throbber
LIBRARY OF CONGRESS
`
`( )ffice of Business Enterprises
`Duplication Services Section
`
`THIS IS TO CERTIFY that the collections of the Library of Congress contain a journal
`entitled IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, call number "TK
`7800.12," and that the following pages- the binding cover page, title page from Volume 46,
`April 1998, publisher page, page 465 with Library of Congress Copyright stamp, and pages 531
`through-537 - are a true and accurate representation from that work.
`
`THIS IS TO CERTIFY FURTHER, that work is marked with a Library of Congress
`Copyright Office stamp dated April 15, 1998.
`
`IN WITNESS WHEREOF, the seal of the Library of Congress is affixed hereto on
`July 18, 2018.
`
`,
`Deirdre Scott
`Business Enterprises Officer
`Office of Business Enterprises
`Library of Congress
`
`101 Independence Avenue, SE Washington, DC 20540-4917 Td 202.707.5650www.loq,:"v;duplicatiomervices@loc.gov
`t
`
`ZTE v. Fractus
`IPR2018-01461
`
`ZTE
`Exhibit 1014.0001
`
`

`

`LIE BABY 0F CONGRESB
`
`llifllfllilfiflfllml
`0 033 225 112 0
`
`IEEE
`
`TRANSACTIONS
`
`ON ANIENNAS
`
`AND
`
`PROPAGATION
`
`
`
`ZTE V. Fractus
`
`ZTE
`
`IPR2018-01461
`
`Exhibit 1014,0002
`
`ZTE v. Fractus
`IPR2018-01461
`
`ZTE
`Exhibit 1014.0002
`
`

`

`~IEE.E TRAN SACTI 0 NS ON
`NTENNASAND
`PROPAGATION
`
`A pUBLICATION OF THE IEEE AHTl!NNAS AND PROPAGATION 80CIETY
`
`VOLUME 46
`
`NUMBER 4
`
`IETPAK
`
`(ISSN 0018-926X)
`
`APRIL 1998
`
`--PAPERS
`
`Physical Interpretation of the Phase Asymmetry of a Slant-Path Transmission Matrix . ........ ... . ... ... .. ... . . ... ..... . .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N . .f. McEwan, Z. A. A. Rashid, and S. M. R. Jones
`A Wide-Band Single-Layer Patch Antenna .. . . .... . .... .. . .. ............. ........ .... .. ........ .. ........ .. .. N. Herscovici
`Multiport Network Model for CAD of Electromagnetically Coupled Microstrip Patch Antennas ............ ........ ... . .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. P. Parrikar and K. C. Gupta
`Simultaneous Time- and Frequency-Domain Extrapolation . .. .. ... . . ........ .. ..... .. ..... ... R. S. Adve and T. K. Sarkar
`Scattering from Structures Formed by Resonant Elements .... ... ....... ... .. .... . ....... ... . ... V. Veremey and R. Mittra
`Normalization and Interpretation of Radar Images ......................................................................... .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. P. Skinner, B. M. Kent, R. C. Wittmann, D. L. Mensa, and D. J. Andersh
`Perfectly Matched Layer Mesh Terminations for Nodal-Based Finite-Element Methods in Electromagnetic Scattering . ..
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Tang, K. D. Paulsen, and S. A. Haider
`On the Behavior of the Sierpinski Multiband Fractal Antenna .. ... .. . .. ... ..... ....... . . .. . .. .. .. ... ... ... . . ........ .. .. . .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Puente-Baliarda, J. Romeu, R. Pous, and A. Cardama
`On Modeling and Personal Dosimetry of Cellular Telephone Helical Antennas with the FDTD Code .................. .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Lazzi and 0. P. Gandhi
`Study of Impedance and Radiation Properties of a Concentric Microstrip Triangular-Ring Antenna and Its Modeling
`Techniques Using FDTD Method ...................................................... I. S. Misra and S. K. Chowdhury
`Analysis of Stripline-Fed Slot-Coupled Patch Antennas with Vias for Parallel-Plate Mode Suppression .. . . .... . ..... .. .
`· ................................................................. A. Bhattacharyya, 0. Fordham, and Y. Liu
`Blindness Removal in Arrays of Rectangular Waveguides lMng Dielectrically Loaded Hard Walls .................... .
`· · · · ......................................................................... S. P. Skobelev and P.-S. Kildal
`iffracli n nnd Shooting and Bouncing Rays ................. .. S.-K. Jeng
`Neur- iehl 'cnttering by Physical Theory of'
`~ th d n! Moment. Solution for a Wire Attuched co nn Arbitrary Faceted Surface ......... I. Tekin and E. H. Newman
`orward- 'cmtering A nalyi;i s in n . ocuscd-Beam Sy ·1em .. . ............................ R. Shavit, T. Wells, and A. Cohen
`lllgh·Fn:quen y Arlalysis of nn Array o Linc Sources on a Truncated Ground Plane ................................... .
`A · · · · · · · · · · · · · ...•••.•...•..•........••..................•.••. F.
`11pofino, M. Albani, S. Maci, and R. Tiberio
`· · UTD Solution for the Scattering by a Wedge with Anisotropic Impedanc
`fle1 es: Skew Incidence Case ............. .
`'O · · · · · · · · · · · · · · · · · · · · ..................................................... G. Pelosi, G. Manara, and P. Nepa
`' h the Use of Cavity Modes as Basis Functions in the Full-Wave Analysis of Printed Antennas ....................... .
`· · · · · · · · · .. .... ... .. .. .. ... ... . , ..... . ... ... . . . . . . ... .. ........... .. . .. G. Vecchi, P. Pirinoli, and M. Orefice
`
`465
`471
`
`475
`484
`494
`
`502
`
`507
`
`517
`
`525
`
`531
`
`538
`
`546
`551
`559
`563
`
`570
`
`579
`
`589
`
`l.l:'T'tllR
`
`ll~c-Dom11 11 Spherical Near-Field Formulas in the Case Where the Radial Components of the Electromagnetic Field
`/\ C re Mca~11 reu ....... .. .. ..... ....... .... . ...... . .. .............. ... ..... .... ....... ......... ...... .. .. .... I. Chri.1·tic11M·e11
`Scat~n~Pllct l'll'A Suitable for Dual-1-<requency 900/1800-MHz Operation . .. . ........... . C. R. Rowell and R. D. Mwd1
`p1111i:r ng Iii a ~ielectric-Loadcd Nonplanar Slit-TM Case .. ..... ..... ...... .. .. ........... .1.-W. l'l.1 anti N.-fl. Myung
`1 t 11 1
`• ·~ lor Wide-Band Interference Suppression Using Eigen Approach ..... .. . . M. J. Mismar anti T. H. /.l'mail
`' I ~leme111 Approach to the Scattering from Inhomogeneous Dieleclric Bodies ........ G. Pelosi mul G. To.1·0
`
`, Bou
`1 111
`
`595
`596
`598
`600
`602
`
`ZTE v. Fractus
`IPR2018-01461
`
`ZTE
`Exhibit 1014.0003
`
`

`

`·~ IEEE ANTENNAS AND PROPAGATION SOCIETY
`
`All members of the lEES are eligible for ntembcrship in the Antennas nnd Propugotion Society ond will rcceivo this l'RANSACTIONS upon pnyntent af the annuol Society membership
`fee of $12.00. For information on joining, write lo the IBBF.i UI the address below. Memher co11ie.1 cif Tra1t<acliQ111/Jo11rnals are fo r pt r.ronnl use only.
`
`R. J. MARHEFKA, President
`
`ADMINISTRATIVE COMMITTEE
`D. H. ScHAUBl!RT, Vice Presidenr
`
`1998
`•o 0, BODNAR
`R. J. MARHRFKA
`B. K. MILLER
`J W MINK
`J L VOLAKIS
`
`1999
`•y RAHMAT-SAMll
`C. A. BAI.ANIS
`M F ISKANl>l!R
`D. R. JACKSON
`D . V . THIEL
`
`2000
`•s. A LoNO
`J. J. LE"
`M. PIKl!T·MAY
`R. J. PoooRZilLS K1
`G S. SMITH
`
`0. B. KESLER, Secretary-Treasurer
`
`2001
`•E. s. G1u.nsrm
`
`A111e11na Met1.rnrenienls (AMTA ): E. S G ILLESPIE
`Applied Computationul EM Sodety (ACE:S) :
`A F. Pt;TI!RSON
`Joint Committee n11 HiRh-Power Elec:lrm11av1eth:.~:
`C . E BAUM
`Awa!d.< and Fellows: R . L. PANTE
`CAEME Board: S. A . L ONO
`Cht1ptar Activities: R. V. M c:OAHAN
`Committee 011 Cmmmmicatimu tmd /11fonna1irm Policy:
`W. J. ENOLISK
`Cmnmittee OPI M<111 tmd Rndialion: R D Nevels
`Com1111ter A11p/ication.• in EM Edumticm (CAEME):
`M. F )SKANOBR
`Comitil1tlin11 and Bylaws: R. (. Wo1.rsoN
`JJl.1ring11i.<lled lectur<rs: P H PATIIAK
`Edu,·atlmr: S. R. RENOARAJAN
`
`Honorary Life Member: R. C. HANSl!N
`•Post President
`
`Committee Cholno and Reprcsenlollves
`E:AB!TAA C: E K. MIU.ER
`Energy CtJmmillee: Vacnnt
`European RepreselJ/ative.\': P. J.B. CLARRICOATS,
`A. 0 . ROEOERER
`Finwice: 0 . 8. KESLER
`Historian : W . F. CROSWELL
`/El?£ Mt~gt1z.i11e Ccm1mlltee: w R. STONE
`/Ef!:f!: Pre.<S liai.w11: R. J. MAILLOUX
`IEEE TI·a11factio11s Comniillee: P. L E. USLl!NGHI
`Jnrenwtio11ul Radio Cm1.<ulrative Cmte (CC!R): E. K. SMITIJ
`/,,!ilifutimwl l..istiug.i: C C. Al.L.f.N
`lo1111·Rm111• Planning: A. C. SCHELL
`Mt1gazine Editor: W. R. STONE
`Meet/11g.r: J. /\. MoBLLERS
`Meetings Coordimltiou: S. A LoNG
`MeetillN.!t' Workshops: W. G. Sc011
`
`Membership: S. D. GlinNtiY
`New TechnoloRy: A L ZAGHLOUL
`Nomi11urion.<: E. S GILLBSP!e
`Pnife.uio11a/ Activitie.i (PACE:): K . L. VIRGA
`Publications: R. J. MARHEPKA
`R&/J Commirtee-Aero.<pace: 0 HYDB
`R&D Cmnmillee-Defen.re: A. C. SCHEU.
`R&/J Cm11mitree-E11Rineertng: C. W BOSl'IAN
`Slcmdardl·- Antenna.f: E. A. URIJANIK
`Sta11danls-PropC1garlmr: W. A l'LOOD
`S11pet:co11d11ctivily Com111i11ee: K Mm, J W!l.l IAMS
`USNCIURSI: L r B. KA'f'CHI
`1il8 Maat1line.< Commillee: W R STONE
`TAB New Technolog)' Directions Commiflee:
`A I ZAOHLOUL
`TAB Public Relations Committee: W. R. SmNn
`TAB Tra11wcrirms Commillee: P. L. E UsLENGHI
`
`Alb11qutrque
`D. P. Mel.EMORE
`Atlanta
`G HOPKINS
`Balli more
`H. B. SEQUDIRA
`Be/jillR
`Z.SHA
`W.X. ZHANG
`Benelux
`K V T KLOUS'll!R
`B<MIOll
`N HBRSCOVICI
`B~(1ln
`M R. G1Lurrm
`Bulgarfo
`II. 0 . HRISTOV
`Cl1h:t1go
`J PHILLll'S
`Columbus
`R BURKHOLDER
`Cledw.~/ovnlci11
`M ZBMAN
`
`T
`
`Dallas
`[,()(]AN
`Day101t
`K . NAISHTIJRA
`Den..,er
`R. P. OBYER
`E:1m>t
`M. N
`I FAHMV
`Finlaud
`K. NIKOSKINBN
`Florida W. Coa.<I
`T . W EI.I.ER
`Foorl111/
`D. A. PAUi.
`Ft Worth
`G C MAY
`Gennany
`NJ KEEN
`Hong KnnR
`K . K. Mm
`Houston
`J. T. Wl!.!.IAMS
`
`Huuston (Te.ms A&M)
`R D NBVEl.S
`H1msary
`I. l'RIOYl!S
`Hw1livUle
`H. L. BENNlil'I'
`111dontsia
`S NAl'BNAOARO
`Jsrael
`A . MADJAR
`Italy (Central & S I
`P. BBRNllRDI
`Kltche11e1-
`1*11u/oo
`Y L. CHOW
`Li1hua11ia
`B L llVITAS
`LiJnK Js/ancVNY
`H. A>IN
`lo.i A11ge/e.<
`P. RAMANIJJAM
`
`Chapler Choirs
`Micl1i1:an, S E:.
`J W BURNS
`Milwaukee
`J. RICHIE
`Monrr<ul
`G L . YIP
`Nanjing
`W . X. ZHANG
`New Jer.vey Coast
`R. A. ZmoLER
`New South Wate1·
`T. BIRO
`North truly
`c N NALl>I
`Nm th Jersey
`C . GUPTA
`Orlando
`T. G. lVllNOV
`Oltttwa
`D. H Rl!EKIE
`
`Plrilcule/11/iia
`E HOLZMAN
`Phoeni.t
`8. EL SHARAWY
`Pola11d
`c. w. K. OWl\REK
`Prim:e/011
`W. R. CURTICE
`Rio de Janeiro
`J. R. BERGMANN
`Russia
`0. SAZONOV
`Y I. 8BLOV
`St ltmi:,·
`R. W KIEFf.L
`Sall lake City
`M I'. ISKANDER
`Sall DitRO
`J, Roussos
`Santti Clura Valley
`A SAllO
`Sea Ille
`J McCARDl.l!SS
`
`Slngttport!
`M. S. LBONO
`So11rh Afric11
`D. B DAVIDSON
`SfJulll A11slraliu
`B. D BllTES
`Solllh Bay Hai bar
`Spuin
`M. SAi.AZAR-PAi.MA
`Spokane
`C , W WILSON
`Sprinl!fietd
`J.B. MEAD
`St. Peter.<bUTR
`s. TRlffYl\KOV
`Sweden
`J JOKANSSON
`Switzerland
`W . BACHTOLD
`Syracuse
`W Q. SONG
`Thailand
`N YooTHANOM
`
`Tukyo
`T SHIOKAWA
`Toronto
`T. B. VAN DliVllN1 P.R
`Tuc:l·on
`H . C KUHLOACHER
`Turkey
`A ALTINAS
`Ukraine
`A NOSIC!i
`N . N. Vot10VICH
`U11lred
`Kiugcfomllrelwul
`T. H OXLEY
`Utah
`M Ji ISKANDER
`VU'll'fl lf Vt!I
`
`Wmlii11gto,,/
`Nurrliern VA
`D T. AUCKl.AND
`Wi1111i/M/:
`L. SHAl'AI
`
`IEEE TRANSACTIONS~ ON ANTENNAS AND PROPAGATION
`1s o publicollon devolcd la lhcorctlcol and cxpcrlmen1nl 1dvonoe~ in nntcnna~ Including dcNlgn and developmenl, ond in «he propo~otlon of clcctromasnotic wevGJ1 including muteriny, dlfT111ction,
`nnd inloraction wilh conlinuous media; nnd opplicullnn' pcrllnonl 10 onumnu 111\d pmpogwlon, such •• remolo sonKing, applied oplics, und mllllmotcr and , ubrnilllmelcr wa ve technique.•.
`
`See inside bock cover for Edilorial Boaid.
`THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.
`Officers
`FRmOOLr M. SMITS, Vice Preside11t, Publirnr/1111 Actil'ities
`DANIHI. R. 8GNIGNl 1 Vice Pre.Tidcnl, J(egiomll Actillities
`L. JOHN RANKINr., Vice Pre.1idenr, Srw1dard.1· A.nocl11rim1
`LLOYD A . MDRl.r!Y, Vice Pre.dde11t, Tet.:h11il't1/ /\ clivi1;es
`JOHN R. RmN!lRT, f'ruidtllt , lliliE USA
`DUffP, DfrcfOI', Divi.fi•Jll IV - Eieclromasnelk:r and Rudlrr1iot1
`Exemllve St•IT
`DANIEL J SENBS~, 6xec.:ulive Mcmager
`
`RICH/\RlJ I SCHWAKr£, Business Admi11istralio11
`w. THOMAS SUT11..B, Professlonol AcliviJie.i;
`MARY WARD-CALLAN, Technirnl AcrMti.,
`JOHN WITSKliN, bifomtalion Tech1wloRY
`
`JOSEPH BORDOONA, Presidenl
`KENNlflli R. LhK"K, Pm'ide11t·Elett
`ANTONIO C. BASTOS, Srcretary
`BRUCH A. E1seNSTEIN, Treomrer
`ARTHUR WINSTON, Vice Prt.<ide11t, Educorional Actlvirie.1·
`WILLIAM G
`
`DoNALD CURTIS, Human Re.m11rces
`ANTHONY J, PnRRARO, Publicmion."
`Jumrn GORMAN, Sta11dard .• Activilf•;"
`CECELIA JANKOWSKI, Regional Actlvirie~
`PETER A LEWIS, EdUt'C1tiom1I A,·tiville.r
`
`IEEE Periodicals
`Transacllons/,Journels Deparlment
`Staff Dif'clor: FRAN ZAVPULl.A
`Editorial Director: VALERm ChMMARATh
`Production Director: RoDEllT SMREK
`Tra11.1actio11s Ma11ager. GAii. S. FERENC
`Electronic Publishing Manager: ToM BONTRAGER
`Managing Editor: RonERT W. DAVIDSON
`''°'"''""''' 1:.llt1 •1· M1•1r r-;.J l)11Mllll''"'" '"
`'I"•
`\•Hl l!, lr ' ((''"° • f ,1
`~t
`I
`11
`llu.. Rt~ l'C•flli.ll'lllmr 01
`t' J tW
`1H,.1· ll~ M·.',, ,,. ll••"'T' oi'\ ·\!"11! '1~;"" •' ;•n t•µ • •l•\f,,\ltn~i lf\SN ull>-:. 1•.'h.\1 h 11ui.ti .. h,1I 11111111111~ 111, 11
`b~lhu~ .d I II 11ki.Jl 11hl HluuoujL"\ t11
`IH ' '
`"
`,.I \ lh ~I 'Jd'SJ,(11,,tl " '
`.111!11111 .. .11\ll 11••1 111"111 •111· 111·1 ~ 1111~ \, ... hlyU •11111, 11. ,,, 11 .. 11111111 ... , .. 11·:1•1•: f 'ur1m1'11h~ lUlht· ; \I r, l'.1111 .n S111 'h N~rw •._
`\• tl't0f'1
`l•J.a ff.:lt' O&Jtf'i lthn
`t°ffU llf';
`:-.,! t llXS .., "I I 1'll N.1 ' l\olr11ht1111': 11 : ''~I (t01~) l'rk1•/1'11hlh~u1h111 h1formnllon: l111h t.- 11!11.1 I a..111w·\
`j '~;ltll ('~,riJbf h(Jl
`IHI) f,.;f• 1"1')
`lllfl l (fif I Y'fl\ t"-tl.t•• 1HHllL1C1o l
`IEHU o\h u1•.c1•
`l'1-.1o .\l,rn:1)
`11111111 '' 1., 1~~ :u,1 of dte&t-.ff.
`,• m.I l111u11fi111 • 1 l1t11r•, 111 1111\· •• ,,. .. , "'"'' 'I llO h• ,.-,, 11»11, •• ,., l11tliu!1 !"~f'l'"' ••111.'1 1 M• ml .. ·1 .111.1'"''""r mJi..1 ·.uJt1, J1111.,.u1 1wtt·
`\ inlul~...i lo mk 1u/11. l1
`11~111ft1hlr 1111110 rn 1t1l"\I
`11
`lh.•11rl111 l11·1mi,,i4111~: Ah .11.11·1111r "1:..."'11mt1dl "''''" ,.,,.,.,, h• 1/w ·u1m1T I 1l11 ;11 1l·--. ' '" 1"'111 1111111 h• pli111._
`10'1i I~'" 'f\~
`''l'Y (111 l""•lhl +114" 11f p.U 111 pmv 11nJ 1h1 I "t t•lf') la.• HIJJ1, w1 11 Ui tlti• ' '
`•
`l~(Ul 1'f H~rt1l\11l .t1tlun l 1mt i·•• Y.fh.-: ht l ·•1•11n j!h l' \tml l\.;:•::'1'wiJ I ttl h.,,_t ~.
`11~ . In
`l'·•r·· 1·11.1id 1h1 u111•h dh < "l'.~ lir h1 I lo·.11.1lh· · 1•, 1111 r . • ~.'-' j<,.,, \.'·, u1d lh1h I 1;1!1\i'I ,, , \.1 ·\111:'~ ' I 1•1
`.111 01lt1.•1
`jlM)_o( '·> !UL" tu~ 1 1111h ul ll l(t l fk1tl .llkl b J. ,·1mln l1 \ hu11 1nt:r1
`lm1 All nr b• . I•" lfJU I ,, f~
`l'11hll1 .1111111•. ,\.!1111111.11.111 .. 11, 11\ I 1i ... ' 1 .uu· . I' f I 11,,, I\ l I. l'l'-1 ·''·'"·'~·NJ mo~~·" 11•1 I ''l''ll~·hl I
`l'u1-1I ,,, N1" \'nrt... N Y. •llld ~•I .1Lltl1111111.1I 111.111111~· ufllu • 111 ... 111111,lt•rt .'iL11.J ~1.Jd1, • ..,
`lfl N."111\I 1'11n'' ft.
`°"1\S: 1\~I' l"ii111 1,\0J\l h''~~ f
`~I . rt\ II•
`.11.1111..:1> 111 111.1
`l .int: .
`NJ 08855·1331. OST Regi•lrnlion No. 125634188. Prinlctl in US A
`
`.;o.111
`
`-
`
`ZTE v. Fractus
`IPR2018-01461
`
`ZTE
`Exhibit 1014.0004
`
`

`

`IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 4, APRIL 1998
`
`465
`
`Physical Interpretation of the Phase Asymmetry
`of a Slant-Path Transmission Matrix
`
`Neil J. McEwan, Zainol A. Abdul Rashid, Student Member, IEEE, and Stephen M. R. Jones
`
`A/i.,·lrm:t-Thc phusc a y111mclr,v 111' u 20-G n:t. shmt-11nth 1r1ms-
`1ul!.i 11111 1111111'1 • durlni,: k · cl'l'nlN Is modrl d In l c1·m.~ uf I wo la)'llr.
`c nsL'lling of plutc- und nc di •·IYI, · -rys1111.~. Tlw rnicrnwnvc
`111·111mgutJnn d11h1 un· consl!llcnl wilh lhi! 111clc111·olo1tk11I rcpcn·ts
`th 11 lhc 1111111! form s 111• • usuully 11rt•domi1111nl ul higher 11Ull11dcs
`1111111 the ncl'tllc ronns.
`
`Index Termli-Electromagnetlc propagation.
`
`I. INTRODUCTION
`WITCHED polarization transmissions of a satellite beacon
`provide the opportunity to measure the full transmission
`marrix of the atmosphcril' slant-path. Al'l'llnlll' and properly
`calihralcd measurement of lhe matrix is importtinl in modeling
`the population~ or hydrometeors along. the p:ith. One dleet
`revealed by careful calibration is asymmetry of the matrix.
`Thi!- paper llisnlSSl'S an i111crcs1i11g physical interpretation of
`pha:,~ asymmetry recently observed in ice events using the
`Oly111pus 20-GIV. smcllitc hl'acon.
`u .. inµ 01ihogonal line;u hasis polarizations. a symmetric
`mntr 1 x is oh1oocrvcd when lhc path traverses citlwr an arbitrary
`medi11111 in which all particles lrnve the same pro,icctcd align-·
`ment or an arhilrnry pure phasc-shit'ling (los.~less) medium
`in which the s1u1is1ics 111' pal'lidc alignment remain rnnstanl
`along the path. Al u high frequency sud1 as 20 GH:t., pliasc
`asymmetry of the matrix should be detectable and this will
`indicate the presence of differently aligned rain-ice or ice-ice
`particle populations along the path or more complex mixtures.
`During ice events, the eigenpolarizations of the transmission
`matri · I roviu · a n1 •tulUr • of th · mean proje ·1c<.J orientnlion
`Ung! s 11 lhc ic' particl 'lo, whii.:h have u di fferent ch11ruc1 dstic
`bchav11 r fur n etll > nntl plat
`·1·ystuls. Any a ·yw motry of
`1111111 i (which on·esponds lo
`lh
`i • n1x>luriw tions h ·coming
`llipli ul is u mcusur · of th ~ ltomog'ncity of th
`urnowl111t
`lllcan alignm 111 along lh palh. This siruutiun cun h mod ·led
`(lhougl 1101 u11amhiguo11 ly) hy u rwn-luycr medium in whi ·h
`'U'.'h lay ' r has iLs own m 1m ori 111a1it111 dire ' Lion.
`iwo mosl ornmon 1yp ·s of i · partlcl s at high
`/ 11
`11
`Hud ·s ire n •tll ' · and plalc-typ' -ry. 1 I •• Knowlcdg of th
`0 :urrc,11 · • uml di 1ribuliun or ice pu;ii I s in
`It 111.ls Is not al>
`~~.\r~fa 'l11ry llS lhut uf' water pHrliciC-S. OWit1g lo Ill • di ffi ullies
`nC) 111,ca~u •m ·111 and th vuricty or pnrtic h.: 1yp 'S. Th ·re is
`Cl BC llCt nlly a c •pied lh Or"liCll l •x.planalit>n uf the ohs ·rv •d
`lllccut uio
`11·
`1· .
`.
`·louds and of their
`'
`ns 1:111l orms o u.:
`·rys1u!s 111
`
`M111n1~c1
`TI
`' 11'1 1 ·c 1vc<I Apl'l l I, lrJUf1; l'l!Vi~ull IJ~cc mhcr 2, 19'17,
`r 1·1
`'111
`na, lJnt
`l
`·1
`'11
`II
`"
`.
`lllC 11 1111 h CCl rll'ai Engineer-
`~ WI I
`' " ' " ' Ill"
`11: 11 'IJlll'illl ' 111 ii
`'I' ll
`>
`'
`ltuliliKI ll1 " 1 "' Brmlfor\l. Wt:s1 Ynrk~hl ~ •, Uffl IDP. 11 . K.
`l l!i It ' Ill l1k·nlil 1J1 S 00 18-926XI' ll )U2'14 l·ll,
`
`growth by deposition ol Watl'r Vilpor allll other prot.:t•sse1oo 111.
`Summarii'.inµ s1ullici. of il'l' nystals reprodul'ed in lahorntllrics.
`Mason 121 imlicatcd that lhl' principal !'actor rn111rulling the
`basil' nystal hahil i .~ the IL'mpcratun', bur lht' SL'l'llmlary growth
`foa1urcs arc dt•lennined hy thi: supersaturation. From several
`measurements made on real clouds, Srivastava [l] summarized
`the following pattern of ice crystal habit as a function of
`templ'ralurc: I l - 3 ° ( ·to -8 °C, needles: 2) -H " (' 111 - 25 "C,
`'.!O '' C. stellar dc11tlri1cs: 4)
`plates, ~l'l'lur slars: .\) -10 °C to
`less than
`20 "C, prisms; and 5) less than --· 30 °C, d11slcrs of
`hollow prisms. From the experimental and theoretical studies
`on ice crystal growth in supersaturated water vapor [3], [4), the
`mass growth rate (gram per secund) of ice crystal is enhanced
`in the temperature range between - 3 °C and - 21 °C and
`is maximum at -15 °C. Heymsfield [5] also found that ice(cid:173)
`particle concentrations at temperatures above -15 °C were
`2-4 orders of magnitude higher than at lower temperature.
`Since only gross shape can be resolved by microwave
`this JHIJll~r. we group all highly prohrlc J'orms
`in
`means,
`Cinduding rnh1111n~ and pri.~ms) as "net•dle:;'' and all highly
`nhlall~ for111s lin ·lulling sector st;lt's ;rnd ,·t ll:ir dendrites) as
`"ph1ll's." For propagalh>n anulysis. we expect the two main
`features to be a needle layer from -3 °C to -8 °C and a
`plate layer from -8 °C to -20 °C. It appears [2], [6] that
`"needles" would also appear at altitudes above the - 21 °C
`level and "plates" below the -3 °C level, but in much lower
`concentrations.
`Using a simplified ice model, we describe two methods of
`analysis that can reveal the existence of a 1wo-h1yercd ice
`medium along the path from the asymmetry of the transmission
`matrix.
`
`MODEi 1
`~1->'-<>: with a preferred
`f~ ..
`, v
`'
`f
`,
`' I ostalll' orces. Under
`1y_ II
`·/.Y . s fall in a horizontal plane
`l.I· ·
`aerodynamic l'o
`with their short axis vertical and needle-type crystals fall with
`their long axis horizontal [7], [8] . For needles in this state, it
`appears that only a small force would be needed to influence
`the azimuth of the long axis and it is reasonably certain that
`both wind shears and horizontal components of electrostatic
`fields can produce a high degree of systematic alignment of
`needle azimuths. The relative dominance of these forces is
`uncertain, as is also the extent to which a common needle
`azimuth exists over the large volume that affects a microwave
`link, even if a high degree of azimuth alignment exists locally.
`
`00 l 8-926X/98$ I 0.00 © l 998 IEEE
`
`ZTE v. Fractus
`IPR2018-01461
`
`ZTE
`Exhibit 1014.0005
`
`

`

`ll:lEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 4, APRIL 1998
`
`531
`
`Study of Impedance and Radiation Properties of a
`Concentric Microstrip Triangular-Ring Antenna and
`Its Modeling Techniques Using FDTD Method
`
`Iti Saha Misra and S. K. Chowdhury, Senior Member, IEEE
`
`A/1.~trlll'I- A i:nnl'c11lrk mkruslrip h·iungulnr-rlng uutcnnn
`:. I rnl'lm't' using lhe l11g-1wriodk prlnl'i11I~ for lnere11sing the
`i11111cd1111t•1•
`l111ndwidth of the 111h'roslrl11 p11ld1
`1111h•111111
`ls
`1k~l·rihed. Th<' linilt•-dlITc1·c11t·c li11w-do11111i11 U'DTI)) method is
`ap11lled to analyze the 111·011oscd slrnt·tnn·. A s11cclal lt!chnique
`to 1111ull'I the slanted mctulllc boundurics ol' the lriilngulur ring
`ha~ been used In the g<'lll'ntl l•'DTU 1tlg11rllhm to avoid the
`s1:oin·nsc 111111roxlm11llon. The method l11111rovcs tht• 11ccur11cy of'
`1h•· original l'l>Tf> nlgurilhm wlllmul im·1'l~nsi11g the rnmpll'xity.
`Tiil' rndlnlion 1111lh!l'llS Ill diR'crt•nl rrcc1ue11l'il'S 11\'l'I' widl'·l11111d
`width are obtained experimentally.
`
`l11dex Terms-FDTD methods, microstrip antennas.
`
`I. INTRODUCTION
`
`A three-element concentric microstrip triangul:1r-ring an(cid:173)
`
`tenna (CMTRA) has been designed using a log-periodic
`principle and fabricated on a polytetra fiuroethylene (PTFE)
`substrate. The elements of the CMTRA are fed electromagnet(cid:173)
`ically by a 50-0 microstrip line. The impedance and radiation
`characteristics have been measured and compared with those
`of two single triangul:ir-ring antennas (STRA) having the
`largest and the s111ullcs1 element dimensions of the CMTRA.
`The impedance variation for the CMTRA has been measured
`at different feed locations. Results show that the bandwidth of
`the CMTRA is increased with respect to the STRA and the
`maximum bandwidth obtained for a particular feed location
`away from the center. The measured radiation characteristics at
`different feed location show its invariant nature. The measured
`impedance pattern for two feed locations are verified by FDTD
`method. This method is similar to the method described for
`cont: 111rk microsLrip ci rL·uh:tr· ring u111 •111111 ( M RA) in 111.
`A fl •c111I 1cchni 1uc 10 n10d •I the slum d mo1ulli · boumfari s
`'I' tht 1ri1111.,11tar ring hn. b en u. lld in 1he g n •rol Pl D
`UJ proicimutiOJl r2J. IJj, 'l'h
`ntgorilh111 I
`llV1lill Ill' llllli
`'II
`ll1't,hud im1 I'< vl!s the accuracy
`I' 1h ' origim1l l1D D nlgmi thm
`Williou1 in ·r~asing lh · cornpl xily.
`
`If. DESIGN OF THREE-ELEMENT CMTRA
`" ~e three-element CMTRA is shown in Fig. l(a). The width
`w and spacing "d" belween the elements are specified in
`M111111~ ri i
`•
`•
`'l'h,· u 1 11 received September 6, 1996; revised May 30, i997.
`ll11giih•c:11,11~" arc with the. De~rlmont of Elec1ronics nn~ Telecommunicntion
`Puh\iit
`/udnvpur University, CalouLLn, ?00 032 India.
`1
`irr lcm Ident ifier S 0018-926X(98)02680-5.
`
`(a)
`
`(b)
`
`(c)
`
`Fig. I. Geometry of (a) lhree-element CMTRA, (b) STRA investigation of
`the smallest element dimensions, and (c) STRA investigation of the largest
`element dimensions.
`
`this figure. First, the innermost element Was chosen with side
`a = 1.4 cm and width w = 0.2 cm. The spacing between the
`adjacent elements and their widths are then chosen maintaining
`the following relation:
`
`(I)
`
`where n is the suffix of the nth number of patch as indicated
`in Fig. l(a). The ring width and spacing decrease from the
`innermost element to the outermost element. Maintaining this
`relation the outermost ring has the sides a= 3.0 cm and width
`w = 0.128 cm. The STRA's investigated have the smallest
`
`0018--926X/98$10.00 © 1998 IEEE
`
`ZTE v. Fractus
`IPR2018-01461
`
`ZTE
`Exhibit 1014.0006
`
`

`

`IBllB TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 4, APRIL 1998
`
`532
`
`y
`
`c
`
`o,o
`
`Fig. 2. Modeling of triangular ring in FDID domain.
`
`and the largest element dimensions of the CMTRA as given
`in Fig. l(b) and (c), respectively.
`
`III. ANALYSIS OF CMTRA AND SINGLE
`TRIANGULAR RING BY FDID METHOD
`
`In this investigation one CMTRA and two triangular rings
`having the largest and smallest element dimensions of the
`CMTRA are analyzed by FDTD method. These antennas are
`fed electromagnetically by a 50-fl microstrip line which was
`fabricated on PTFE substrate with dielectric constant 2.55
`and thickness 0.159 cm (Fig. l). The application of FDID
`method to these antennas are similar to those of CMCRA
`[I J. However, the modeling of the triangular-ring element
`is different. In the following sections, we will describe the
`modeling techniques of triangular ring in the FDID domain.
`
`A. Modeling of Larger Triangular Ring
`Fig. 2 shows the actual dimension of the triangular ring
`antenna in the X-Y plane of the FDTD domain. Since the
`ring is an equilateral triangle the angle between the X axis
`and slanting plane is 30°. All the slanting sides of this ring
`can be represented by the equation of a line as
`
`y=mx+C . ..
`
`(2)
`
`where rn = tan (}, (} =angle between the X axis and slanting
`plane.
`Putting the value of (} and any coordinate (x, y) passing
`through the line, the value of C can be found out.
`Now, if one can select the proper aspect ratio of each celJ in
`the FDTD domain, then the slanted plane wall can be modeled
`exactly, i.e., it is possible to locate the boundary nodes of the
`mesh exactly on the slanted planes [3]. In this particular case if
`we select !:i.x = 0.64 mm and, hence, y = !:i.x tan (} then for
`every space increment along X and Y direction the equation
`of the line will be well maintained.
`
`Impedance plot of largest triangular ring of Fig. l(c) at different feed
`Fig. 3.
`location-set l for center feed, set 2 for 0.35 cm off-center feed.
`
`Fig. 4.
`
`Impedance plot of smallest triangular ring of Fig. I (b) for center f~d.
`
`'ntc tangential eleclric field components I~.r und /;'11 und
`nonnul componenl of magnetic field IJ, were 11111dl' ,•4uul 10
`zero on the triangular-ring patch bounded by 1hc si)( fines.
`The POTD pammctcrs for this ring were: 6:1: = O IH 11
`1111•
`!:i.11 = 11.577 :J.J!:i.:c = o.:umtJ mm, aud !:J.z = 11.!i!J'.1.fi 111111j
`!:i.t = !:i.11/2Cu (eo = free-space velocity of li~·ht), u~~
`1 c
`Guassian half-width T = 18 ps. The distance Jw1wcct1
`source plane to microstrip antenna w11s :JU!:i.:r. and the 1i:~·l1':~i:
`plane wus set at a distance I !J!:i.:1: from lhc so11rc1~ l'l;Utll·
`
`ZTE v. Fractus
`IPR2018-01461
`
`ZTE
`Exhibit 1014.0007
`
`

`

`MISRA AND CHOWDHURY: IMPEDANCE AND RADIATION PROPERTIES OF TRIANGULAR-RING ANTENNA
`
`533
`
`(a)
`
`(b)
`
`(a) and (b) Impedance plot of three-element CMTRA at different frequency band for center feed. (c) Impedance plot of three-element CMTRA
`Fig. 5.
`at <lilforent frequency bnnd for center feed.
`
`(c)
`
`50-n microstrip line width and the ring width were modeled
`as 12.::ly and 2Ax, respectively.
`
`8· Modeling of Small Triangular Ring
`Thl· ac1ual llimcnsions of 1he small lriungular ring is shown
`1
`11 1 I' · lfl ). The FDTD paramelers were A:i: = 1.0 mm. D.11 =
`ll.f,77 :1:,ei.:r "" O.!i77 :J.'i. 6z = O.ii2!Jli mm, Al = b. .>/'2011.
`ta -Wll I =
`11·
`· I h
`. 11
`•lrtd G·1u ·"
`I
`I<
`M '
`.
`I'
`1 ps.
`1cms1nr me Wit I l was
`• ss1a11
`~ ll _·~ 11 as 7 b.11, lhc reference plane was set at 11 dislancc
`•1 I ro1n lhc source plane.
`
`C. Modeling of Three-Element CMTRA
`
`The application of FDTD method is similar to the applica(cid:173)
`tion of single rings. The mesh size was considered such that it
`can model the actual dimensions of the CMTRA. The FDTD
`parameters were Ax = 0.4 mm, Ay = 0.230 94Az = 0.5296
`mm, At= Ay/2C0 , and Gaussian half-width= 20 ps.
`In all three cases Mur's first-order absorbing boundary
`condition had been applied at the end, side, and top walls
`[4]. The total and incident E field were stored at the ref(cid:173)
`erence plane. Frequency-dependent scattering parameter was
`
`•
`
`ZTE v. Fractus
`IPR2018-01461
`
`ZTE
`Exhibit 1014.0008
`
`

`

`534
`
`IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 4, APRIL 1998
`
`TABLE I
`COMPARISON or 2 : I VSWR %BW or STRA AND CMTRA
`
`Antenna Feed location
`~ mallest CF
`STRA
`Largest
`STRA
`
`CF
`0.35 cm OCF
`0.60cmOCF
`
`MTRI\ CF
`
`Fre . Ran e in GHz
`5.950 • 6.180 ~ 0.230
`
`o/oBW
`3.790
`
`2.730. 2.770 = 0.040
`2.730. 2.755 = 0.025
`2.725. 2.735 = 0,010
`
`• 1-4540
`0.9110
`0.3660
`
`2.730. 2.790 = 0.060
`4.600. 4.710 = 0.110
`6.650 • 6.920 c 0.270
`
`2.1700
`2.3630
`3.9700
`
`0.35 cm OCF
`
`2.660 • 2. 730 = 0.070 .. 2.5900
`3.700. 3.830 = 0.130
`•3.4520
`6.340 • 6.620 = 0.280
`•4.3200
`
`0.60 cm OCF
`
`2.660 - 2.690 = 0.030
`2.720. 2.745 = 0.025
`3.690. 3.830 = 0.140
`6.400 • 6.600 - 0.200
`
`1.1200
`0.9149
`3.7200
`3.0760
`
`CF~ Center Feed, OCF =Off Center Feed,
`• = 2.2 : I VSWR, u = 2.4 : I VSWR
`
`Fig. 7. Mensured rndiation patterns for largest triangular-ring antennn at
`different feed locations.
`
`locations to observe the effect of feed location. The impedance
`pattern for the largest and smallest the single ring antennas
`are given in Figs. 3 and 4 and for the CMTRA are given
`in Figs. 5 and 6. The 2: 1 VSWR circles are shown in the
`corresponding figures.
`
`B. Bandwidth
`The computed 2: I VSWR bandwidth for single ring and
`clif~ ·r ·nt hand mu! feed locations ur gi\' · 11
`in
`MTRA 111
`I. Pr 1111 thb llll lc ii i · s n 1ha1 in ·1 nsc in bu11c.twidlll
`Tnl I
`i: obt 1in d for
`' MTRA 11:.
`·umpnrc<l to a sin •I • rin • and
`maximum 1. tal han<lwiulh Is obtt1in d 111 u recd lo ulion OJ S
`cm away from center for this particular CMTRA.
`
`(a) and (b) Impedance plot of three-element CMTRA at different
`Fig. 6.
`frequency band for 0.35-cm off-center feed.
`
`(b)
`
`computed following the procedure as described in [ l] and [5]
`and from this input impedance of the antennas were calculated.
`
`IV. MEASUREMENTS AND RESULTS
`
`A. Impedance Pattern
`The variation of input impedance for the two STRA and
`CMTRA were measured by HP 84108 network analyzer at
`different band of frequencies. For the large single ring and
`CMTRA impedance patterns are measured at different feed
`
`C. Radiation Patterns
`The rnclialion pall rmi for 'TRA u11d thre - •lc111 •nt ·~ • .rrr~A
`hnv b co 111cusuretl I or holh rp = !JO anti IP .==
`•
`(l" nlllfltl
`1• d n
`ov ·r th ent lr bunJwillLh or th nnt •nna nnd 1irc plo.tc~ ;11
`Figs. 7- Hl. .ompuri son of lh ' radiation pnll rn ol ;1 ·rng
`
`ZTE v. Fractus
`IPR2018-01461
`
`ZTE
`Exhibit 1014.0009
`
`

`

`MISRA AND CHOWDHURY: IMPEDANCE AND RADIATION PROPERTIES OF TRIANGULAR-RING ANTENNA
`
`535
`
`e
`
`(a)
`
`e
`
`w
`Fig. 8, Measured rndiution patterns for three-element CMTRA for center
`focd (a) at cp = oon plune and (b) ut 'f' = uo plane.
`
`ring and CMTRA shows that over the entire bandwidth the
`nature of the radiation pattern is qualitatively similar to that
`of the single ring operating at the fundamental mode. Again
`from Figs. 8-10 it is seen that radiation patterns for CMTRA
`remain unchanged with the change of feed location.
`
`V. NUMERICAL RESULTS
`The FDTD impedance patterns for the single rings and
`CMTRA arc computed for the center feed and for 0.35-cm
`off-center feed and are plotted in Figs. 3-6 with the measured
`patterns. From these figures it is seen that the computed
`patterns are in reasonable agreement with the experimental
`one. The difference between the computed data and the
`cx.perimental one may be due to the consideration of original
`FDTD algorithm for the 11lanted planes. A simple method of
`correcting this algorithm is described below [3].
`C\lnsidcr n rnctang11l11r ell

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket