throbber
PRECISION
`MACHINE
`
`
`
`Sanofi Exhibit 2214.001
`Sanofi Exhibit 2214.001
`Mylan v. Sanofi
`Mylan v. Sanofi
`IPR2018-01675
`lPR2018-01675
`
`

`

`I 1t,1
`
`'k ' Ul\l,
`
`11 • Vii 1/ II •lfi
`
`ln hw rm i • a trod mark of he Burleigh orp mti n.
`lndu tos •n is a trademark of Farnmd lndustrie ', In
`
`Mathemati a is n trademark of
`M gli
`
`mpan .
`
`are trad •marks
`
`ompany Lid.
`
`rrad m rk f Fritz 1uder G.
`r:mitan 1~
`H) a-Rib is a tr:1da11arl.. dTh • Timl..en C'ompnn).
`H)tln:_,.ut L a trad marl f esop lnc.
`
`Turcite is a trademark r
`Zerodur is a trad mark of
`
`ISBN □ - 13 -690918- 3
`9 000 >
`
`Print<.'d m th United
`
`tare -
`
`f merica
`
`10
`
`ISBN □ -13- 6 9 0918-3
`
`Premk -Hall lnternati nal (UK) t· · d
`. 1
`~ 1ne • Lonc/011
`Prenti -Hall f
`.
`Pren . H
`u lraha Pl) Lmuted.
`\'d11,•,·

`-
`t~ce- all anada In · .. Toro mo
`\t• ··
`Prenti:e-HallHi ·panoameri ana. A
`P nu e-Hall f I
`· • ' <.uco
`•
`.

`l' J,ndm Private Limited. ,\ew Delhi
`Prentiee-H II
`apan, Inc .. Tok •o
`.
`a
`chu ·ter A-ia Pt Ltd.
`nnon
`.
`&1·
`.. mgapore
`o....

`llora r,,ntt e-Hall do Bra ii Ltd• R·
`I
`~-, 10 l Jandro
`•
`
`Sanofi Exhibit 2214.002
`Mylan v. Sanofi
`IPR2018-01675
`
`

`

`Ill
`
`I
`
`I 1\1
`
`11l1VI I I 11f
`In p111v11lt
`1111
`I Ill 1111
`ti 111111 1 d11'
`11111
`HIid l111ht 11 ) 11 11111
`
`11111
`
`I It• ids ' I '\ ,
`
`\\'
`
`IO, • , !
`
`1111c 111 11\1 ~ 1111 11"~1
`,\ I\, nl I ll"
`N •1•111 111 1h1• 1111111, 111 will II• dL 1' 11',N •d:
`F111il /II! II ·,·~
`l11lfl'I 111d llllllll •111 1111 ti . I,
`•
`• 111 ·k h 1 1• 1hl1t1v
`
`11111 hl NI k1111 ~•11 p, wt 1 111111, 1111, 1,ln11 1'11111 •1111,,
`
`111 1111'
`
`• Ii( Ill 111111·
`Nnt,
`111111111•111
`
`\ di
`' 11 'N \111111 ' 111 I 111· I 'Pt\ I I I •;1d
`II
`I 'WN .1dd1111111 ii I \llllllll 111
`11 1111
`\\'h1•1 . 1ppli 11111-. l,111•1
`I p •111 11,11 1 1111 11t1• I\ p · nl 1h11 111 11111•11l11·1· (1
`lw 111 nl •
`., 11111111 • or
`1111 1h,11 lltt s 11ll11 1,, 1,
`~1 dl11 ,) 11,d I, di. I \l~~1•tl 111 Ill\' llllk' I 1111• " '" IVPI' 111 It 1d, I I • \
`
`1
`
`Sanofi Exhibit 2214.003
`Mylan v. Sanofi
`IPR2018-01675
`
`

`

`/(1(1
`
`/"
`
`I II /JI s, JI/I ' '(",
`ll I ul 11 W IUUY I
`I ,
`
`\ ,
`
`4.
`
`(, ,
`
`7.
`
`I .. I)
`
`The lead angle O is found b I unwr 1pp 11 • 1 , n I(' tu111 c I lhr 1111 1 I , l11d1 n
`the lead ~ at a pitch radiu, R:
`
`0 I 111
`
`1
`(
`
`fl )
`
`thr nc d pth , '111111 mn tl 11 ·ti 11 th· p11 ·h 1 1{11 1 • ,n th
`It is as. urned her that th
`ssentially onstant.
`I I sc'rt' vi., 0 1~ , 1\111 ·tilm ,t I 1111 1h
`' d p th
`111 h i
`,, loll ll ' N,
`complicat d, but of th snrn
`<Jm1,
`
`92 Rem mb r, choo~ing a omp 11 111 l
`ubject to various types of bug.
`tmn 2.5 r r
`93 See ,
`11r1 b 11t h •1 r1t -r••111rh1
`11•n 1,t th
`d tailed di~ 11
`11 11 •111 11 ,
`'J4
`fl I h,11 II'/ 111 11 thl' 111111 ,., 1 " 1 .. ,t1t •
`"Mathematics i. 1he alphabet wi1h ll'IW h
`,. ht 1
`
`II~
`
`l111111h11t,
`
`,1 111t1ll1't 111•11
`
`•111111 1hr
`
`111111•11 nt
`
`,,, ~ 'I • 11
`
`ll
`
`Sanofi Exhibit 2214.004
`Mylan v. Sanofi
`IPR2018-01675
`
`

`

`u, t l f Pon· r Trr11 mi. ion Ele I nr
`
`707
`
`j z
`
`-dFz
`
`R
`
`/
`
`1'hn:ad
`angle o.
`
`haft thre d
`
`co~8 COS([ d.F1
`
`Force crew shaft thread
`appli
`to the nut thread
`
`Fi0 ure 10. . F rce a e tion of leads re\ thread apply to the nut thread whe~ lifti~g
`(\\·orking a~ain t a load. The thread nom1al force ha been decompo ed mto tt
`mponen .
`
`Fieure I 0. . h \\ a e tion of a lead crew thread that i being u ed to lift (work again t)
`a lo d. The relati n between the differential axial force d.Fz and the differential circumferential and
`radial force are ti un
`from a urnmation of the force at a point:
`
`dFe = d.Fz t o o. + _nRµ }
`_xRco a. - µ
`
`_
`dF.
`R-
`
`- dFz ina.
`CO aco 0 - µsin0
`
`For the
`
`e where the
`
`re,
`
`u ed to lower a load
`
`dFa = dFz {-1tRµ - co o.}
`_xRco a.+µ
`
`(10.8.3)
`
`(10.8.4)
`
`(10.8.5)
`
`(10 .
`
`. 6)
`
`The pre ence of the radial force 1 a hint that on mu t look at what el e i happening to the nut in
`additi n to th u ual cal ulation for the required drive torque.
`the d pth of thread i a· urned mall compared to the diameter of the crew, the axial
`in
`an be on idered to be di tributcd around a helical !in through a thread contact angle 'I'.
`fi re
`The differential axial force d.Fz i thu
`
`(10.8.7)
`
`For a right-hand oordinat y tern uperimpo ed at the center of the lea crew haft the Carte ian
`rdinat of an , point on the h lix at an angle 'I' will be
`
`=R o 'II
`
`Y = R sin 'I'
`
`z = \jlt
`2n
`
`(10.8.8)
`
`ted in the a e , here gravity doe not help the lead crew to move the load (i.e.,
`\Ye are inte
`raisin, a load e u lowerin a load). For con enien e, let the following constants be introduced:
`
`CRR =
`
`-
`ino.
`co aco 0 - µ in0
`
`(10.8.9)
`
`Sanofi Exhibit 2214.005
`Mylan v. Sanofi
`IPR2018-01675
`
`

`

`/0. ' Lm · 1r Pow r T, n. mi •. ion
`
`I m m
`
`int. mis d. th diff I mini • ·)nd
`
`mp1.:n ·nt.
`
`s , ·th ly.
`
`- F
`I
`z \
`' -
`
`OR sin~,)
`
`l 10 .. 11)
`Int ,ratin'-' th diff 'renti,ll mmn nt. ab ut th X. Y. und Z a., s. C'llL 'd by lh diff r ntial force
`\" ~ ~tire helh um.I' 'l'. ) ields lh' m m ·ms imp s don th :e ~,,. :haft" hil r ising a I ad:
`
`I ),; _ R. ~s't'}
`
`T
`
`J
`
`(10 .. 1-)
`
`( I 0 .. I~)
`
`( 10 .. 14)
`
`lx= Fz{ _7t L
`
`h =Fz{ -
`
`_7t
`
`in4')
`OR O 'l' - • '}'- + RR
`(
`
`:-'t'
`( • tu
`· HIT + ~ '}' -
`'
`
`RR= FzR / , 'rt. + _,rRp \
`\ _,rR · sex - ~Lt /
`
`dFz = Fz d'lf dR
`(R0
`- R1) 'If
`
`th relation betwe n 0 and R giv n
`in lud
`Equation 10 .. -10 . . l would have to be expanded t
`11 = dF2 { }. Th
`in Equation IO. ·- · The moment quation would then e of the f rm
`t ta!
`f the thread. This i · a
`moment ould then finaJI: be btained by integrating ov r th height
`I nJ t print h "r . and the · ar
`traightforward but t diou pro
`that pr du es quati n t
`rare I needed.
`ote that for th
`a e of a 0111111011 ball crew. th
`nta t i - e · ntiall at a
`on cant radiu .
`A imilar anal
`lower the load i
`
`i • an b performed ~ r the a of l w rin,.. 1 1 ad. Th
`
`t rque requir d to
`
`(10 .. 16)
`
`There are thre int
`
`ting re ult fr m thi analy L that a di u ·ed ind tail b low.
`
`Backdrfreability
`n that if the I nd :atisfie: th f llowi11g: r lationship.
`From Equation 10 .. 16 it an b
`no torque will be required t prevent the crew fr m rurni11g I gardl s,
`f the magnitud of the
`axial load:
`
`t ~ 2nR~L
`co a.
`
`( I 0.8.17)
`
`thi condition i known a, 11011-ba kdril'eob/e or elf-locki11g. For
`~ lead _crew whi h ati fie
`j - oft 11 an importanr feature becau e it
`indu tnal lead ere
`appli atio11 , ba kdriv abilit
`mm1m1ze the holding power and brake ize required. For pre i ion ser
`-contr lied lead. ere
`it
`i ~ot reall an important requir ment alth ugh it d e. help to pr vent for
`p rturbati 11 from
`bemg reflected back through the dri etrain.
`
`Sanofi Exhibit 2214.006
`Mylan v. Sanofi
`IPR2018-01675
`
`

`

`Linear Power Transmission Eferne11t.1·
`
`8
`/0,
`
`709
`
`Efficiency
`The cffi iency tis defined as the acwal work divided by the ideal work(µ =
`2R/P1 the worst-ca e efficiency occurs when lifting a load:
`
`O Selling ~ =
`).
`
`_ c sex (rcBcosu. - µ)
`,,-
`1t~cosa. (cosa, + 1tPµ)
`• h d' fr
`t diameter/lead ratio\ and
`,
`.
`_ .
`.
`1 ,eren
`Figure l 0.8.8 shows efhc1enc1es for various types of screws wit
`,
`.
`le
`thread angles a. as defined in Figure J 0.8.8. Note that a s_ta~dar_d ~cme thread ~~\ a~ ~:~e
`between the threads of 29° or ex = l 4.5°.
`he coefficient of friction 1s difficult to pre ic '. _u
`h
`f Jeadscrew and s1zmg t e
`•
`h
`can obtain rea onable estimates for the purposes of choosing t c type o

`drive motor.
`
`(10.8.18)
`
`>. u
`C
`II)
`·c:;
`t.::
`~
`
`1.0
`
`0.9
`
`0.8
`
`0.7
`
`0.6
`
`0.5
`
`0.4
`
`0.3
`
`0.2
`
`..
`
`Curve number
`---a--
`
`---0--
`
`"'
`
`---0--
`
`I
`2
`3
`4
`5
`6
`
`......
`.. :
`
`·;·
`
`2
`
`3
`
`4
`
`5
`
`~
`
`6
`
`7
`
`8
`
`9
`
`10
`
`Figure 10.8.8 Lead crew efficiency: (1) light preload special fini h ball crew ex.= 45°
`andµ= 0.001, (2) light preload ball crew a.= 45° andµ= 0.005 , (3) lubricated lapped
`lightly loaded Acme thread ex= 14.5° andµ= 0.01, (4) heavy preload ball crew ex.= 45°
`andµ= 0.01, (5) lubricated ground Acme thread a= 14.5° andµ= 0.05, (6) lubricated
`tapped Acme thread ex.= l4.5° and µ = 0.1.
`
`Noise Moments
`The analysi above showed that in the proce of creating an axial force with a moment
`about the leadscrcw axis (shaft torque), off-axi moment are also created about axes normal to the
`haft. The e moment are referred to here a noise moments95 not becau e they are cau ed by
`random effects (they are not) but because they are unwanted re ultant moments. The e moment
`are plotted in Figure 10.8.9 for a lapped lead crew with forced light oil lubrication. Similar results
`are obtained for other types of lead crews.
`Figure 10.8.9 how the noise mo_ment functions to be decaying inu oid . The magnitude
`of the inusoid can be large and thus reqmre extreme care on the part of the lead crew manufacturer
`to choose a helix angle to minimize the two moment . The sinusoids are out of phase so there is
`hown in Figure 10.8.10, the rm of the noise
`no point where both moment are zero. A
`moment i minimized at an integer number of turns of the helix angle. Thi also causes the net
`lateral force
`to be zero. A problem ari e when manufacturing errors effectively change the
`amount of contact between the nut and crew and hence the magnitude of the noi e moment. A
`can be een from the graph, a mall variation in number of effective thread turns can ometime
`mean a large increa e in noise moment . Although the
`inusoid are decaying, there i no point
`where the MX and My moments are both zero. The more thread turns that are used, however. the
`
`" oi ·e moment" is not a . tandard term, ·o ometimes you may have to explain that they are moment about axe
`95
`oi e moment is a
`orthogonal to the crew axe .
`imple term that de cribe what they are to the design engineer.
`
`Sanofi Exhibit 2214.007
`Mylan v. Sanofi
`IPR2018-01675
`
`

`

`710
`
`10.8 linear Power Transmission Element$
`
`less the chance of a variance in contact area, causing a large disturbance. The noise moments are
`why no leadscrew can be directly bolted to a carriage without causing pitch and yaw errors, even
`though in most cases they are negligible, to be imposed on the carriage's motion. In many cases
`the noise moments will seem to vary randomly as the process of varying contact zones may itself
`be random. In other cases the noise moments may vary sinusoidally as balls enter and leave a
`ballscrew raceway. The noise moments also contribute to the wear of the leadscrew.
`
`•
`
`• • • • • •
`
`•
`
`•
`
`• • • • , ..
`
`.
`
`. · · • · , •
`
`'
`· •• • • • , •
`
`'
`• •• • ' " f '"
`
`•
`
`•
`
`•
`
`•
`
`· t•·· . . . , . . . . •····· ·
`
`•
`
`■ • '.
`
`•
`
`• • • • • • • • • • •
`
`'
`
`'
`• ' ·
`
`I
`
`•
`
`0
`
`t
`
`'
`
`I
`
`•
`
`•
`
`•
`
`•
`
`• • • • • '•
`
`- . . . . . . . . . . . . ' ~ •
`
`•
`
`•
`
`• ' ·
`
`•
`
`-
`
`• • • • ,_
`
`-
`
`•
`
`- • • • ~ •
`
`-
`
`.
`
`. . . ..
`
`'
`
`'
`
`t
`
`I
`
`•
`
`Mx/Mz
`My/Mz
`
`LO
`
`1.5 -r----:---.,..----,----:-----,-----,----:---:-----:---.,..-----,----,----,---~
`. -:· .. .. .. :, .. . . . . :· . . .. . . :- . ' .. .
`.
`.
`.
`.
`.. . - . . ' . . .. . -... - . ... . - . .. . - . , ....... ~ ...... ~ . . . ... , .. - .. . ' .... . - . . ~ .. .... ,.
`.
`.
`.
`.
`.
`'
`'
`'
`.
`.
`. · · · ·•' . . . . .. .....
`.. .. .. . . -.. ·· · ······
`-·-
`.
`.. · '··· · . · ·:-···· · ·: ··· · •·;•
`.
`.
`.
`.
`.
`.
`'
`'
`'
`· ··• •r• •··••r ·· · ·· •r · ·· · · · ,•• • • ••
`· r · · · · · · •·· • ·•·••· ·· · ···•· ·
`. ·· · ··•····· •· •··· ·


`· • • r • • • • • • ~ • • • • • • :. • • • • • • :. • • • • • • :. • • • • • • ~ • • • • • • r • • • • • • ; •
`
`· •
`•
`
`,·
`
`,
`
`• • • • ,· • • •
`•
`
`•
`
`•
`
`'
`
`I
`• ~ • • • • •
`
`•
`• ~ •
`
`•
`
`•
`
`•
`• • • I. • • • • -
`
`• •
`
`, • • : • • • • •
`•
`• ~ • • • • • •
`
`,
`
`g
`.§
`~ 0.5
`i <
`5 §
`i
`
`~
`
`E
`
`0.0
`
`-0.5
`
`'
`
`'
`
`'
`
`· . • . . . t •
`
`. • . • • t • • • • •
`
`• , • • • • ••
`
`.
`.
`.
`· · · · ······ ····· ... .......... .. .... ·•·· ··· ····· ····· ·· · ···
`.
`.
`.
`. . .. :· - ..... ~ .... . ·:·. - .. . ·:· .. - ... ~ .. . ... :· .. . .. . ~ .. . ... ~ . .. . .. ~ .. ... .
`'
`.
`.
`.
`.
`.
`.
`. • · · • · · · '·
`.
`.
`.
`.
`'
`'
`'
`· ••·· ··· ·· ,·· ·•• ·· .·· ··· ·· .· ··· ·· ·.······· ·· • ·• · • · •• • · • • · •,·••· ·· · •· · · ·· · · .. · · · · · · r··· ··· : •• ·· •·
`.
`.
`.
`.
`.
`'
`'
`'
`.
`'
`·· · ,· · · · · ··,···· · · · •·· • · ·· ·••• ••• • ·r• ••• • · ,•· •• •••••·- • •· .- • ·• •• • r • • · · • · r · · •
`r · • · • • · t · · · · · ·
`· • · .. .. .. .. . .. .
`............. . ····· · · · ···· · ·· · ···· ·· · .... . .... ·· · ·· · · · '· .. . .. · '·
`-1.0 -+---+--+----+----+--+---+----+--+---+----+--+---+-----
`8
`7
`6
`
`2
`
`5
`4
`3
`Number of thread turns N'f =7J
`
`1'
`
`Figure 10.8.9 Noise moments on a leadscrew nut with 14.5° thread angle, coefficient
`of friction = 0.1, lead = l O mm, and diameter = 40 mm.
`
`The minimum rms noise moment ratio is independent of the number of thread turns;
`however, the fewer thread turns, the steeper the rms noise moment slope, so if the exact desired
`number of thread turns is not achieved, the consequences will be greater. Figure 10.8.11 shows
`the effect of the coefficient of friction on the minimum rms noise moment ratio. In the limit
`when µ is infinite, a torque applied to the shaft only produces a torque on the nut. This helps to
`explain why sliding contact leadscrews are quieter, in addition to their lack of rolling balls, than
`ballscrews. Figure 10.8.12 shows that a decreasing lead also yields a quieter leadscrew. In the
`limit when p goes to infinity, a rotation applied to the shaft yields no linear motion and hence no
`noise moments. Figure 10.8.13 shows the effect of varying thread flank angle on the minimum
`nns noise moment ratio. The ideal threadform would have square threads (a. = 0). Note that
`ballscrews, which have a large contact angle of 45°, thus typically have large noise moment ratios.
`
`_____...._
`Sanofi Exhibit 2214.008
`Mylan v. Sanofi
`IPR2018-01675
`
`

`

`/0.8 linear Power Transmission £/emems
`
`711
`
`....
`
`1.3
`
`1.2
`
`l.l
`
`1.0
`
`0.9
`
`0.8
`
`0.7
`
`N
`°N
`~
`;;.,
`~
`+ N
`,:.
`~ 0.6
`!
`0.5
`~
`i::,::
`O'
`Vl
`
`>(
`
`0.4
`
`0.3
`
`.. ····- •- .....
`
`··········
`
`: . . . -
`
`._
`
`. ···-·-··· ..... ···-·· ··· .
`.
`.
`·• .. . . , .. ... . .
`···.· •··· · ·.·
`
`. ···· ·,· · · ..
`- . . . . .. · . .
`
`0.2
`
`0.1
`
`2
`
`5
`4
`3
`Number of thread 1urns N'{' =1Z
`
`I'
`
`6
`
`7
`
`8
`
`Figure 10.8.10 Root mean square of noise moments in Figure 10.8.9
`
`~ 0.28 - . - - - - - - - - - - -~ - - -~ - - - - - -~ - - - - - - - - - ,
`- . . . . . . . .. . . .
`. - ~-
`
`- - ~- - - ~- -=~ ........ , ... . . . ... .. .. .. .... . - - .. ...... : - . ... - .. ; .. · ..... -·-.
`
`r. .. -:-:-.. :-:--:-... -:-:-:. --~-.. :-:i:il
`
`• • • • • • • •
`
`•
`
`• • • • •
`
`'
`• • • •
`
`•
`
`, • • • • • •
`'
`
`• • • J • • •
`'
`
`•
`
`•
`
`•
`
`0.24
`
`0.20
`
`· · ·:··-····· ....... ····· ••:• -······ ·:--
`.
`· · · ·· .
`.
`.
`.
`.
`. . .. . .... . .. . . . . . ····· • .... ·.·· , ..... ···· · · ···-
`.
`.
`.
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`0
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`:
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•: •
`
`•
`
`•
`
`•
`
`:
`
`•
`
`r
`
`•
`
`:
`
`•
`
`•
`
`•'. •
`
`•
`
`:
`
`0
`
`•
`
`: •
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`•
`
`• : • •
`
`•
`
`•
`
`•
`
`•
`
`•
`
`0
`
`•
`
`•
`
`•
`
`•
`
`. - •
`
`•
`
`•
`
`., •
`
`•
`
`•
`
`•
`
`•
`
`•
`
`'
`
`•
`
`•
`
`o
`
`•
`
`•
`
`I
`
`.
`.
`•
`'
`. · · · · ·· ··· ·· · · ; - - .. .. . . ; · · ··••:-- --: --
`. ..... . .. .. .. . ; . .. .. .. . ; .. .. . . : ... . ; . .. ; ... : .. , . . · . . .... . .... .. . .
`.
`.
`.
`.
`.
`. ...... . . . .... . ... . ... . . . . . . . . .. . . .. . . . . . . .. . . . .. . .. . . . . . . .. . .. . .. .. .. .. . .. .. . . . .
`.
`.
`.
`'
`'
`'
`'
`• i • • • • • • • • • • • • 0
`~ •
`· · ·· ·· ·· · · · · .. , . · · ·· · · · ·· · ·· · .. · · · · ··· · · ·· -.• · . .. ,. . ... ... .. . . .. .. . .. . . ...... . ,,. ..... . .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`'
`. · ·· · ·• · · · ·· ·· · · · · .. · -· · ·· ·· · ·"· · ·· · ·- · · ·- J·· •· .. .. . . . ... . ... . .... . . . . .............. .. ... , --
`.
`.
`.
`.
`. . . . . . . . . .. .. . . .. ~ . .. . . ... . ; . . . .. ·: . . . . : . . . : .. -: . . : . . '.· . : .. . . . . . . . - . . . -: - - . .. - . . :- - . - . . : . -. - ._ ... : -
`.. : .. : . . · . . : . .
`. . .... .... . . . . ~ . .. .. .... ; . . . .. -: .
`.
`.
`.
`.
`.
`.
`.
`· .. . . · · ·· ··· . . . . . . ...... . . . . . . . .... ··· ·· · · · ··· · ·· · · · ·· · ' .... . ...... ··· · · ··· ·
`· ·· ·
`.
`.
`.
`'
`0.12 +------,----r----,--r--...---r-"T""-.,.....,,--------,----,.--,--.-T"-r--..--..--,rl
`.001
`Coef-ficienl of friction
`.01
`. I
`Figure 10.8.11 Effect of coefficient of friction on minimum rms noise moments for a
`40 mm diameter, 10 mm lead leadscrew with 14.5° thread angle CL
`
`~ •
`
`•
`
`•
`
`0.40
`
`~
`~
`
`0.36
`
`N-,
`N
`
`0.32
`
`0.28
`
`.. .... . ;.: . . ....... . ... . ·• •:-
`--:- •-· ·· ··· · -•:••··.·· . . .
`·.·· ·:· · :··:· -· · ·· · · · · ·· ···:· · •·····•:····· ·:· · ... · .. . . · .. . · .
`-; .. --.· -·· · =· ·:··-··· · ····--- -·- -· - - · . . .
`.
`.
`.
`
`•
`
`-
`
`•
`
`: • • • • •
`
`•
`
`•
`
`• • • • •
`
`•
`
`•
`
`•• -
`
`-
`
`•
`
`•
`
`• • • • • • • • •
`
`-
`
`. ~ •
`
`•
`
`+
`
`•
`
`•
`
`•
`
`-
`
`•
`
`· - . . . . . . . . . . . . .
`
`.
`
`.
`
`...
`
`•
`
`~ >,
`~ +
`
`<'-1--
`N
`~ >(
`~
`~
`i::,::
`0
`V)
`z
`i
`
`0.24
`
`0.20
`
`0.16
`
`0.12
`
`0.08
`
`0.04
`
`0.00
`
`.. .. . . . . · , .. . . . - .. •: ... .. . : .. .. ~ . .
`. ·· · · •· · ··:· · · · · · · ·-' · · · · · ·:· · · · _. ·
`........ ·: ........ ·: • ... : ::: : : : ; . : . : : : : : : ::: : : : ~: : : : : : : : : : : : : : ::: : . : : : : : ::: : : : : : i : : : ::: : : ; : : : ·: : : : : , .
`. . .. . ..
`.. :· · · ··· .. - ·: · · ·· ·
`·· · ·· · ·· . --· ·· · · ··· · · ·· ... . . . ..... .. . ... .. . . . . . . .. . .... . ........ . . . .. ·· -
`.. .
`.
`.. -: .. . . .. .. ~ . -. .... , . . - ~ . .. ~ .. .. . ·: - . '. . -: . .. . . .. ... .. - - .: .. . .. .. . . : . . . - - . ·. . .. · . . . ~. - . , . ..... - ... - .
`• • • ~ •
`. . . ~ . . . . . . -
`.: . .. . .. ·.· .. . . :. - . , ... · .. . : .. ; . . ;. - . ... .. . ... . . -:- .. .. - - - -.: . . .
`.. \ .... : . . - .: . . . . .. :. - .. .
`. . . . . : ::: : : : ;: : : ~:: ::: : :·: : : : \:::: :::::: ::: \ ::: ::: : ::: : : : : : :: : : . ::: : : :·:. : .: : : : : ·:::
`·· · :·· · '· ··:· ··:· ·!·-:· · · ·· · · · · · -·- · ·:· · ··· · · ··:· · · · · · · · · · ·'· ··-··-· · . .. ~ .
`.
`.
`
`•
`
`•
`
`•
`
`-
`
`• : •
`
`.. . ' .. . . . . . . . : . . . . . . .
`
`• ~ • • •
`
`:
`
`•
`
`•
`
`• • • • • • • • ~ • ·: . . . . . .
`
`.. . . .
`
`-
`
`•
`
`•
`
`•
`

`
`: · • • • • • • • •' •
`
`• • • •
`
`•
`
`- • • -
`
`.-• • -
`
`J- • . . . . . -·-
`
`-
`
`•
`
`• • • •
`
`-
`
`•
`
`• • • • • -
`
`-
`
`-
`
`• • • • • • • • - • • +
`
`-
`
`•
`
`- . . . . .
`
`. ~ • • - • • -
`
`._ •
`
`4" • •
`
`····· ····· · · · · · ·, · ···
`
`· -•: -• •: · -· ····••: -•:•·
`
`10
`Figure 10.8.12 Effect ?f diam~te~-to-lead ratio ~ on ~inimum rms noise moments for
`a Jeadscrew with coefficient of fricnon of 0.1 and a 14.5 thread angle ex.
`
`100
`
`Sanofi Exhibit 2214.009
`Mylan v. Sanofi
`IPR2018-01675
`
`

`

`, - ~~
`
`--
`
`712
`
`~
`~
`
`10.8 Linear Power Tran.smi.ssion E/emen.t.s
`
`~
`
`N {
`6 +
`
`0.4
`
`· ·,·
`
`·•,• •
`
`■
`
`•
`• ·,· ·•· · ,· · r · , ·
`
`I
`
`'
`
`I
`
`. . ·, .
`
`•
`
`•
`
`0.3
`
`0.2
`
`.· .. :- . :- . ~ .
`- . - -' . . ~ - ' . : . ·:. ·:· . ; . : . -. ., .
`.
`.
`.
`--:--:-. : -: --:--:--:-. ; . ; .. :. -:-. ~ . ; .. : . ·:. ";-<--~ -~ --:- . :- -:- -~.
`
`•
`
`•
`
`•
`
`I
`
`•
`
`. .
`
`0.1
`
`cr.i
`
`-' - - ·- -· · • '--1 -
`'
`,
`
`•
`
`•
`
`I
`
`0
`
`t
`
`I
`
`I
`
`■
`I
`
`•
`•
`
`I
`
`I
`I
`
`•
`
`O
`•
`
`I
`
`'
`'
`
`I
`
`•
`'
`
`I
`
`I
`
`'
`
`'
`
`o
`
`I
`I
`
`,
`
`,
`
`,
`
`1.8 ....... - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ,
`· · Nurnbe~ofthread turnS" ~ · · · ··· · · · -·- · · · ·· · · · · .,_ - · -· - -· -:- · · · -:- · · -.:. · · · -:- · -· ~ -· · ... · · · ··· ·
`.
`.
`. . . . ---m- 1.5
`. . . .... ......
`'
`'
`'
`- · -,·· - ·;·· · · ,- · ···.·····, · ·
`'
`'
`'
`'
`'
`2.5
`.
`'
`'
`'
`'
`'
`'
`'
`r· · · ·,·· ·· ·•· ·· · ·,· -
`a
`3.5
`4.5
`---0-- 5.5
`6.5
`N
`7.5
`6
`
`'
`
`'
`
`.
`-· · · ·· · · · · .. · · · ····· ··'· ···
`· · · ··· · ·· ····· • •'·•· ·
`.
`'
`'
`
`'
`
`N
`'N'
`~ ><:
`~
`~ 0
`~
`
`0.0
`
`0
`
`-:-<· . :· . ~ .
`.
`. .. .. . ... . , . . , . . .. .. .
`
`'
`'
`
`'
`
`'
`'
`
`. ... . ~ ... ... ... .
`.
`.
`'
`'
`
`. -:-. :- . ~ . : -·:. ·: · -:-. ~ -~ . ·: . -: · . ~ -; . -:- -:- -:- <-. ~ . -: . -: . -:_ . :_ -_: .
`. -' .. :· . . ..... , . ·:· . , . .. - . - ., - .
`- .. -. ... - ..... - ~ - . - .. .. - ~ . ~ ... .
`.
`. .
`'
`'
`
`,
`■
`
`o
`•
`
`O
`•
`
`o
`
`o
`
`•
`
`o
`
`5
`
`10
`
`25
`15
`20
`Thread flank angle (degrees
`
`30
`
`35
`
`40
`
`45
`
`Figure 10.8.13 Effect of thread angle ex on minimum rms noise moments for a
`leadscrew with coefficient of friction of 0.1, 40 mm diameter, and l O mm lead.
`
`The maximum rms noise moment decays asymptotically with the number of thread turns.
`Figure 10.8.14 shows the effect of the diameter-to-lead ratio p on the maximum rms noise
`moment ratio. Changing ~ changes the lead angle, which affects the maximum noise moment
`ratio in a nonlinear manner. Still for a large number of thread turns , the noise moment ratio
`decreases with increasing ~- For a small number of thread turns, one wants ~ to be small to avoid
`the possibility of experiencing large maximum noise moments if the exact desired number of
`thread turns is not achieved. Figure 10.8.15 shows the effect of the coefficient of friction on the
`maximum rms noise moment ratio. Once again, the higher the coefficient of friction, the lower
`the noise moments. This is not to say that one should purposefully increase the coefficient of
`friction, because that could lead to other control problems. Figure 10.8.16 shows that the
`maximum rms noise moments decrease with decreasing thread angle ex and increasing number of
`thread turns.
`
`'
`
`'
`
`I
`
`I
`
`I
`
`'
`
`0
`
`>
`
`t
`
`I
`
`1.3
`
`l 6
`+ l
`
`~ o 0.8
`
`<I')
`
`·. ·· ··J . . . . • . .... :•·· · ·· · ··
`
`'
`'
`'
`·,···· -, ·· -- •,- -• • 1• · · · .- -- - -.·· · ··· • ·
`
`.... .. . • . . . .
`
`0
`
`2
`
`3
`
`7
`4
`5
`~
`8
`Figure 10.8.14 Effect of diameter-to-lead ratio ~ on maximum rms noise moment
`envelope for a leadscrew with coefficient of friction of 0.1 and a 14.5° thread angle a .
`
`6
`
`9
`
`10
`
`Sanofi Exhibit 2214.010
`Mylan v. Sanofi
`IPR2018-01675
`
`

`

`{J.<.
`
`ine f P Wl'r Transmission Elements
`
`3
`
`<"j....,
`
`NI l
`"' ~ 2
`N -;:.
`~ ..
`~ :::;.
`r-
`a:
`0
`;I) x
`< .:::;
`
`0
`
`.. .. ; .... .
`... ·· >-- · ... :. '.
`·· · · ·-· · . . . . .. . · ·· · · ·- · ·
`- . .. . . ~. - .. - ·: .. . . -
`-- ---: -----
`
`µ=0.1
`
`.
`.... -·
`
`.
`.
`.... . ... .
`
`2
`
`5
`4
`3
`Number of thread turns N'f =lt
`Figure 10.8.1S Effect of coefficient of friction on maximum rms noise moment
`envelope for a 40 mm diameter, IO mm lead leadscrew with 14.5° thread angle a.
`
`6
`
`7
`
`I'
`
`7J 3
`
`8
`
`·· · ······· •
`• ..
`. . . . - . . - . - - - . - ... -· - . - - . -.. - . . ... . . . . .
`. . . - .... . . ' . ~ . . - . - ... . - . . . . ... - . - - .. - .. -. .. . .. - - . . - . -
`. - - ... - - .. .. . . - . - - - . - . , .
`- - - - . ~ . . . . - -.- .. . .. . , . . - . - ... . ... ... ..... .
`
`'•
`
`•
`
`1.0
`
`N
`N'
`~ ~ 0.8
`~
`~ a:
`0
`Ul
`~ 0.4
`~
`
`0.6
`
`. . ·-· .. ' · ··,· · --- . ·.·· · ··• ·, · . - - . . • · .. .. '
`.
`.
`.
`. - - - ·· -···-•- •, - · •··· ... - · -··· \ " · • • ·
`.
`· · · · · ·.···· · ·
`

`
`0.2 -+----t---t----.----;,---+---;----;,----;----+--+---;--.....-,,----.--~
`3
`4
`5
`6
`Number of thread turns N'f'
`
`:e:il
`
`I'
`
`7
`
`8
`
`2
`
`Figure 10.8.16 Effect of thread angle a on maximum rms noise moment envelope
`for a Ieadscrew with coefficient of friction of 0.1 , 40 mm diameter, and l O mm lead.
`
`A high-quality leadscrew will have minimal noise moment variations . This is often
`achieved (in general) by increasing the number of thread turns, which also increases load capacity
`and stiffness. Increasing the number of thread turns decreases the slope of the noise moment curve,
`so if the exact number of desired turns is not achieved (and the number may oscillate slightly when
`balls are used), the effects will be minimized. Unfortunately, many manufacturers are not aware of
`the existence of noise moments because noise moments usually only manifest themselves as
`problems when submicron performance is sought. Some manufacturers will provide noise
`moment data if they have ever bothered to make the measurements. In many designs, such as in
`the design of a turning center with I µm r~solution,_ the noise moments create insignificant errors.
`In other cases, such as a diamond tummg machme, the error due to noise moments can be
`significant. Sometimes one just ha_s to ~uy a whole box of leadscrews and test each one until one
`is found that meets the desired spec1ficatwns.
`.
`As discussed in Section I0.8.4, there are vanous types of coupling systems one can use to
`help minimize the magnitudes of loads imposed on the carriage driven by a leadscrew. Ideally. a
`leadscrew would have no mechani~al ~ont~ct between the threads . . This would give it a much lower
`•se moment ratio and no vana11on m contact area; thus 1t would have very consistent
`;~onnance, which could readily be mapped. This type of leadscrew is di scussed in Section
`10.8.3.8.
`
`.
`.
`.
`.
`.
`.
`. .
`Application of the Analysis
`The drive t.orque and efficiency results of th'.s anal_ys1s are w1thm engmeenng tolerance for
`ost types of !eadscrews. The results tor noise moments can be used to provide an
`. h
`use wit m

`.
`.
`f ,·he noise moments that will be generated. These estimates can then be used in the
`.
`estimate o
`
`h,
`
`Sanofi Exhibit 2214.011
`Mylan v. Sanofi
`IPR2018-01675
`
`

`

`714
`
`10.8 Linear Power Transmission Element!I
`
`machine's error budget to help guide the sizing of bearings and carriage structural components. As
`will be seen below, some screws do not have continuous contact around the thread helix. These
`screws would require individual summation of the forces at the contact points. For example, a
`ballscrew manufacturer would use a computer to provide a summation of the differential moments
`caused by all the balls contacting the thread surfaces. This would allow the manufacturer to choose
`just the right number of balls for the recirculating path to carry the desired proper load and to
`minimize noise moments.
`The efficiency (Equation l 0.8.18) can be used to obtain a much simpler equation for the
`relation between drive torque, axial force, and lead. The rotary power into the system is the
`product of the drive motor torque Mz and the rotation ang~e 8 .. This power equals the linear power
`out, which is the product of the force Fz generated, the axial distance moved, and the efficiency of
`the system. The force generated by a leadscrew can therefore be expressed as
`
`Fz= 21tt,,Mz
`e
`
`(10.8.19)
`
`If a leadscrew has a fine lead, a low-torque, high-speed motor can be used to drive the system. In
`addition, if the lead is accurate, a lower-resolution sensor can be used to measure the rotation of the
`screw. Until recently, mechanical systems were more accurate than electronic systems. Today, the
`motivation for using fine leads is to minimize drive-torque requirements and to allow for the use of
`stepper motors.
`With the relations above, it is also not difficult to show that the equivalent linear stiffness
`of a rotary stiffness reflected through a leadscrew is
`
`?
`4n- ~otary
`Klinear equivalent =
`? t
`
`(10.8.20)
`
`As was shown in Section 5.2, the axial stiffness of a leadscrew is almost always (except for screws
`with very large leads) much less than the equivalent linear stiffness of the rotary stiffness. Thus a
`leadscrew can increase the apparent stiffness of an electric motor. This is one reason why linear
`electric motors may never replace leadscrews in machine tool applications. The same magnet
`technology that advances the state of the art in linear motors can always be rolled into a circle and
`used with a leadscrew to achieve a higher performance level.
`
`10.8.3.2 Sliding Contact Thread Leadscrews
`
`Sliding contact thread leadscrews represent the range from least expensive (machine finished)
`to most expensive (hand lapped) leadscrews. Usually, the nut is made of a bearing brass or bronze
`but can also be made from PTFE. The nut can also be formed by casting a polymer of babbit
`. bearing material around the shaft. For low force applications (e.g., for instrument carriages) the
`nut can be bored without threads and then have axial slits cut into it. The nut is then placed over a
`fine pitch leadscrew (e·.g., 100 threads per inch) and O rings used to clamp the nut
`circumferentially. The fine thread screw will then make its own impressions into the nut.
`Molded plastic nuts are often split and preloaded by an O ring, which puts circumferential
`pressure on the nut. A molded plastic nut running on a rolled shaft may have an accuracy of about
`about 1 mm/m. Molded plastic nut leadscrew assemblies can have leads as high as four times the
`pitch diameter of the screw. They are typically used in applications where the loads and shaft
`diameters are low, less than 500 N and 20 mm, respectively. Molded plastic nut leadscrew
`assemblies may only cost on the order of $10-$100.

`Commercially available thread ground and lapped sliding contact thread leadscrew assemblies
`may have nuts preloaded against each other or they may have split nuts that are preloaded with a
`circumferential spring. Some even have built-in flexural couplings. Figure 10.8. l 7 shows size
`and load capacity data for a commercially available ground and lapped leadscrew with an integral
`flexible coupling in the nut. These ground and lapped leadscrews are comparably in cost to
`precision ballscrews. One of the larger units with X accuracy grade may cost about $1800. An
`XXX accuracy grade may cost three times this amount. With a dosed-loop servo-control system
`that uses a linear position sensor, there is generally no need for specifying an accuracy grade higher
`than X.
`
`Sanofi Exhibit 2214.012
`Mylan v. Sanofi
`IPR2018-01675
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket