throbber
TRAN SACTI 0 NS ON
`
`NTENNASAND
`BOPAGATION
`
`A PUBLICATION OF THE IEEE ANnNNAS AND PROPAGATION SOCIETY
`
`APRIL 1998
`
`VOLUME 46
`
`NUMBER 4
`
`IETPAK
`
`(ISSN 0018-926X)
`
`Pi\PI RS
`
`Phy..,ical Interpretation of the Phase Asymmetry of a Slant-Path Transmission Matrix ................................... .
`. . ..... ...................... ............. ....... ......... N. J. McEwan, Z. A. A. Rashid, and S. M. R. Jones
`A Wide-Band Single-Layer Patch Antenna ................................................................... N. Herscovici
`Multiport etwork Model for CAD of Electromagnetically Coupled Microstrip Patch Antennas ........................ .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. P. P(lrrikar and K. C. Gupta
`Simultaneous Time- and Frequency-Domain Extrapolation ............... . ......... . . ........ R. S. Adve and T. K. Sarkar
`Scattering from Structures Formed by Resonant Elements ............... ...... ... .............. V. Veremey and R. Mittra
`Normalization and Interpretation of Radar Images ......................................................................... .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. P. Skinner. B. M. Ke111. R. C. Wittmann, D. L. M ensa, and D. J. Andersh
`Perfectly Matched Layer Mesh Terminations for Nodal-Based Finite-Element Methods in Electromagnetic Scattering ...
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Tang. K. D. P(lulsen, and S. A. Haider
`On the Behavior of the Sierpinski Multiband Fractal Antenna .............. .......... ................... ................. .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Puente-8(1/iarda. J. Romeu. R. Pow;. and A. Cardama
`On \todeling and Personal Dosimetry of Cellular Telephone Helical Antennas with the FDTD Code .................. .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. La-::,:,i and 0. P. Gandhi
`Study of Impedance and Radiation Properties of a Concentric Microstrip Triangular-Ring Antenna and Its Modeling
`Techniques Using FDTD Method ........ . ................................ ...... .. . .... /. S. Mism and S. K. Chowdhury
`Analysis of Stripline-Fed S lot-Coupled Patch Antennas with Vias for Parallel-Plate Mode Suppression ..... . .......... .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Bhattacharyya, 0. Fordham, and Y. Liu
`Blindness Removal in A1Tays of Rectangular Waveguides Using Diclcctrically Loaded Hard Walls ....... ............ . .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. P. Skobelel' and P.-S. Kildal
`Near-Field Scanering by Physical Theory of Diffraction and Shooting and Bouncing Rays ................... S.-K. Jeng
`~ cthod of Moments Solution for a Wire Attached to an Arbitrary Faceted Surface ......... I. Tekin and E. H. Newman
`Fon,ard-Scaneriog Analysis in a Focused-Beam System ....... . ....................... R. Slravit, T Wells, and A. Collen
`High-Frequency Analysis of an Array of Line Sources on a Truncated Ground Plane ........................ .. ......... .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F. Capolino, M. Albani. S. Maci. and R. Tiberio
`A l f D Solution for the Scarte ring by a Wedge with Anisotropic Impedance Faces: Skew Incidence Case .... . .... . ... .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Pelosi. G. Manara, and P. Nepa
`On lhe Use of Cavity Modes as Basis Functions in the Full-Wave Analysis of Printed Antennas ....................... .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Vecchi, P. Pirino!i, and M. Orefice
`
`1.t:.1 fERS
`
`ear-Field Formulas in the Case Where the Radial Components of the Electromagnetic Field
`Time-Domain Spherical
`Are Measured ............................................................................................. I. Christiansen
`A Compact PIFA Suitable for Dual-Frequency 90011800-MHz Operation ........ . ....... C. R. Rowell and R. D. Murch
`Scauering by a Dielectric-Loaded Nonplanar Slit- TM Case .............. .. ..... . ........... J. -W. Yu and N.-H. Myung
`Pan rnl Control for Wide-Band Interference Suppression Using Eigen Approach ......... M. ./. Mismar and T. H. Ismail
`A Boundary Element Approach to the Scattering from Inhomoge neous Dielectric Bodies ........ G. Pelosi and G. Toso
`
`465
`471
`
`475
`484
`494
`
`502
`
`507
`
`517
`
`525
`
`53 1
`
`538
`
`546
`551
`559
`563
`
`570
`
`579
`
`589
`
`595
`596
`598
`600
`602
`
`ZTE v. Fractus
`IPR2018-01461
`
`ZTE
`Exhibit 1003.0001
`
`

`

`IEEE ANTENNAS AND PROPAGATION SOCIETY
`All member.. of tbe IF.EE are ehg1t>le for mcml>el"lup in the Antennas and Propagation Society nnd "'ill rec:e1H:. thi' "IRA'Mn10ss upon payment of the rutnual Sociel) membmiblp
`fee of Sl'.!.00. R>r informaiwn on jlllning. "'nte to !he IEl-..E at the ~ below. Memlwr rnpie1 of Tron•••< tions/Joumul! arr j11r puw111.1/ u.ie 1m/y.
`
`R. J. Mt.RH!TKA. PTPsident
`
`ADMINISTRATIVE COMMIITEE
`D. H . SC'HAt..:81:.RT, \:Ice PTPsidtnt
`
`/VY.~
`•o. G. Boo'u
`R. J. J\.1'11HFFXA
`F- K \IJUU
`J . w. !\11'1;
`J. ,_ "°'""'"
`
`/WY
`•y RAHMAr-S-..\111
`C. A. BAIA'<IS
`M. I'. l5KA'1lfl<
`D. R. lACJCiO!'
`D V TutH
`
`:!<JOO
`•s. ,., tJ:.-..<j
`J J . lu
`M. PIKEY \f \\.
`R. J . P\J(,(lltlJ-1 \KI
`G. S Sstrrn
`
`0. B. KF-'iLER, SecTPtary-TTPas11TPr
`
`1()()/
`• E. S. GlllESPIE
`
`Antenna Mtau1mnenl\ /J\MT\I f.. S. Gn.usPll
`Applied Compututwnal F.M S1•dr11 I \Cf . .\ I:
`A. I'. l'FTFRSON
`Joinl CommJ11tt tm Hil!h·l'owtr F.J"·1mmuR11ttrt·s:
`C. E. B.WM
`ilkards 1111d Fellow<: R. L FANTI
`CAl:.Mt 80<1rd: S. A. l.t>N<l
`Chapter Am1·itit>· R. V, MC'GAllM<
`C<Jmmintt~ tm CmnmttmH111mr.r ttml /f1fi1r11u1tilm J>oltry:
`W. J. fu-Cll ISH
`Cmnmilfee m1 Man am/ Rm/mt ion: R. D. Ne\ ch
`Compmer App/i,·mions In F.M E<h1n11i1111 ICAHMF.):
`M. I'. l~KANr».R
`Consmutinn and Bl'iaws: R I. W1~ 1 :;o~
`Distinguished l..e1·turtrx: J>. H. PAlllAK
`Educa11on; S. R, Rl "(•A~A.IA"
`
`Honorary Life \ f embe'r: R C HAS~F!>
`*Past ~ident
`•
`
`Committtt Chairs and Rtp~olJlthH
`F..\IVT.MC: E. K. Miu.ER
`En~fJl)' C<>nimirtt't"! Vacant
`Europ<'an R<"prrJentatfrts: P. J. B. C!.ARRICOAT'>,
`A. G. ROF.DFRER
`Fmana; 0 . B. KMl l·R
`HuttJnan; W. F. CRo:sv.1:.U.
`IF.EE Mag~m• Committee: W. R. STO"~
`//;EE Prtss LifJison: R. J. MAll.LOUX
`IEEE Transactions Commi11u: P. L. E. Usuo.-;mu
`/11ternatwnal Radio Consu/tati>'e Cmtr (CC/R): E. K. SMrm
`ln>titutimuil U.<1ing.r. C. C. ALI.cN
`Ltm,,·Ranx• Pltmnin11: A. (' . .SCHFU.
`Maga::i11r Editor. W. R. STONL
`Mutml(S: J. A. MOM.LERS
`Muting• Cooniination; S. A. LoM;
`Muting.f \forhlwp.r. \\'. G. Sc:urr
`
`Mtm~r1h1p: S D. GEDNCY
`1\',. Tuh1111/011>· A I. ZAGHJ.<Xrt..
`Nom11w1iom E. S. Gll..U..'SPlL
`Prt>/~JS101111I At·ta·11iu /R\CEi: K. L V111GA
`l'uhlwulltlllS' R J MAIUll'1·KA
`R&I> Cmnmlttu J\trospau; G. Hn>e
`R&D Com111111te- l>efenu: A. C. SCHELL
`R&{) Com1111ttu-Cr111munng: C . W. BOSflAN
`St1111d11rd1-A11te1ma.s: E. A. URBMllK
`S1<111tltml< Pmt"'~""""' W. A. FLOOD
`Suptttt'CJndu<ti•,:ity l'o1tuoillet!: K. MF.J. J. WnLL~\ts
`USNCIURSI: L. P. B. KATCHI
`TAB MaRll:;rnttl C'ommine': W. R. STOKE
`TAB l\'t\1' 11-chnnlogy D1rrctum.~ Commjfttt:
`A I ZA«Hl.Oll
`fl.8 Public R<latil'n> C!m1n1i11u: W. R . Sro!>'F.
`TAB fh.Jn..\m'tioru Ctmvm11ee: P. L E. USL.f..NGHJ
`
`J\lbMqUerqur
`0. P. Md.EMORF
`Atlanta
`G.H<~S
`&U11morr
`H. B. Sr-QtTTR•
`Beijm.,
`Z. SHA
`\\ .X 7..JIA'<O
`Benelu.t
`K. \.. T. KloO~lllt
`Boston
`:S. HU.SC. Ulo 1C1
`Bu/f<1/11
`~1. R. Gllll-rn,
`Bu/x.,ria
`H. D. HRL~TI)V
`Chim~"
`J. PHtu.tPS
`Columbus
`R. BL RKHOU>l.R
`C:echnslovakia
`M. ZEMA~
`
`/>ill/a1
`T. Ul(l"-'
`/),J\IOn
`K S11t.1m11.•
`lkmtr
`R. P. G1nlt
`
`£,,,.,
`
`M N I I AllM\
`finlunJ
`'
`K !'ilMl'>KI
`F/oriJ<1 II. Cc><Ut
`T WHJU
`F•~·th•ll
`0.A PAn
`Ft. 11,,r1h
`Ci ( M"
`G~f'nfcl.11,·
`N.J. Ku"
`ll1mR Kon11
`I\. K. Mu
`Hm4lton
`J T. WUJIAMS
`
`Hmmo11 ITt.w.i J\&.\fl
`R. D. !\OEYE.l..S
`Hungary
`l. FRIG\~
`Hun1n·ill'
`H. L Bt..'"'en
`JnJ~.r1a
`S NAIL"ti•Ro
`/sruel
`A. MADIU
`ltalv /CntJrul & S.J
`P. Bhll'WWI
`K11c·latner·
`\\aterloo
`Y. L CH<""
`litl11u.rma
`B. LL\IIAS
`LonR /s/and/XY
`H. NL'<
`Lm Ange/.,
`P. RA/\!A'IUA/\!
`
`Chapter Chairs
`Michf~an. S. E.
`J. W. Bl1l'<S
`Mliwaukrt
`J. RK1llE
`.11,,nrrr<J/
`G. L YIP
`Sanjinf(
`\\'. x. ZH.-..-.o
`'\'rK· Jen~' C«•d.ft
`R. A. ZIE£liR
`N .... · S<•1llh \\alrJ
`T . BIRD
`.Vonh lt<1/)
`c. !'.. 1'"104
`
`"'tonhl~nn·
`C Gtl"IA
`or1,,,w,,
`T. G. l'A:>O\
`Ort aw a
`D. H. REFKIF
`
`l'hiluJel1m1.,
`E. H017\i.l<
`Photmt
`B. FJ. SllAR•U
`p,./<Jnd
`C. W. K. Q\loo,Rl !>.
`Pn,,.·n,.,,
`W , R. c:t RllUJ
`RwMJan,,n.t
`J R Bt RG\\"'
`RuH1'1
`D SAl<N>\
`.., I. 81 j)\
`~.u•uif
`R. W. ll:llJl L
`Sult laJ.e Cm
`M F l\KANDlR
`S<Jn /'ht/I<>
`J Rm S'><"'
`Sama Claro \111/<1
`A SABO
`s .. 111/e
`J. M<-C'ARllll~~
`
`Sm,u(><)rr
`M. S. Lbo:<G
`S<1uth Afnta
`D. B DA\IDMJN
`Smllh ,1u.rtro/i.J
`B. D. B•ru.
`Smllh &n Harbor
`\pwn
`M SAJ.<V.All·P.\l.MA
`s~
`C:. \\ , WO.'i<l'
`'ipnn'1ie/J
`J. 8 MF.AD
`\t. Petenburg
`S. TltLOAKO'
`s"'"'"
`J. lOHA""°''
`S>Ht~nland
`w BAClrlllLD
`.\\n1nt.\'t'
`w Q.sm.,.
`Thailwul
`N. Y<MlTIIA"llM
`
`Toh'O
`T. SmOXA'AA
`Torom"
`T. E. \ A.' Dl\t' lDt
`Tur!l:llf
`H. C. KOHl..8.o,O!H
`Trutq
`A Al.Tl1\AS
`l1ro1M
`A.NOSK11
`N. N. Von0\11.'H
`l.imr..J
`Kur,domllrrltmd
`TH. Ol<l.H
`t..tah
`M. F. lsKA."1lE!t
`Va1K·osn.·e-r
`
`llashlngt<J'&/
`Nonhem n
`0. T. A1X'Xl.A"'D
`l'flnnipe11
`L SHAFAI
`
`IEEE TRANSACTIONS® ON ANTENNAS AND PROPAGATION
`b a publlca1ion devoted 10 1hcorc11cal and experirnental advances in untennas including design and de•elopment. and In 1he 1iropugaiion or elcetroma11.nc1ic wave> including «:altering. diff ..... uon.
`and intcrucllon w11h eontinuou' media: uml application.' pertinent to un1ennas and propaga1ion. <uch as remote "'"'Ing. applied upllc,. und millimeter and >Ubmillimeter wave technique<.
`
`See inside back co•·er (1>r r:dlmnul Board.
`
`THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, lNC.
`Officers
`~1!1TO<" I M. S>.!m>. Her Presidrnt, f'ubliro1ion J\rtimies
`JO~ll'll BORIX)(J'IA, Prt1idrnt
`DA"lll R BL"K'"'· Hit Pres1drm. Rexic>nal Actiriti.s
`l<Ei..'TTil R I.AKI R. Prt11<ltnt·£ll'd
`I. JOllN R•'<~l,f. ~1tt l'rt•idtnt. StanJarris Assorimil>n
`AN!tl"IO (', BA\IO\, ~nll'lun
`Lt O\'D A. MORU '. 17.e PTt'<iilrnt. Technical J\ctiriti«s
`BRt'CP A. EtSE,STEIS. Trra>""'
`Jous R. Ru .... 1 RT. Prtsrdtnt. lt::£t: USA
`AR111l'R Wl'<'n>"'. \Irr Prt1iilrn1. Edumllonal J\ctintitJ
`\\'nJ IA\f G. Dt'FF. Dirnor. Dn:ision /\! - Elttrn>ma(ntti<·s anJ Rod1a11an
`F.xecuthe SIJl!'t
`
`Do-. ill> Ct 11.11\, H•niun Rt"""" tf
`A....,,.,,,'Y J , AoJIRAltO. PuNirntl<'ll I
`Jl'Dl111 Ci<JR\l''· ~tan./;11Ti1 J\ct11111e1
`Cfc'fl IA JA,-ii:OV.5KJ. Rt''"""/''' ""tits
`l'eThll A l.J."ts. £dU<<Jt1<1fkll .~tt111/1t1
`
`R1<.11ARI> D Sorv-•Rrt. B1mness J\dmimstrotwn
`W. THo\IU StTllJ!. Prtiftis1<>nal ,\nhmes
`MO\ \\AJU>.CAtlA'· Tn·Ni1<al J\<11nti«s
`Jc JIN Wm1..1 "· lnfi>rniatwn Tet·luwlmt_v
`
`IEEE Pe riodicals
`Transactions/J ournals Department
`Staff Dirrctor. FRA.-. ZAl't'I. 11 A
`Editorial Dirtttor. VALFRIF CAMM\RATA
`Production Dirrc-tt>r: ROBEKr S'1ut.
`Trwuacrions Mana~rr. GAn S. FFRF""
`£/tctronic Publishin~ Manager. ToM BoNtRACol R
`Mtmagmg Editor. RollFJrr W . 0A\ID<:<lN
`Anoriatt Ediror: Ha.ESf DoRlllll\tl ~
`IEEE TltASSAt-ml'<\ O' ANII """'AND PRm••oAno:-. (ISSN OOIM·926X) IS publl5hcd moolhl) b) the ln<titul(! ,.r l.lc.;11'\cal 1111ll l:.lc.tronics tingm••"'· Inc. Re<pOCh11Mlt1y for Ille COO!cnl.' = upm llw
`au1h°" and no< upon the 11:.lcl:.. the Soclct)/Coonc1J, or 11' mtrni.. ..... IF.F.F. Corporal• (>lftce: 345 Ell>t 47 Stn:ct. New Yvrl.. NY HWll7-2.'~4 Jt:Et: Operotloos Ctotr r: 445 Hoes Lane, P.O. B.•• I'"
`Pi-.cB••"•Y· NJ otl!ISS.1 HI NJ Tr..,phnne: 732 981 0060. PricWPubHcation Information: lndi>idual copies: IEEE Mcmben iio.(JO tfir.t copy only). nonmember> $20.00 per copy. !Note: Add S4 00 Po"' ....
`and handling chnr;c to ony order f"'"' \I (JO to S~0.00. ux:luding prepaid orders.) Mcmbcr nod nonmember <ub>cr>p11on ptl<:C' ft\Ollabl< ur<111 rcquc,t. A-.1ilahlc In mlcrohcbe and microfilm. Copyril!hl aad
`Reprint Pt rml'810n" At""""''"' "rcnmucd Willi crcd1t lo lhe \OOTCC. LibrnriC'> tlR' pemlllled"' photocopy for prhale ""'of rutmtl\, rro"deJ the! per copy fa:<: indicated in the code al the bouom ... r tlw' ~r>t
`pago •• p1tid through the C(lflyn&hl C1<.1rnncc Center. 222 Rosewood Drhc. Danvcn;. MA 0 1923. For •11111!1.:r copying. rcprln1. "r rrpubtkaiil'tl r>ctmi<\it•n. wri1e m Copyngbu nod Pennissioos Depanmcnt, JU I
`Publlcn1ion< Adminl"mllon. 445 ti<''" lane. P.O. Bi" IJ11. Pi":lilllw•~. NJ OKl\55-133 1. Copyright • 19'18 b) The Jn,1i1u1e ur rlc<lrlcul un<l lile<:troc>b Engmccr<. Jnc. All right< reserved. Peri()d1co1, p,,_,.,.
`Paid •I Ne" York, NY. m1J Ill oJdillOll<ll mailing oO.ccs. Postm•>l• r: Send oddrt>s change< I() IEEE TRANSA(,'IO"S ON ANTl ·NNAS 0,NI) PKOPACIA'llON. IEl:.I: .• 4-15 Hoc• Lane. P.O. Box 1331 , l'J•1::1t11\\•)·
`NI 088..~5-1331. GST Rcl)'iMra11on No. 125b34JK8. Pnntcd m U.S.A.
`
`p]
`
`\ bstra<
`mi"5ion n
`consistin1
`propagat
`that the
`than the
`
`l11dex
`
`Swr
`
`pro·
`matrix
`calibraH
`the pop
`reveal cc
`This pa
`phase 2
`Olympl
`Usin:
`matrix
`mcdiun
`ment o
`in whic
`along t
`a~y mm
`indicat•
`particle
`Duri
`mattix
`angles
`bchavi
`the ma
`some~
`mean :
`1thoug
`each I
`The
`1ltitud
`occun
`satisf~
`of me
`no gc
`co nee
`
`Man
`The
`ing. U1
`Pub I
`
`ZTE v. Fractus
`IPR2018-01461
`
`ZTE
`Exhibit 1003.0002
`
`

`

`IEEE TRANSAC110NS ON ANTENNAS AND PROPAGATION. VOL. 46. NO. 4, APRIL 1998
`
`531
`
`f
`
`Study of Impedance and Radiation Properties of a
`Concentric Microstrip Triangular-Ring Antenna and
`Its Modeling Techniques Using FDTD Method
`
`Iti Saha Misra and S. K. Chowdhury, Senior Member, IEEE
`
`Abstract- A concentric microstrip triangular-ring antenna
`structure using the log-periodic principle for increasing the
`impedance bandwidth of the microstrip patch antenna is
`described. The finite-difference time-domain (FDTD) method is
`applied to analyze the proposed structure. A special technique
`to model the slanted metallic boundaries of the triangular ring
`has been used in the general FDTD algorithm to avoid the
`staircase approximation. The method improves the accuracy of
`the original FDTD algorithm without increasing the complexity.
`The radiation patterns at different frequencies over wide-band
`width are obtained experimentally.
`
`flldex Terms-FDTD methods, microstrip antennas.
`
`I. INTRODUCTION
`
`A three-element concentric microstrip triangular-ring an(cid:173)
`
`tenna (CMTRA) has been designed using a log-periodic
`principle and fabricated on a polytetra fturoethylene (PTFE)
`substrate. The clements o f the CMTRA are fed electromagnet(cid:173)
`ically by a 50-H microstrip line. The impedance and radiation
`characteristics have been measured and compared with those
`of two single triangular-ring antennas (STRA) having the
`largest and the smallest clement dimensions of the CMTRA.
`The impedance variation for the CMTRA has been measured
`at different feed locations. Results show that the bandwidth of
`the CMTRA is increased with respect to the STRA and the
`maximum bandwidth obtained for a particular feed location
`away from the center. The measured radiation characteristics at
`different feed locatio n show its invariant nature. The measured
`impedance pattern for two feed locations are verified by FDTD
`method. This method is similar to the method described for
`concentric microstrip circular-ring antenna (CMCRA) in [I].
`A special technique to model the slanted metallic boundaries
`of the triangular ring has been used in the general FDTD
`algorithm to avoid the staircase approximation (2), f3]. The
`method improves the accuracy of the original FDTD algorithm
`without increasing the complexity.
`
`(a)
`
`(b)
`
`(c)
`
`Fig. 1. Geometry of (a) 1hree-elemeat CMTRA, (b) STRA investigation of
`the smallcs1 clement di mensions, and (c) STRA investigation of the largest
`elcmcn1 dimensions.
`
`this figure. First. the innermost element was chosen with side
`ct = 1.4 cm and width w = 0.2 cm. The spacing between the
`adjacent elements and their widths are then chosen maintaining
`the following relation:
`
`( I )
`
`II. DESIGN OF THREE-ELEMENT CMTRA
`The three-clement CMTRA is shown in Fig. 1 (a). The width
`"w" and spacing ··<1·· between the elements are specified in
`
`Mnnuscripl received Scph:mber 6. 1996; revised May 30. 1997.
`The au1 hon-: arc with the Department of Electro11ics and Telecommunication
`Engineering. fadavpur Univcn,ity, Calcutta. 700 032 India.
`Publisher llcm lden1 ifi er S 00 I 8-lJ'.?6XC98)02680-5.
`
`where n is the suffix of the n th number of patch as indicated
`in Fig. I (a). The ring width and spacing decrease from the
`innermost c lement to the outermost element. Maintaining this
`re lation the outermost ring has the sides a = 3.0 cm and width
`w = 0.128 cm. The STRA's investigated have the smallest
`00 I 8-926X/98$ I 0.00 © 1998 IEEE
`
`ZTE v. Fractus
`IPR2018-01461
`
`ZTE
`Exhibit 1003.0003
`
`

`

`532
`
`IEEE TRANSAcnONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 4. APRU. 19'18
`
`\ll'l
`
`Re f ere nce plane
`
`y
`
`1J•x
`
`--~
`
`c
`
`Fig. 2. Modeling of u·iangular ring in FDTD domain.
`
`and £he largest element dimensions of the CMTRA as given
`in Fig. l(b) and (c), respectively.
`
`lll. ANALYSIS OF CMTRA AND SlNGLE
`TRIANGULAR RJNG BY FDTD METHOD
`In this investigation one CMTRA and two triangular rings
`having the largest and smallest element dimensions of the
`CMTRA are analyzed by FDTD method. These antennas are
`fed electromagnetically by a 50-12 microstrip line which was
`fabricated on PTFE substrate with dielectric constant 2.55
`and thickness 0.159 cm (Fig. I). The application of FDTD
`method to these antennas are similar to those of CMCRA
`[I]. However, the modeling of the triangular-ring element
`is different. ln the following sections, we will describe the
`modeling techniques of triangular ring in the FDTD domain.
`
`A. Modeling of Lar1:er Triangular Ring
`
`Fig. 2 shows the actual dimension of the triangular ring
`antenna in the X-Y plane of the FDTD domain. Since the
`ting is an equilateral triangle the angle between the X axis
`and slanting plane is 30°. All the slanting sides of this ring
`can be represented by the equation of a line as
`
`y = m.r+C · ··
`
`(2)
`
`where rn = tan 8, 8 = angle between the X axis and slanting
`plane.
`Putting the value of 8 and any coordinate (x, y) passing
`through the line, the value of C can be found out.
`Now, if one can select the proper aspect ratio of each cell in
`the FDTD domain, then the slanted plane wall can be modeled
`exactly, i.e., it is possible to locate the boundary nodes of the
`mesh exactly on the slanted planes [3). In this particular case if
`we select 6.x = 0.()4 mm and, hence, y = 6.x tan 8 then for
`every space increment along X and Y direction the equation
`of t11e line will be well maintained.
`
`Impedance plot of largest lriangular ring of Fig. J(c) at different feed
`Fig. 3.
`loca1ion-sc1 I for center feed, set 2 for 0.35 cm off-center feed.
`
`Fig. 4.
`
`Impedance plot of smallest triangular ring of Fig. l(b) for center feed.
`
`The tangential electric field components Er and Ey and
`normal component of magnetic field Hz were made equal to
`zero on the triangular-ring patch bounded by the six lines.
`The FDTD parameters for this ring were: !lx = 0.G4 mm,
`A1J = 0.577356.x = 0.3694 mm, and flz = 0.5926 mm.
`flt = D.11/2Co (Co = free-space velocity of light), and
`Guassian half-width r = 18 ps. Tbe distance between the
`source plane to microstrip antenna was 39/lx and the reference
`plane was set at a distance 19/l:c from the source plane. The
`
`lit?.
`a1 ~
`
`50-
`
`B.
`1
`in F
`O.!i
`an
`mo
`l'.U
`
`ZTE v. Fractus
`IPR2018-01461
`
`ZTE
`Exhibit 1003.0004
`
`

`

`MISRA AND CllOWDllURY: IMPt;;DANC~ /\ND RADIATION PROPERTIES OF TRIANGULAR RIN(i /\NI hNNA
`
`(a)
`
`(b)
`
`Fig. 5.
`(a) and (bl Impedance plol of three-clement CMTRA al different frequency band for center feed. (c) Impedance plot of lhrcc-clement CMTRA
`at diffcrem frcqucnC} b:tnd for center feed.
`
`(c)
`
`50 n micro-;trip line width and the ring width were modeled
`as 12J.y and 2~.r. respectively.
`
`8. Modeling of Small Triangular Ring
`The actual dimcn<;ions of the smaJ I triangular ring is shown
`in Fig. I (b). The FDTD parameters were D.:r = 1.0 mm, 6.:i1 =
`0.577 :~52\.r = 0.577 :3.:;, ~z = 0.5296 mm. D.f. = D.z/2Go.
`and Gaussian half-width = 16 ps. Microstrip line width wa<;
`modeled as 7 6.y, the reference plane was set at a distance
`126.:r from the source plane.
`
`C. Modeling of 171ree-Element CMTRA
`
`The application of FDTD method is similar to the applica(cid:173)
`tion or single rings. The mesh size was considered such that it
`can model the actual dimensions or the CMTRA. The FDTD
`parameters were i\.r = 0.4 mm. i\y = 0.230 94ilz = 0.5WG
`mm, uf = uy/2C'u. and Gaussian half-width = 20 ps.
`In all three cases Mur's first-order absorbing boundary
`condition had been applied at the end. side, and top walls
`141. The total and incident E field were stored at the ref(cid:173)
`erence plane. Frequency-dependent scattering parameter was
`
`ZTE v. Fractus
`IPR2018-01461
`
`ZTE
`Exhibit 1003.0005
`
`

`

`534
`
`IEEE TRANSACTIONS ON ANTENNAS Ai'il) PROPAGATION. VOL 46, NO . .t, APR IL 1998
`
`MIS~
`
`TABLE 1
`Cm1PARISO:-.I OP 2: I VSWR ,.,cBW OP STRA AXD CMTRA
`
`Antenna
`Smallest
`STRA
`Largest
`STRA
`
`Feed location
`CF
`
`Freq. Range in GHz %BW
`5.950. 6.180 = 0.230
`3.790
`
`2.730- 2.770 = 0.040
`CF
`0.35 cmOCF 2.730 • 2.755 E 0-025
`0.60cm0CF 2.725 - 2.735 = 0.010
`
`•J.4540
`0.9tl0
`0.3660
`
`CMTRA
`
`CF
`
`0.35 cm OCF
`
`2.730 - 2.790 = 0.060
`4.600- 4.710 = 0.110
`6.650 - 6.920 = 0.270
`
`2.1700
`2.3630
`3.9700
`
`2.660 - 2.730 = 0.o70 .. 2.5900
`3.700 - 3.830 = 0.130 *3.4520
`6.340 - 6.620 = 0.280 *4.3200
`
`0.60cm0CF 2.660. 2.690 = 0.030
`2.720. 2.745 = 0.025
`3.690 - 3.830 = 0.140
`6.400 - 6.600 = 0.200
`
`1.1200
`0.9149
`3.7200
`3.0760
`
`CF • Center Feed, OCF = Off Center Feed,
`• a 2.2: t VSWR, •• = 2.4: I VSWR
`
`Fig. 7. Measured radiation patterns for largest triangular-ri ng anten na at
`different feed locations.
`
`locations to observe the effect or feed location. The impedance
`patterns for the largest and smallest the single ring antennas
`are given in Figs. 3 and 4 and for the CMTRA are given
`in Figs. 5 and 6. The 2: I YSWR circles are shown in the
`corresponding figures.
`
`(a)
`
`(b)
`
`(a) and (b) Impedance plot of three-element CMTRA at different
`Fig. 6.
`frequency band for 0.35-cm off-center feed.
`
`B. Bandwidth
`
`computed following the procedure as described in [1 ] and [5]
`and from this input impedance of the antennas were calculated.
`
`IV. MEASUREMENTS AND REsULTS
`
`The computed 2: I YSWR bandwidth for single ring and
`CMTRA at different band and feed locations are given in
`Table I. From this table it is seen that increase in bandwidth
`is obtained for CMTRA as compared to a single ring and
`maximum total bandwidth is obtained at a feed location 0.35
`cm away from center for this particular CMTRA.
`
`A Impedance Pattern
`
`The variation of input impedance for the two STRA and
`CMTRA were measured by HP 84JOB network analyzer at
`different band of frequenc ies. For the large single ring and
`CMTRA impedance patterns are measured at different feed
`
`C. Radiation Pat/ems
`The radiation patterns for STRA and three-element CMTRA
`have been measured for both <p = 90° and cp = 0° planes
`over the entire bandwidth of the antenna and are plotted in
`Figs. 7- 10. Comparison of the radiation pattern of a sing le
`
`. ~
`
`I
`
`rin1
`nat
`of
`froi
`rent
`
`c~
`off·
`pat
`pat
`one
`ex1
`FD
`cor
`(
`tha
`Thi
`eel
`
`ZTE v. Fractus
`IPR2018-01461
`
`ZTE
`Exhibit 1003.0006
`
`

`

`MISRA At\D CHOWOHl'RY: ll\IPEDANCI' I\ '10 Rl\OIATIO:\ PROPF.RTll·S 01- TRIMGL'LAR Rl'\Ci l\'11 E:..;;o.; .\
`
`535
`
`e
`
`( a )
`
`e
`o•
`
`~ ,o·
`
`-20
`
`- 25
`
`(b )
`
`'8.
`
`6 -
`
`(ti)
`
`e
`
`( h )
`
`,// /
`.
`
`/
`
`/
`
`I
`
`I /
`I
`I
`• !/
`!
`'I , .
`I
`
`I
`
`I
`
`I
`I
`
`0
`
`... .
`
`Fig. 8. Mea~ured radiation patterns for three clement CMTRA for center
`feed (a) at .,: = !)0° plane and (b) at -r' = o0 plane.
`
`Fig. 9. Mea~urcd radiation pattem~ for three-clement CMTRA for 0.35-c:ii
`off-center feed (a) at .; = !)()0 ph111r and !h) at .; = o0 plane.
`
`ring and CMTRA shows that over the entire bandwidth the
`nature of the radiation pattern is qualitatively similar to that
`of the single ring operating at the fundamental mode. Again
`from Figs. 8- 10 it is seen that radiation patterns for CMTRA
`remain unchanged with the change of feed location.
`
`V. NUMERICAL RESULTS
`The FDTD impedance pattern<, for the single rings and
`CMTRA are computed for the center feed and for 0.35-cm
`off-center feed and are plotted in Figs. 3- 6 with the measured
`patterns. From these figures it is seen that the computed
`patterns arc in reasonable agreement with the experimental
`one. The difference between the computed data and the
`experimental one may be due to the consideration of original
`FDTD algorithm for the slanted planes. A simple method of
`correcting this algorithm is described below [3).
`Consider a rectangular cell, located at a metallic boundary
`that crosses the cell along its diagonal as shown in Fig. I l .
`The proper FDTD formulation for the fields relevant to the
`cell is obtained from the integral form of Maxwell's equations
`
`J H.dl = J ls ( E r/E/ dl + " E ).d.<1
`J E.dl = j l - (1/(lH/ dt).ds .
`
`(3a)
`
`(3b)
`
`Applying (3b) to the cell of Fig. 11. we obtain
`
`E;(i I 1/2. j. k).::u + E~(i + l. j + 1/ 2. kp.y
`h,'~inut (i. + 1 / 2, j + 1 /2, k) J p .. r 2 ; ~.1/2)
`= (11D.:r6.:1!/2~t)[H ~1 +- 1 1 2 (i +1/2. j + 1/ 2. k)
`f{~ - 11 2 0 + 1/2 . j ~ 1/ 2. k)]
`-
`
`(4)
`
`where ~.r, ~!J. ~ z are the <.pace steps. j,,/ is the time steps
`according to the Yee· s [ 6 J formulation. E , 1mit is the E field
`along the diagonal of the cell and is zero on the metallic wall.
`From (4) J/ . can be easily cak:ulated as follows:
`
`u;•+112u + 1/ 2. J + t/2. k )
`= H~·- 1 !2 (i + 1/2. j + 1/ 2. k )
`(2~t/11~.r~y ) .I W~ U + 1/ 2. j. k)~.r
`-
`+ R;(i -t l. j I 1/ 2. k)uy].
`
`(5 )
`
`The modified (5) for the triangular cell differs from the
`conventional one onl) by a factor of two in the right-hand side.
`This simply corresponds to the cell having half the surface.
`This technique can be used lo conform the mesh to any slanted
`plane wall by choosing the proper aspect ratio of the cell as
`described in this paper for the triangular-ring antenna.
`
`ZTE v. Fractus
`IPR2018-01461
`
`ZTE
`Exhibit 1003.0007
`
`

`

`536
`
`IEEE TRANSACTIONS ON ANTHNNAS AND PROPAGATION. VOL. 46, NO. 4. APRIL 1998
`
`MISR
`
`121
`
`)3)
`
`161
`
`the a
`
`Case 2:
`
`w;-112(i + 1/2, j + L/ 2. k )
`= H~1- 1 12(i + 1/ 2. j + 1/ 2, k)
`- (2D.l/ 1iD..r:J.y) * [E~(i + 1/ 2. j + l. k)D..t
`+ t:;'(i. j + 1/ 2. k)~JJ]
`
`(6b)
`
`Case 3:
`
`H~·+ 112 (i + 1/2. j + 1/2, k)
`= H~- 11 2(i + 1/2. j + l/'2. k)
`- (2L:lt./1iD..rD.y) * [E~ (i+ 1/2, j . k)ilx
`- E~'(i, :i + 1/2, k)D.y]
`
`(6c)
`
`Case 4:
`
`H;•+ 112(i + L/2, .i + 1/2. k)
`= n~·- 112 c; + i;2. J + 1/2. k)
`- (26.f /1iD.:r6.y) * [E;(i + 1/2, .i + 1. k)D.:c
`- t:;(i + 1. j + 1/2. k):J.y].
`
`(6d)
`
`These modified equations for the H:: field have been imple(cid:173)
`mented on the smaller triangular-ring antenna for impedance
`calculation. The calculated impedance panem for this antenna
`is given in Fig. 4 with the measured and general FDTD
`algorithm patterns and Fig. 4 reveals the accuracy of the new
`system of equations. This method was applied Lo CMTRA
`considered earlier for center feed and the result shows less
`deviation from the experimental value.
`
`VI. CONCLUSION
`
`From the above investigations it may be said that the
`concentric micorslrip triangular ring antenna bas a multiple
`band effect with increase in total % bandwidth with respect
`to the single ring having the largest and the smallest physical
`dimension of the CMTRA. Changing the location of the feed
`the total % bandwidth is increased and with the changed feed
`location radiation patterns of the CMTRA remain unaltered.
`Comparison of the experimental impedance panems with the
`FDTD patterns shows the validity of the modeling of the
`triangular-ring structures as described in this paper. The most
`attractive feature of this structure is the increase of impedance
`and radiation band width without losing the advantage of small
`size of microstrip antenna.
`
`ACKNOWLEDGMENT
`The authors would like to thank Council of Scientific and In(cid:173)
`dustrial Research (CSIR). India. and Microwave Laboratory of
`Electronics and Telecom Engineering Department of Jadavpur
`University, Calcutta. India. for providing resources required
`for the research.
`
`(a)
`
`e -
`
`(b)
`
`Fig. 10. Measured radiation J'anems for lhree-elemenl CMTRA for 0.6-cm
`off-center feed (a) :u ..; = 90 plane and (b) at -r = o0 plane.
`
`Ey(i+1 1 i+-'12 ,k)
`
`E,,, (i+•tz,i,k)
`
`E11.
`
`, ..
`Ey~Ey fy~fy EymEy e,~er
`
`E"
`
`E.,
`
`Ex
`
`E,.
`
`2
`
`E,.
`3
`
`Ex
`4
`
`Fig. 11. Enlargement of a cell close 10 the slaated metallic surface.
`
`Consider the four cases (Fig. I I), which occur in the metal(cid:173)
`lic boundary of the triangular ring as indicated by the line
`number I, 2, 3, and 4 in Fig. 2. Applying (5) in these four cases
`the modified equations for H:: are given by the following:
`
`Case I:
`
`H~+lf 2('i + 1/2, j + 1/2, k)
`= H~1- 11 2 ( i + 1/2, .i + 1/2, k)
`- (2D.l/JtD.:i:D.y) * [E~(i + 1/2, j, k)D..x
`+ E;(i + 1, .i + 1/2, k)A:IJ]
`
`REFERENCES
`
`[ 1] T. S. Misra and S. K. Chowdhury, "Concentric mkrostrip ring antenna:
`Theory and cxperimen1." J. Elec1romag11. Wt1Ves Applical., vol. 10, pp.
`439-450, 1996.
`
`(6a)
`
`ZTE v. Fractus
`IPR2018-01461
`
`ZTE
`Exhibit 1003.0008
`
`

`

`MISRA AND CHOWl)JiURY: IMPEDANCE AND RADIATION PROPERTIRS OP TRIANGULAR RING AN-n!NNA
`
`5.17
`
`[2] J . Fang and J. Ren. "A locally conformed finite-difference time-domain
`algori1hm of modeling arbitrary shape planar me1al •trips;· IEEE Trw1s.
`Micrmn11·e Theory Tech.. vol. 41. pp. 830-838. May 1993.
`(3] P. Meuancne, L. Ro-.clli, and R. Sorrentino, "A simple way to model
`curved me1al boundaries in FDTD algorithm avoiding staircase approxi(cid:173)
`mation:· IF.££ Micn111·m·e G11i1led \\~ll'e LR11 .• vol. 5. pp. 267- 269. Aug.
`1995.
`(4) G. Mur, ""Absorbing boundary condition~ for the finite difference ap(cid:173)
`proximation of1hc time domain electromagnetic equations;· IEEE Trans.
`£/ec1romagn. C11111plll .. \Ol. EMC-2. pp. J77-382. Apr. 1981.
`(51 D. M. Sheen. S. M. Ali. M. D. Abournhr.i. and J. A. Kong. ··Application
`of the thrce-dimcn\ional finite difference lime-domain method to the
`analysis of planar micro,trip circuit<" IE€£ Trans. Microll'm·e Theory
`Tech.. vol. 38. pp. 849-857. July 1990.
`[61 K. S. Yee. "Numerical M>lution of initial boundary value problems in(cid:173)
`volving Maxwell's cqua1io11~ in isotropic media." IEEE Tra11s. A111e1111M
`Propagm .. vol. AP- 14. pp. 302· 307. Apr. 1966.
`
`S. K. C howdhury (M'79-SM'83) received Lhe
`B.Tcl.E.. M.E.Tel.E.. and Ph.D.
`(engineering)
`degrees from Jadavpur University. India. in 1964,
`1968. and 1972, rcspecti,·cty.
`He joined the Departme01 of Electronics and
`Jadavpur
`Tclccommunicatjon Engineering of
`University in 1969 as a Lecturer. He is now
`a Profcs~or in the same departmcm. He has
`written approximately 50 papers
`for national
`and inlemalional journals. His current interest;;
`include engineering education. electromagne1ics.
`and micro\\:l\C<;. in general, and microstrip antennas and component<;, in
`panicular.
`Dr. Chowdhury i' a Felio\\ IE (India).
`
`lti Saba M isra was born in Lndi:1 on Sep1cmbcr
`25, 1964. S he received the B.Sc. (Hons.) degree
`in phy,.ics, in 1986. the B.Tech degree in rad io
`phy,.ics and electronics, in 1989. from the Calcutta
`Univer~ity. India, and the M.E. and Ph.D. degrees
`in electronic~ and telecommunications engineering.
`in 199 1 and 1997, respec1ively, from the Jadavpur
`Univer~ity. India.
`She is now a Lecturer in the Electronics and
`Telecommunications Engineering Department m the
`Jada\pur Uni,·e~ity. Her research interests arc in
`the area~ of clec1romagnc1ics in gene

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket