throbber
BOSTON SPH L523 750
`14/91/99
`934483“?
`IEEE JUURNHL UF SOLID STRTE CIRCUITS.
`
`
`EMUMMMIIIHHllHllll
`
`Volume 43=Humber
`”gig-86‘
`ESTRQS P8
`
`i2<22u2|8=Dec. .
`Fnsr
`
`._.A.
`
`1,
`
`.
`
`q—‘-_
`
`I" .
`
`\
`
`I.
`,
`
`‘
`
`SOLID-STATE
`.
`‘
`{I
`CIRCUITs
`A”
`I
`r.
`
`I.
`
`:\
`
`'-
`
`'
`I
`
`"
`I
`
`I Ill-I I
`
`'
`
`:
`
`‘
`
`.
`.
`
`2
`
`.I
`I
`
`T
`'.
`A""~.i:;
`.1 l
`I
`.'
`I
`r
`3
`.
`.‘
`.'
`
`4
`
`‘
`
`1
`
`_.
`
`‘
`
`'
`
`."
`
`J
`
`'
`
`‘
`
`'
`
`;.-' \
`
`.2,
`-
`1‘
`'_ Fa
`.‘M
`-\.-.
`-‘
`H
`2
`'1!
`.1
`
`.
`
`\'-\
`
`E
`J
`.
`I
`I
`J
`
`‘
`I)
`-
`f
`
`:'
`i.-
`f
`J’
`
`‘
`
`r'
`1
`
`f
`I
`
`,
`
`I"
`-'
`
`f
`r'
`I
`
`q
`
`I:
`
`1..
`. I'
`.ll‘
`
`E.
`
`- \
`‘\
`:
`K
`‘I
`:17i
`~,
`
`f
`
`J
`‘\
`s
`.
`
`.
`
`I-
`I!“
`
`‘
`
`i
`|
`
`.
`
`e
`(
`'1
`1‘
`3..
`"a
`\
`‘\
`iI
`‘\‘.
`1'
`
`
`
`INTEL 1304
`
`i
`
`

`

`IEEE JOURNAL OF SOLID-STATE CIRCUITS
`The IEEE JOURNAL OF SOLID-STATE CIRCUITS is published by the IEEE Solid-State Circuits Society. All [EEE members are eligible for membership and will receive this JOURNAL
`upon payment of the annual society membership fee of $22.00. For information on receiving this JOURNAL. write to the IEEE Service Center at the addreiis below. Member topic: of
`Trunrarrirmr/Jmimalr arefor personal are milv.
`
`President
`W. SANSEN
`K. U. Lcuven
`Leuven. Belgium
`FAX: +32 l6 321975
`
`Elected for ZMS—ZODS Term
`w. Cars
`5 mettwnod Ct.
`Dallas, TX 75225-2068
`
`Elected for 2001—2009 Term
`I. CnitcnItAN
`Agilent Technologies
`Palo Alto. CA 94.103
`
`Elected for 2008-2010 Term
`T. FIEZ
`School of EECS
`Orcgtin State Univ.
`Corvallis, OR 97331-3736
`
`Vlce President
`3. BOSER
`EECS Dept.
`Univ. of Califurnia
`Berkeley. CA 94720
`
`SOLID-STATE CIRCUITS SOCIETY
`httpu'i‘ssmmrg
`TI'EEfiLII'Ef'
`R. Kumk
`Technology Connexions
`Poway. CA 91064
`FAX: (838)386—1030
`
`Secretary
`D. A. JOHNS
`Univ. at Toronto
`Toronto. ON MSS .104 Canada
`FAX:(416197l-22llfi
`
`Past President
`R. C. IAEGER
`Alabama Microelectronics CLr.
`Auburn Univ.. AL 36849
`
`A. Human
`California Inst. of Techntil.
`Punailena. CA 9| [ZS-(XXII
`
`K. KURNEUAY
`Sch. Electr. Comput. Eng.
`Georgia lnrt. Technnl.
`Atlanta. GA 30332-0250
`
`ADMINISTRATIVE COMMITTEE
`P. 1. Hunter
`Univ. of Califomin
`Dept. Elect. Comp. Eng.
`Davis. CA
`956m
`
`H.-S. LEE
`Dept. Electr. Eng.
`Mafiachuvetts Intit. Techno].
`Cambridge. MA (Jill 39
`
`A. MATSUZAWA
`Tokyo lnttt. of Technol.
`Ookrryama. Mcguro-ku
`Tokyo 523505. Japan
`T. H. LEE
`Cir.
`tntegr. Syn.
`Stanford Univ.
`Stanford. CA 94305-4070
`
`Executlve Office
`ssc§@icce.urg
`Executive Director:
`A. O'NEILL
`(732) 93l-34tl0
`FAX: (732) 931-340!
`n.oneill@ieee.org
`I. YOUNG
`Intel Corp.
`Hillcboro. OR 9712‘
`
`.I. VAN DER SPIEGB.
`Dept. Elect. Sytl. Eng.
`Univ. of Pennsylvania
`Philadelphia. PA l9|04
`
`B. NAUTA
`Univ. of Twentt:
`7500 AE Enschcde
`The Netherlands
`
`1. SEVENHANS
`AMIE Belgium
`Bltitlt Vilvnortie. Belgium
`
`M. Snvuizit
`IBM T. 1. Watson Res. Ctr.
`Yorktown Heights. NY 10598
`
`K. A. I. HALDNEN
`Dept. Micro 8t Nana Sci.
`Helsinki Univ. Technul.
`UIISU Espoo. Finland
`Fax: +358 9 4S| 226°
`kunh®ecdl.tklt.fi
`
`B. KIM
`Qualcnmm Inc.
`6'15 Campbell Technology Pkwy.
`Campbell. CA 956ml
`beumxuplt'wqualcommcum
`
`T. KURODA
`Keio Univ.
`Kithoku-ku. Yokohama
`23315522. Japan
`EDITOR
`.lSSC EDITOR
`B. NAUTA,
`University of Twente
`Enschcdc. The Netherlands
`jssc®ewi.uiwentc.nl
`
`Ascociate EdiIOI‘S '—_—'_————-—'—-—-——
`8. BAAS
`P. GiILINrtiiAM
`A. N. KARANICOLAS
`B. RAZAVI
`S.
`I. LIU
`D. K. SIIAEF‘FER
`ZcrtiG Wireless. Inc.
`Dept. Elect. Comput. Eng.
`Electr. Eng. Dept.
`Beceem Communications. Inc.
`Mttsaitl Technologies Inc.
`Dept. Electr. Eng.
`Univ. California
`It Hines Road
`3960 Freedom Cir.. First Floor
`,
`National Taiwan Univ.
`255 San Geronimo Way
`Univ. of California. Ln: Angeles
`Kanata. ON KEK 2X1
`Davin. CA 95h|6
`Santa Clara. CA 95054
`Lot Angeles. CA 90095
`Sunnyvale. CA 9-1085
`Taipei
`IOIIIIT. Taiwan R.O.C.
`bbaasqfiucdaviacdu
`Canada
`[3|0) ZlIfi-Ib33
`Milli)
`'i'38-‘i‘5l8
`fax: (dull) 496-0121
`fax: (filth) 02—2367490‘,‘
`Inn: (3K)) 206-8495
`fax: (402“ TIE-MOI
`fax: (filfi) 59l-EI48
`lsl®cc.ce.ntu.edu.tw
`dsbaefferfifibeceemxomcom
`A. R. BFIIZAI’)
`raravitclcenciaedu
`ank@zerngwireless.com
`gillingharnfll‘rnmaidcom
`K. L. SHEPARD
`Brnadcom Corp.
`lhldlt West Bernardo Dr.
`Dept. Elect. Eng.
`Columbia Univ.
`San Diego. CA 92l27
`fax: (85m 52l-5h22
`New York. NY “1027
`arya@briiadcom.com
`shepardtcflcccolumbiaedu
`M. F. FLvHN
`D. YOUNG
`Dept. EECS
`Dept. Elect. Eng. Comput. Sci.
`Cave Wettcrn Receive Univ.
`Univ. Michigan
`Ann Arbor. MI 4RI09—2l22
`Cleveland. OH 44|06
`fart: [734) 761-9324
`fax: (Zléj lit-849039
`mptlynntaieecsnmtcbedu
`djy®pocwruodti
`R. GHARFUREY
`Dept. Elect. Comput. Eng.
`Univ. Texas at Austin
`Auvtin. TX 787l2
`(512) 232-7940
`taniilgelmattcercniexasedu
`
`'1'. Mint
`P. K.
`Dept. Elect. Electron. Eng.
`Hang Kong Univ. Sci. Technol.
`Ctearwater Bay. Hung Kong
`eemtiktireeusthlt.
`
`D. NAIRN
`Dept. Elect. Comput. Eng.
`Univ. Watcrlm
`Waterloo, ON NEL EGI. Canada
`naimttvuwrtterlnuca
`
`S. Rusu
`Intel Corp.
`2200 Mission College Blvd.
`Santa Clara. CA 95052
`J. Swot
`Qualcomin. Inc.
`3165 Kiler Rd.
`Santa Clara. CA 950“
`(40H) Illa-4282
`taut:
`(-108) 533—9632
`snvojtniceetors
`
`D. LEENAERTS
`NXP Semiconductors
`High Tech Campus 5
`SbfihAE Eiiiilhovcn. The Netherlands
`fax: +3Iv40-27 4-5II3
`Dominelecnact‘tsfit‘nxpcom '
`
`S. JAMAL
`Marvel! Semiconductor
`54th Marvell Lane
`MS 2-30]
`Santa Clara. CA 95054
`sjumalé‘tnzlrvctlcom
`
`LEWIS M. TERMAN. Preside-tit
`lutth' R. VIG. President-Elect
`BARRY L. Snoop, Sec-man-
`DAVID G.Gnr:cN. Treasurer
`LEAII H. Minimum Parr I’m-idem
`
`S. NATARNAN
`TSMC Design TeEhnnlogy
`.149 Terry Fox Dr.
`Kan-tau. ON KZK 2V6. Canada
`sntatemergtngmemorycom
`IEEE Officers
`tire President. Educational Activities
`EVANGEIJA thm-‘l‘zannxou.
`JOHN BAILLIEUL.
`l/ire President. Publication Sen-ice: and pmdum
`JosEi-u V. LILLtE. Vice President. Member and Geogrwiin‘c Acrivitie:
`I. Roeenm B. DE MARCA.
`Wrr President. Technical Activities
`GEORGE W. ARNOLD. Prerirfenr. IEEE Standards Association
`RUSSELL J. LEFEVIIE. President. fEFfE—USA
`GIOVANNI (Nomi) DE MICHELE. Director. Division I
`
`lit-IS" DAVIS. SPIIR. Human Resource:
`ANTHON'V DURNIAK, Publiratiartt Artivt'rr'e:
`.ItTDI'l'H Grimm. Standard: Activities
`Cemrit JANKUWSKI. Mrmhrrund Geographic Activities
`DOUBLAS DURHAM. Educational At‘ttri'ti‘er
`
`IEEE Executive Staff
`MATTHEW LOEB. Carri-rate Strategy cf: Crlmmunl'cart'on:
`RICHARD D. SCHWARTZ. Emitter: Administmti‘ntt
`CHRIS BRANTLEY.
`IEEE-USA
`MARY WARD-CALLAN. Tertim'caIAt-tluitter
`
`IEEE Periodicals
`Transactionsflnumiiis Department
`Strifl' Director: FRAN ZAPPULLA
`Editorial Director. Dawn MELLEY
`Production Director: PETER M. TUOHY
`Managing Editor: MONA MITI‘RA
`Senior Editor: ELIZABETH SI'EWART
`IEEE JOURNAL OF SOLID-STATE CIRCUITS (ISSN 0018-9200) is published monthly by The Institute of Electrical and Electronics Engineers. Inc. Responsibility for the contents rests
`upon the authors and not upon the IEEE. the Societthouncil, or its members. IEEE Corporate Office: 3 Park Avenue. [71h Floor. New York. NY tooth-599?. IEEE Openltlons-
`Center: 445 Hoes Lane Piscataway. NJ DHSSd-dldl. NJ Telephone: +1 731 98] 0060. Pricefl’uhltcatlon Information: Individual copies: IEEE members $20.00 (first copy only),
`nonmembers 577.00 per copy. (Note: Postage and handling charge not included.) Member and nonmember subscription pTlCCN available on request. Available on CD-RDM and DVD
`(sec hitp:tlwww,sscs.orgljrxct) as well as in microfiche and microfilm. Copyright and Reprint Permissions: Abstracting is permuted Wllh credit to the source. Libraries are permitted to
`photocopy for private use of patrons. provided the per-copy t'ee indicated in the code at the bottom of the first page. is paid through the Copyright Clearance Center. 222 Rosewood Drive.
`Danvcrs. MA [“923- For all “h” WWIHS- ”With or republication permission. write to Copyrights and Permtsstons Depanment. IEEI: Publications Administration. 445 Hoes Lane.
`Piscamwuy.N.lI13354-4l4l. CDPYTISI“ © 2903 by The lntstituteofEleutrical and Electronics Engineers. Inc. All rights reserved. Periodicals Postage Paid at New York. NY. and at additional
`"mm“ ““3"" Postmaslm Send address changes to lEEE JOURNAL or SOLID-STATE CIRCUITS. IEEE. 445 Hoes Lane. Piscalaway. Ni 0385441“. GST Registration No. I25634IBB_
`CFC 53155 ASmmcflt 340013087. Return undeliverable Canada addresses to: Pitney Bowes lMEX. P.0. Box 4332. Stanton Rd. Toronto. ON MSW 3J4. Canada. Printed in 115.3,
`
`
`.
`
`Digital Object Identifier 10.1 l09/JSSC.2008.2010302
`
`ii
`
`

`

`IEEE JOURNAL OF
`
`SOLID-STATE
`
`CIRCUITS
`
`A PUBLICATION OF THE IEEE SOLID-STATE CIRCUITS SOCIETY
`
`
`
`DECEMBER 2003
`
`VOLUME 43
`
`NUMBER 12
`
`IJSCBC
`
`(ISSN 0013-9200)
`
`SPECIAL ISSUE ON THE 2008 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC)
`
`..
`
`M I
`
`ntroduction to the Special Issue on the 2008 IEEE International Solid-State Circuits Conference ........................................
`
`.................................................................................. S. Tsttkumoto. S.-I Lin. 5'. Heine», R. Thewes. and]. Lee 2587'm
`DATA CONVERTER PAPERS
`
`A 108 dB SNR' 1'] mW Oversampling Au‘jio DAC With A Three-level DEM Technique ................................................
`............................................................... K. Nguyen. A. Buit(iropadhvuy, B. Adams; K. Sn'eerland, and P. Bugiuski
`A NoiseuCoupled Time-Interleaved Delta-Sigma ADC With 4.2 M Hz Bandwidth. —98 dB TH D. and 79 dB SNDR ...................
`.................................................. K. Lee. J. Cline. M. Anim. K. Hunmsht'rrt. K. Tnkasuka. S. Tltkettcht'. and G. C. Tamar
`A 14-?) IOU-MS/s Pipelined ADC With it Merged SHA and First MDAC
`B.-G. Lee, B.-M. Min. G. Mangtmam, and J. W. Vat'trmm
`All Over-60 dB True Rail—to-Rail Perfonnance Using Correlated Level Shifting and an Opatnp With Only 30 dB Loop Gain ..........
`................................................................................................................. B. R. Gregoire and U. Moon
`A I50 MS/s 133 th 7 bit ADC in 90 nm Digital CMOS ..................................................... G. Plus and B. Verbmggen
`Highly Interleaved 5-bit. ESO-MSample/s. LZ-mW ADC With Redundant Channels in 65-nrn CMOS ...................................
`
`
`B. P. Ginsburg and A. F! Churtdrrtkttran.............................................................................................. 264]W...“
`RF PAPERS
`
`2592
`
`260]
`2613
`
`2620
`2631
`
`2651
`
`2660
`2674
`
`A 52 Gllz Phased-Array Receiver Front-End in 90 ntn Digital CMOS ......................................................................
`....................................................................... K. Scf'tt'r'r. S. Smut-ken. J. Bar-remain. P. I‘v/ctmbncq. and Y. Roim'n
`A Scalable 6-to-18 GHz Concurrent Dual-Band Quad-Beam Phased-Array Receiver in CMOS ..........................................
`................................................... S. Jenn, X'J. Wang, H. Wang, F. b‘m'm, A. Natunfinn. A. Bubakhani, and A. Hajt'mt'ri
`Transmitter Architectures Based on Near-Field Direct Antenna Modulation ........... A. Bubakimni, D. B. Rutledge. wtdA. Ilctjt’mt'ri
`A Compact Wideband FrOntrEnd Using a Single-Inductor Dual-Band VCO in 90 nm Digital CMOS ....................................
`...................................... J. Bm'remmu, A. Bevihthtm. S. Brmtekt‘rr. M. DE‘Il’t’HI. M. Kut'jk, P. Munbncq. and J. Cranincrkx
`The BLIXER. a Wideband Balun-LNA-I/Q-Mixer Topology ..................................................................................
`............................................................... S. C. Bitmkmeer: E. A. 1'”. Klmnperink, D. M, W. Lecturer”, and B, Naum
`Class-C Harmonic CMOS VCOS. Will] a General Result on Phase Noise ................................. A. Mazmnri and P. Andmcmt'
`Tcrahcrtz CMOS Frequency Generator Using Linear Superposition Technique ............................................................
`...................................... D. Huang, T R. LuRrrc't'n, M.-C. F. Chang. L. Samoa-kn. A. thg. R. Campbell. and M. Andrews
`A 56—65 Gllz Injection-Leckcd Frequency Tripler With Quadrature Outputs in 90-nm CMOS ............. W. L Chan and]. R. Lang
`A Fully-Integrated Quad-Band GSM/GPRS CMOS Power Amplifier .......................................................................
`2747
`............................ I. Aoki, 3. Km. R. Mngmm. R. Apurict'o, E Balm. J. Zuct'trm, G. Hatchet: D. Mc'Clymrmt. and A. Htu't'mirt'
`—'—'—'—'—'———‘—————""*“'——‘—————————_
`ANALOG AND WIRELESS COMMUNICATION PAPERS
`
`2693
`
`2706
`2716
`
`2730
`2739
`
`A Fiddfrogrammable Analog Array of 55 Digitally Tunable OTAs in a Hexagonal Lattice ..............................................
`.................................................................... J. Becket: F. Henriei. S. firndvlrnhm'g. M. Orrmwmr. and Y. Mcumii
`A Current-Feedback Instrultlentation Amplifier With 5 11V Offset for Bidirectional High—Side Current-Sensing ........................
`2769
`.......................................................................................... J. E Wine, J. H. Hmjst'ng. and K. A. A. Mrtkt‘nwa
`
`
`2759
`
`*
`
`©IEEE
`
`iii
`
`

`

`—__~_.-——.___—_________——._—________
`
`A Low-Noise Wide~BW 3.6-GHz Digital AS Fractional-N Frequency Synthesizer With a Noiseishaping Time-to—Digital Converter
`and Quantization Noise Cancellation .................................................... C.-H. Hm, M. Z. Straayt'r. and M. H. PI’ITUII
`Spurious Tone Suppression Techniques Applied to a WideiBandwidth 2.4 GHz FractionalAN PLL .......................................
`................................................................................................ K. J. Wang. A. Swamr'iirrllmn. and I. Calm"
`Load-Independent Control of Switching DC-DC Converters With Freewheeling Current Feedback ......................................
`................................................................................. Yi-J. W00. H.-P. Le. G.-II. Clio. (1-H. Clio. (HMS-I. Kim
`A to MHz Bandwidth. 2 mV Ripple PA Regulator for CDMA Transmitters ................... W—l’. Chit. B. Brifrkctlnghr. and S. Kiwi
`A Pulse—Based Ultra-Widcbattd Transmitter in 90-nm CMOS for WPANS .............................. M. Demir'tl'an and R. R. Spencer
`A Fully Integrated [4 Band. 3.] to 10.6 GI-lz 0.13 pm SiGe BiCMOS UWB RF Transceiver .............................................
`........................... 0. Wr-‘r'rhm; M. Cuw‘n. A. Schneider: R. Rr'nm'nger: B. Lirmg, L. Bu, Y. fin. J. Rogers, and J. Murcincrwrrge
`UWB Fast—Hopping Frequency Generation Based on Sub-Harmonie Injection Locking ...................................................
`............................................. S. Dal Test), A. Bevilrtt'qtm. M. Tiebum. 5. Mrtrzrili. C. Summer. A. German. and A. Nevimii
`Equalization of Third-Order lntertttodulntion Products in Wideband Direct Conversion Receivers ........ E. A. Kec'hr rrrrdA. Hujimiri
`A Low-Power WCDMA Transmitter With an Integrated Notch Filter ......................................... A. Mirmei and H. Bambi
`A Dual-Band CMOS MEMO Radio SOC for [El—CE: 302.l in Wireless LAN .................................................................
`......................................................... M. Zcrrgan’. L. Y. Nathan-rid. H, Srmtttl'rtfi, S. S. Maria. A. Klwirkl'im'ii, P. Chen.
`K. Gang. 8. l/(rkiii-Amiui, J. A. Hit-ring, S. Chen. M. Teri-minis. B. Kai-:ynski. S. Linmlyrw'cis, M. P. Mark. H. Grin. M. Lee. R. Chang,
`H. Dagrm. S. AIJII'UIIHI'IF-AII'IJI’M. B. Brtyrr'kt'n. K. Ottndera. S. Memt'is. A. Chung. K thjrrvi. S. H. Jen, D. K. Sn, and B. A. “bailey
`A Single-Chip CMOS Bluetooth v2.1 Radio SoC ................................................................................. W. W. Si,
`2896
`D. Wehw: S. AIJJO-Iiflhi'diibflik. M- Lee, R. Chang. H. Dngrm, H. Gun,
`l’.’ Rrrjnvi, S. Lose/iris. S. Oggm: P. Haired. and M. Zurgrrrr'
`—__—__—__—___—__—______
`WIRELINE COMMUNICATION PAPERS
`
`2776
`
`2787
`
`2798
`2809
`2820
`
`2829
`
`2344
`2853
`2868
`
`2882
`
`~— I6 dB Return Loss Over 10 GHz
`A T—CoiI-Enhanced 8.5 Gb/s Higthwing SST Transmitter in 65 mn Bulk CMOS With 4:
`Bandwidlli ............. M. Kosset‘. C. Mermtffi. J. Weiss. P. Budtmmm, G. wm Barren. L Rorlrmi, 7? Mar}: 7? Thifl. and M. Sehmrit:
`A ”L3 (iii/5 BUISI'MOUC CDR Using a 3: DAC
`J- Teradu, K. Nisltimtrm. S. Kimurrr, H. Kurstrmr'. N.
`lhritirrmm. and Y. 0}”me
`A 40-Gh/s C‘DR Circuit With Adaptive Decision-Point Control Based on Eye‘Opening Monitor Feedback ..............................
`.............................................................. H. Nognchi. N. Yoshirlrt, H. Ut'hr'drt. M. Oat/ti. S. Krmemirsn. and 5. Ward“
`A 90 nm CMOS DSP MLSD Transceiver With Integrated AFE for Electronic Dispersion Compensation of Multimnde Optical Fibers
`at It) Gb/s ..................................................................................................................... 0. E. Agazzi,
`M. R. Harrie, D. E. Crt'velli. H. S. Crrrrer: A. Nrtzemi. G. Lmtrr, F. RGHKJS, R. Lripec. C. Grace. 3. Kobr’issy. C. Aiiidr'rt, M. Krrzemi,
`M. Ktrrgm: C. Marque; S. Rampmsrrd, F. Bully. V. Purse. S. Ming, G. Asmrmis. G. Eaton, N. Swansea. 7? Lindsrrv. and F. Voois
`Fast Power Transient Management for (DC-192 WDM Add/Drop Networks
`H.—M. Brie. J. Ashbrrmk, N. Shrmbhrtg, and/i. Singer
`Low-Spur. Loquhase-Noise Cluck Multiplier Based on 3 Combination of PLL and Recirculating DLL With Dual-Pulse Ring Oscillator
`2967
`and Self-Correcting Charge Pump ....................................................................................... S. L J. Gic’l'kilik
`——-———F—__._..___._.~_.___—_—___
`IMAGERS. MEMS. MEDICAL. AND DISPLAYS PAPERS
`
`2905
`292]
`
`2929
`
`2939
`2958
`
`A [28 x 128 Single-Photon Image Sensor With Column-Level I tiBnTime-to-Digital Converter Array ................................
`............................................................................. C. Nir't'rrss. C. Fuvi. T. Klm'cr. M. Cranium-It. and E. Chut-ban
`A Multi-Aperture Image Sensor With 0.7 pm Pixels in 0.! l {It'll CMOS Technology ......... K. Fife. A. El Grtrtml. and H.-S. P. Wang
`A 5 pW/Channel Spectral Analysis [C for Chronic Bidirectional BraineMachine Interfaces ..............................................
`......................................... A.—T. At-‘I’SU'MZ. WI Santa, D. Carlson. R. Jensen. S. Smmlmki. A. HeU‘mstiim, and TI Denisrm
`A 200 er Eight-Channel EEG Acquisition ASIC for Ambulatory EEG Systems ..........................................................
`................................................................................... R. E Hrjringhr. P. Mr-rken. R. Puma. and C. Van Hoof
`A Mode-Matching SA Closed-Loop Vibratory Gyroscope Readout Interface With a 0.004°Is/\/Hz Noise Floor Over a 50 Hz Band
`............................................................................................................... C. D. Ear/ore and B. E. Honor
`
`2977
`2990
`
`3006
`
`3025
`
`3039
`
`M 3
`
`049
`2003 INDEX .....................................................................................................................................
`M
`
`iv
`
`iv
`
`

`

`This material may be protected by Copyright law (Title 17 U.S. Code)
`
`

`

`lliltl
`
`IlElilEJUURNAL ()l: SOLID-STATE CIRCUITS. Vll[.. 4}. NO.
`
`|'.‘. IJIEClEMIlIER ZEltlli
`
`———I—mnm-—|-fl—1
`
`DSP
`
`
`E 5
`‘3
`.5.
`_
`h m
`% g 3
`RFenvelnpe
`I g g
`
`
`M
`2 n. g
`1 g g
`
`o
`VRFtl)
`I
`CD (9
`8
`
`lRF uptput
`Dan ennfl
`
`il
`
`th
`
`
`
`RF
`Carrier. 00.:
`
`Fig. 2. Typical polar modulation based transmitter block diagram.
`
`comFSD(dac)
`Composite
`pso-tdficl
`
`CDMAamalnpa
`
`Frequency (MHz)
`(bl
`
`Fig. 3. Power spectral density (PSDlol'ta) composite CDMA signal and (b) its
`extracted envelope.
`
`using an accurate current sensing technique. efficiency and lin-
`earity of the supply modulator is further optimized. The organ-
`ization of this paper is as follows: Section ll describes the op-
`eration of the PA supply modulator and techniques for perfor-
`mance optimization. Section III details the circuit level imple-
`mentations of the linear amplifier. switch-mode regulator and
`current sensing circuit. The measurement setup and results are
`presented in Section N. followed by a conclusion in Section V.
`
`II. DESIGN OF MASTER-SLAVE PA REGULATOR
`
`A. Operation
`
`Fig. 4 shows the block diagram of the proposed master—slave
`linear and switch-mode combined supply modulator loaded
`
`with a PA. A high GBW linear amplifier in voltage follower
`configuration ensures that output node Va“) tracks the refer-
`ence envelope voltage AU). A current sensing circuit. high gain
`transimpcdance amplifier and switch-mode regulator forms a
`global feedback control loop that suppresses the current output
`from the linear amplifier within the switch-mode regulator
`bandwidth. Consequently, a large portion of the load current is
`provided by the switch-mode regulator. The lower efficiency
`linear amplifier sources small amounts of output current 15,,(6)
`to cancel out switch-mode regulator ripple and high frequency
`signal content. The transient response of currents at the output
`of the switch-mode regulator Andi}, the linear amplifier Inuit)
`and combined master-slave supply modulator IOU.) is shown
`in Fig. 5. Assuming an infinite GBW linear amplifier.
`this
`architecture will generate a ripple free output current IOU.) to
`the load. However. due to finite GBW of the linear amplifier.
`only the ripple energy within the linear amplifier is cancelled.
`This tradeoff between GBW of linear amplifier and ripple size
`will he discussed later
`
`To gain lurlher insight on the operation 01 master—slave
`supply modulators the current-mode lrequeney response oi
`the linear amplifier, switch-mode regulator, and their com-
`bined response are analyzed. The steady state output current
`of switch-mode regulator 15,“ can be defined by the linear
`regulator current Ir," as follows:
`
`1
`l.
`1
`Ilin
`15:11:—'Atia"—'—"‘.,I—'— (I)
`
`where n is the current sense ratio, Am. is the transimpedance
`gain. 8, is the slope of the ramp in the switch-mode regulator
`and [BL is the equivalent PA load resistance. The sensed current
`is amplilied by the transimpedance amplifier, comparator and
`the voltage divider formed by equivalent series resistance (ESR)
`of the loading inductor and resistive component RL of the PA
`load. The second-order LC filter and the ESR set the dominant
`
`pole location of the frequency response.
`From (1 ), we can derive the transfer function of the combined
`output current 10 as follows:
`
`I
`_"
`
`A
`
`l
`l
`=— —
`HL 1+—.-1+
`
`(2)
`
`

`

`CHi' H “L: PA REGULATDR FOR L'DMA TRANSMITTERS
`
`2811
`
`Supply Modulator
`
`Class AB Outputi V0“
`
`
`Envelope
`
`Class A3
`All) _
`ransllnea
`
`Biasing
`amp
`
`
`Switch
`Mode Out-ut
`
`
`
`
`
`
`i etching
`
`vastt}
`
`
`
`Fig. 4. The proposed master—slave linear and switch-mode PA regulator block diagram.
`
`Current Loop
`
`|
`Response. Klf)
`LIn ear
`,
`Switch Mode
`
`Amplifier
`ct Amplifier
`
`
`
`Fig. 3. Simplified block diagram ofthe proposed regulator showing ripple cancellation.
`
`
`
`Lit)
`
`where .-'l represents the input envelope signal and Arm is the
`open loop gain of the linear amplifier. The switch-mode regu-
`lator output current I5“, can be shown as
`
`
`= —..~—— - _ ' — [3)
`r -$,.'[1+s--L-C)-R ,
`L
`1 + i
`Am
`i
`RL
`1 + An"
`
`A
`
`and finally the linear amplifier output current In“ is represented
`by
`
`E rl-Sr-(t+sg-L-C)I
`:‘1
`Aria
`
`
`t
`—-
`l + slim
`
`(4)
`
`the output current response of the
`As shown in (3) and (4).
`switch-mode amplifier has a two—pole transfer function forming
`a second-order low-pass characteristic. while the output current
`response ofthe linear amplifier has a two-zero transfer function
`that contains a second-order high-pass characteristic. At low fre-
`quencies, the linear amplifier current output is suppressed and
`the switch-mode regulator dominates the output current. Con-
`versely. at high frequencies. the switch-mode regulator current
`response starts rolling off and the linear amplifier takes over the
`output current, The switch-mode regulator and linear amplifier
`current response combine and form a flat frequency response for
`the master—slave regulator. The frequency where switch-mode
`regulator current response rolls off and linear amplifier current
`response takes over is called transition frequency. fr. This fre-
`quency plays an important role on efficiency optimization and
`will he discussed in the next section.
`
`
`
`Currert(mA)
`
`700
`500
`
`100
`
`1
`
`1K
`
`1M
`
`16
`
`Frequency (Hz)
`
`t3. Current-mode frequency response of the linear amplilicr. the switch-
`Fig.
`mode regulator and the master—slave combined regulator.
`
`Fig. 6 plots the current—mode frequency response of the linear
`amplifier. switch-mode regulator and mastcrfislave regulator. As
`predicted in the mathematical analysis, second-order low-pass
`and high-pass characteristics were obtained. The resulted flat
`output current response is suitable for high linearity implemen-
`tation. In addition. the overall bandwidth extended by the linear
`amplifier makes the supply modulator suitable for wide band-
`width signal transmission.
`
`

`

`llilili JOURNAL OF SOLID-STATE CIRL'L'ITS. VOL 43. N0 ll DECEMBER 2|}!!!
`
`In“):
`
`Low FT
`
` Frequency
`(3)
`
`1mm
`
`PSDtdBe).Currentth)
`
`(mA)
`
`PSD(dBcl.Cun’ent
`
`
`
`High Fr
`
`Frequency
`
`([1)
`
`Fig. 8. Portion of CDMA spectrum amplified by linear amplifier and switch-
`mode regulator at ta) low f;- and (b) high fr.
`
`the envelope PSD contains high DC content and most of the
`envelope energy is accumulated at frequencies less than 2 MHZ
`with a small portion ofthe envelope energy rolling offal higher
`frequencies. The bandwidth specifications of the switch-mode
`regulator can be relaxed further reduce the switching losses and
`use the linear amplifier to amplify the high frequency portion
`of the signal. However, as the bandwidth of the high efficiency
`switch-mode regulator becomes too low.
`the low efficiency
`lincar amplifier dominates the output current, reducing overall
`efficiency. Fig. 8 shows the portions of the envelope spectrum
`amplified by the linear amplifier and switch-mode regulator
`with different transition frequencies fr. Fig. 9 shows that peak
`efficiency of the supply modulator with a 20 dBm. 4-00 kHz
`SSB suppressed carrier modulated input waveform is achieved
`at 100 kHz fr.
`As discussed earlier, output ripple is another critical spec-
`ification requirement for PA supply modulator design due to
`stringent ACPR and spurious emission requirements. [8].
`In
`the proposed master—slave linear and switch-mode regulator.
`a significant portion of current ripple from the switch—mode
`
`A 20
`
`aa
`
`Dm
`D.
`ia0
`
`e 5Eeg
`
`U
`
`
`
`4
`
`1
`
`o
`
`10
`
`”mi
`
`40
`
`tit/l
`50
`
`l
`
`so
`20
`FrequencthIrt)
`(a)
`
`rum—c—Mflfi
`za-
`
`e
`
`5
`
`E 8
`
`E
`a
`as
`2
`
`-2t]i
`|
`u.
`r 40!
`
`sol
`;
`-an:
`l
`
`m
`
`{LI-“ML.”
`th
`
`Emmi
`
`
`42!);
`o
`10
`20
`30
`4e
`50
`Frequencth-tz)
`(h)
`
`Fig. '3. Ripple energy for a 10 dBm. 100 kHz SSB suppressed carrier modulav
`tion wa\‘uform for {a} a synchronous rectifier versus lb] 3 hysteretic controller.
`
`B. Peljfiu'mrtrtce Opriritizarr'mt
`
`Master—slave regulator configuration is commonly used for
`audio amplifiers, and for these applications a switch-mode
`regulator is typically configured in hysteretie control mode.
`Hysteretic controllers do not need a clocked comparator; instead
`they use a window comparator. and frequency of operation
`depends on the load conditions. The loop response ot‘hysteretic
`controllers is quite fast during load transients. However. this
`variable frequency operation generates wideband spurious
`emissions at the regulator output. This in turn increases the AC
`power from the linear amplifier since more ripple energy falls
`within class—AB amplifier bandwidth. The two power spectral
`density plots in Fig. 7 represent the ripple energy for a 10 (”3111.
`100 kHz single sideband (SSB) suppressed carrier modulation
`waveform for a synchronous rectifier versus a hysteretic con-
`troller. As shown in this figure. the integrated ripple energy
`within the class-AB bandwidth is much higher for a hysteretic
`controller. For wideband modulation schemes.
`this analysis
`shows that synchronous rectifiers are a better choice for low
`power. low spurious emissions design.
`To optimize the efficiency of a PA supply modulator. two
`properties of the envelope signals should he considered: the
`power level probability density function (PDF) discussed in
`Fig.
`I and power spectral density {PSD). As shown in Fig. 3.
`
`

`

`Etna
`
`Va
`
`VM
`
`omparator
`
`
`G = L2 = fl: Vm

`V...
`we
`V.
`
`T
`
`Vraf
`
`Ramp
`Vat)
`
`C
`
`Vri/l/M/l
`
`Fia. 11‘
`g
`
`Gain calculation in comparator. D is the duty cycle of i 'pme ).
`
`
`Current
`
`
`
`Amplililr
`
`
`
`
`Comparator
`I
`Linear Model
`Fig. 1'2. Linear model for master—slave linear and switch-mode regulator.
`
`-5... l:mma
`
`SUdH
`
`,
`Transrmperlanee
`amplifier
`
`1MB% CONFIRM
`
`Dfl
`
`LC tiller
`
`4°65
`
`F
`
`5"
`
`Combined
`response
`
`Individual block and the combined frequency responses in switch-
`Fig l3.
`mode regulator feedback loop.
`
`0 dB and used —55 dBc per 30 kHz bandwidth ACPR require-
`ments to extract a maximum ripple specification of 2 mVpp
`at the overall regulator output [8]. As shown in Fig.
`lOtc). as
`the linear regulator unity gain-bandwidth increases. the voltage
`ripple at
`the output reduces. with the expense of reduced
`efficiency and increased linear regulator power consumption.
`For a given 2 mVpp ripple specification at a typical
`to dBm
`output power level. a linear regulator unity gain-bandwidth of
`tilt) Mill is selected.
`
`C. Switch-Mode Regulator Feedback Loop
`
`The switch—mode regulator feedback loop includes a current
`sensing circuit. an error amplifier, a comparator. power stage and
`a low-pass filter and is designed with maximum loop gain for
`
`CHU er «1.: PA REGULA‘l'UR l-‘UR L'DMA 'I'RANSMITTl-IRS
`
`
`
`Efficiency(“Hal
`
`38
`
`4:.o
`
`10
`
`100
`
`1000
`
`Transition frequency Ff (kHz)
`
`Fig. 9. Efficiency optimization of a 20 dBm, 400 kHz SSE suppressed carrier
`modulation envelope waveform by varying trartsition frequency IT,
`
`at)
`so
`40
`an
`
`20
`10
`
`D
`
`20
`
`
`
`(mV)
`Outputripple
`
`
`60
`4D
`hductance {qu
`
`BD
`
`100
`
`50
`a IOMHz
`Switching frequency (MHz)
`.. __ .
`
`100
`
`
`
`0
`
`100
`50
`Supply modulator BWlMHzl
`
`150
`
`
`
`
`
`Outputripple(mV)
`
`7
`S 5
`E 5
`E 4
`E
`3
`g 2
`8
`
`10
`
`ltl. Peak-to-pcnk output voltage ripple versus
`Fig,
`(b) switching frequency. and (c) linenr amplifier GBW.
`
`(a)
`
`load inductor.
`
`regulator is cancelled by the linear amplifier. This results in a
`much smaller residue voltage and current ripple at the PA drain.
`Output inductor and switching frequency also play an important
`role on output ripple value. Fig. 10{a) and (b) shows output
`ripple versus load inductor and switching frequency for the
`proposed composite regulator. Since both ripple frequency and
`output tiller corner is determined by the transition frequency.
`these parameters cannot be used for ripple optimization. There-
`fore. the effectiveness of current ripple cancellation depends on
`the GBW of the linear amplifier. For the ripple specification. we
`have assumed a worst case PA power supply rejection (PSR) of
`
`

`

`2M4
`
`IIEIEIE JUURNAL UI: SULID-STATESCIRCUITS. VOL. 4.1.310. II. DECEMBER 200E
`
`
`
`Rail-tn-ru’l
`Input Stage
`
`Class AB
`
`Translinear Biaslng
`
`Output Stage
`
`Fig. 14. Rait-to-rail input linear class-AB ampliticr with common-source output stage in voltage follower configuration for ripple cancellation and master—slave
`supply modulator bandwidth extension.
`
`
`l Im(t)=lmhtt)-|M(t)
`.— Igntt)
` Vutt) : voltage is set
`
`
`by linear amplifier
`
`Fig. 15. Switch-mode regulator in master—slave supply modulator for high efficiency amplification.
`
`accurate envelope tracking and highest linear amplifier output
`current suppression. For AC analysis. a linear model is utilized.
`As shown in Fig. l l. linearized gain ot‘the comparator is defined
`by the ratio of its output voltage swing to the amplitude of its
`ramp input. prmttl is the switching version of I"; (t) that has
`equal magnitude but contains stronger and more high-frequency
`harmonics. A linear model is obtained and Fig. 12 shows the
`linearized model of the system.
`In the comparator design a ramp voltage swing of il.3 V is
`used. yielding an equivalent gain of It). This gain is optimized
`in such a way that there is minimum penalty to the loop band-
`width and phase margin. The disadvantage of using a smaller
`rarnp voltage is the increased comparator response time. This
`delay results in degradation in envelope tracking accuracy of the
`switch mode output current and consumes more linear amplifier
`output current to correct the time delay errors. Furthermore. ex-
`cess comparator delays degrade the phase margin of the feed-
`back loop around the combined regulator. In this design. with
`the switching frequency of the supply modulator at 10 MHz
`and a comparator BW of 96 MHz, the comparator achieves a
`response time of less than 0 as. The delay introduces a phase
`shift of less than |° and requires almost no extra current from
`the linear amplifier.
`To ensure the stability of the feedback loop in the switch-
`modc regulator. the bandwidth of the switch-mode regulating
`
`loop should be at least ten times less than the switching fre-
`quency. The limited operating bandwidth filters the high fre-
`quency contents of the output current ripple and prevents insta-
`bility. To minimize current use from the linear amplifier. cl

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket