
`The support for a CC mask is typically a plate-like structure
`
`
`
`
`
`
`
`
`
`formed of a metal that is to be selectively electroplated and
`
`
`
`
`
`
`
`
`
`
`from which material to be plated will be dissolved. In this
`
`
`
`
`
`
`
`
`
`
`
`typical approach, the support will act as an anode in an elec-
`
`
`
`
`
`
`
`
`
`
`
`troplating process. In an alternative approach, the support
`
`
`
`
`
`
`
`may instead be a porous or otherwise perforated material
`
`
`
`
`
`
`
`
`through which deposition material will pass during an elec—
`
`
`
`
`
`
`
`
`troplating operation on its way from a distal anode to a depo-
`
`
`
`
`
`
`
`
`
`
`sition surface. In either approach, it is possible for CC masks
`
`
`
`
`
`
`
`
`
`
`
`to share a common support, i.e. the patterns of conformable
`
`
`
`
`
`
`
`
`
`dielectric material for plating multiple layers ofmaterial may
`
`
`
`
`
`
`
`
`
`be located in different areas of a single support structure.
`
`
`
`
`
`
`
`
`
`When a single support structure contains multiple plating
`
`
`
`
`
`
`
`
`patterns, the entire structure is referred to as the CC mask
`
`
`
`
`
`
`
`
`
`
`
`while the individual plating masks may be referred to as
`
`
`
`
`
`
`
`
`
`
`“submasks”. In the present application such a distinction will
`
`
`
`
`
`
`
`
`be made only when relevant to a specific point being made.
`
`
`
`
`
`
`
`
`
`
`
`In preparation for performing the selective deposition of
`
`
`
`
`
`
`
`
`the first operation, the conformable portion of the CC mask is
`
`
`
`
`
`
`
`
`
`
`
`placed in registration with and pressed against a selected
`
`
`
`
`
`
`
`
`
`portion of the substrate (or onto a previously formed layer or
`
`
`
`
`
`
`
`
`
`
`onto a previously deposited portion of a layer) on which
`
`
`
`
`
`
`
`
`
`deposition is to occur. The pressing together of the CC mask
`
`
`
`
`
`
`
`
`
`
`
`and substrate occur in such a way that all openings, in the
`
`
`
`
`
`
`
`
`
`
`
`
`conformable portions of the CC mask contain plating solu-
`
`
`
`
`
`
`
`
`tion. The conformable material of the CC mask that contacts
`
`
`
`
`
`
`
`
`
`the substrate acts as a barrier to electrodeposition while the
`
`
`
`
`
`
`
`
`
`openings in the CC mask that are filled with electroplating
`
`
`
`
`
`
`
`
`
`solution act as pathways for transferring material from an
`
`
`
`
`
`
`
`
`anode (e.g. the CC mask support) to the non-contacted por-
`
`
`
`
`
`
`
`
`
`tions of the substrate (which act as a cathode during the
`
`
`
`
`
`
`
`
`
`
`plating operation) when an appropriate potential and/or cur-
`
`
`
`
`
`
`
`rent are supplied.
`
`
`
`An example of a CC mask and CC mask plating are shown
`
`
`
`
`
`
`
`
`
`
`
`in FIGS. 1A-1C. FIG. 1A shows a side view ofa CC mask 8
`
`
`
`
`
`
`
`
`
`
`
`consisting of a conformable or deformable (e.g. elastomeric)
`
`
`
`
`
`
`
`insulator 10 patterned on an anode 12. The anode has two
`
`
`
`
`
`
`
`
`
`
`
`functions. One is as a supporting material for the patterned
`
`
`
`
`
`
`
`
`
`
`insulator 10 to maintain its integrity and alignment since the
`
`
`
`
`
`
`
`
`
`
`pattern may be topologically complex (e.g., involving iso-
`
`
`
`
`
`
`
`
`lated “islands” of insulator material). The other function is as
`
`
`
`
`
`
`
`
`
`an anode for the electroplating operation. FIG. 1A also
`
`
`
`
`
`
`
`
`
`depicts a substrate 6 separated from mask 8. CC mask plating
`
`
`
`
`
`
`
`
`
`selectively deposits material 22 onto a substrate 6 by simply
`
`
`
`
`
`
`
`
`
`pressing the insulator against the substrate then electrodepos—
`
`
`
`
`
`
`
`iting material through apertures 26a and 26b in the insulator
`
`
`
`
`
`
`
`
`
`as shown in FIG. 1B. After deposition, the CC mask is sepa-
`
`
`
`
`
`
`
`
`
`
`
`rated, preferably non—destructively, from the substrate 6 as
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`4
`
`shown in FIG. 1C. The CC mask plating process is distinct
`
`
`
`
`
`
`
`
`
`
`from a “through-mask” plating process in that in a through-
`
`
`
`
`
`
`
`
`mask plating process the separation of the masking material
`
`
`
`
`
`
`
`
`from the substrate would occur destructively. As with
`
`
`
`
`
`
`
`through-mask plating, CC mask plating deposits material
`
`
`
`
`
`
`selectively and simultaneously over the entire layer. The
`
`
`
`
`
`
`
`plated region may consist of one or more isolated plating
`
`
`
`
`
`
`
`
`
`regions where these isolated plating regions may belong to a
`
`
`
`
`
`
`
`
`
`single structure that is being formed or may belong to mul-
`
`
`
`
`
`
`
`
`
`
`tiple structures that are being formed simultaneously. In CC
`
`
`
`
`
`
`
`
`mask plating, as individual masks are not
`intentionally
`
`
`
`
`
`
`
`destroyed in the removal process, they may be usable in
`
`
`
`
`
`
`
`
`
`multiple plating operations.
`
`
`
`Another example of a CC mask and CC mask plating is
`
`
`
`
`
`
`
`
`
`shown in FIGS. 1D-1G. FIG. 1D shows an anode 12' sepa-
`
`
`
`
`
`
`
`
`
`
`rated from a mask 8' that includes a patterned conformable
`
`
`
`
`
`
`
`
`
`
`material 10' and a support structure 20. FIG. 1D also depicts
`
`
`
`
`
`
`
`
`
`
`substrate 6 separated from the mask 8'. FIG. 1E illustrates the
`
`
`
`
`
`
`
`
`
`
`mask 8‘ being brought into contact with the substrate 6. FIG.
`
`
`
`
`
`
`
`
`
`
`
`1F illustrates the deposit 22' that results from conducting a
`
`
`
`
`
`
`
`
`
`
`current from the anode 12' to the substrate 6. FIG. 1G illus-
`
`
`
`
`
`
`
`
`
`
`
`trates the deposit 22' on substrate 6 after separation from
`
`
`
`
`
`
`
`
`
`
`mask 8'. In this example, an appropriate electrolyte is located
`
`
`
`
`
`
`
`
`
`
`between the substrate 6 and the anode 12' and a current of ions
`
`
`
`
`
`
`
`
`
`
`
`coming from one or both of the solution and the anode are
`
`
`
`
`
`
`
`
`
`
`
`
`conducted through the opening in the mask to the substrate
`
`
`
`
`
`
`
`
`
`
`where material
`is deposited. This type of mask may be
`
`
`
`
`
`
`
`
`
`
`referred to as an anodeless INSTANT MASKTM (AIM) or as
`
`
`
`
`
`
`
`
`
`
`an anodeless conformable contact (ACC) mask.
`
`
`
`
`
`
`Unlike through-mask plating, CC mask plating allows CC
`
`
`
`
`
`
`
`
`masks to be formed completely separate from the fabrication
`
`
`
`
`
`
`
`
`
`of the substrate on which plating is to occur (e.g. separate
`
`
`
`
`
`
`
`
`
`
`
`from a three-dimensional
`(3D) structure that
`is being
`
`
`
`
`
`
`
`
`formed). CC masks may be formed in a variety of ways, for
`
`
`
`
`
`
`
`
`
`
`
`example, a photolithographic process may be used. All masks
`
`
`
`
`
`
`
`
`
`can be generated simultaneously prior to structure fabrication
`
`
`
`
`
`
`
`
`rather than during it. This separation makes possible a simple,
`
`
`
`
`
`
`
`
`
`low-cost, automated, self-contained, and intemally-clean
`
`
`
`
`
`“desktop factory” that can be installed almost anywhere to
`
`
`
`
`
`
`
`
`
`fabricate 3D structures, leavi