throbber
*EEEJOURNAL OF
`
`
`
`“BIKER 13
`
`”903‘:
`
`0551'! DMD-OM)
`
`1
`
`
`
`J. Sui-aw. J. T Smirk. If Milt".M]. L 0human
`
`“"35
`
`'
`
`HOG
`”H 411:. Cfl-SCM: («C Ln. 5. 1‘. “but. 11-" C‘bn.andG.~H.('hn
`
`
`111M
`
`
`W Cllfllm ANDW
`”AWEWHIMmammammmpanmmwmumcmmn
`*'
`._._
`A. Smlhudum x 1. mm and! Gallon mu
`AWWMMICmmd-MEMWWW ...........................................
`
`2&5!
`m.-..--... .. uni-hula. 11mm...“ .4. M. lamina. M. Salli-uh H. mm. Milt 1 Hal-nun
`:wmwmmmmmmmammmm
`:
`.
`.
`TWKHatfl-CMWO-H E...
`Arm.mmmmmpeumnnc
`.Lflmdhdndfl.s. m am
`A 1mm 201-11181- 1.04m? 1mm mm"rimm- ADC for P1111 Papci mm Appuaim
`
`$.6borflkanlfl'l'mtmdiflm 2mm
`ASfimWCtmflmWCImddflModuMMmfidankm:‘inu-n-IFEOMHIBan-1
`............
`”L1 lnm.k.1l'mmk. H. M. WI! Whitman. undG. ‘1:an Will-‘1‘
`fish-Jo:-[ulnarsmug130-01:Cmmmmmumm m.DiMbuun-Cmflul ............
`
`
`17!!
`I.-C Chimera“. -H 1!-
`“lembuuldmAmplififlSWWCmmmnSluflmflli-umCWfi
`N. Nrdcwh.
`AMWJH (hmmnhWWCDN'IIMDEMUxa
`N Tairrmnlnfl Tdmm 1“ Mum H mm 1. Mimi. Y.(imam. '1' Kama}.{9anand W 11' Mum 27,36
`A Funny 111W 4| a: 111—081 :DWDH
`lmmnlc '1th lmpkmmlad NI 3 Samba! {1.13 um CMOS SOI
`Wham. ................. A. Nomi-n
`I. Angular, 1'. Hang, 1'2 .1-. mm. .1 Abduflu. E Mutant. $.61m1m
`3736
`D. Gain-Arms If. Harrison 1!. 6. M. P I‘m 0. Email. A. mm. 3. "mm. D.Sm;.an11. Pinon-I
`
`(Canaan: Cumin-dd an In“ fawn-J
`
`“lam
`
`
`
`i
`
`QIEEE
`
`INTEL 1211
`
`
`
`i
`
`INTEL 1211
`
`

`

`IEEE JOURNAL OF SOLID-STATE CIRCUITS
`The IEEE JOURNAL OF SOLID-STATE CrRCUITS is published hy the IEEE Solid-State Circuits Society, All IEF.E memhers are eligihle for memhership and will recei,·~ this J
`upon payment of the annual society memhership fee of $20,00, For information on receiving this JOURNAL, write to 1hc IEE!-: Service Center at the address below. Afe,11h Oull/\.\i.
`er <'op;~, of
`7hmsac1io11s/Jo11mals are for perso11<1/ use 011/y.
`
`!'resident
`R C. lAEGEK
`Alabama Microelectronic, Ctr.
`Auburn lJniv., AL 36849
`FAX: (334) 844-1888
`
`Vice President
`W. SAN5cN
`K.U. Leuven
`Leuven, Belgium
`FAX: +32 16 321975
`
`SOLID-STATE CIRCUITS SOCIETY
`http:11<.,cs.org
`Treasurer
`R K \IMAR
`Te<:hnology Conne.,ions
`2160 Sag< View Rd,
`Poway, CA 92064
`FAX: (8881 386-2030
`
`Serref.ary
`D. A , JOl!NS
`Univ. of Toronto
`10 King', Cullege Rd.
`Toron10, ON M5S 3G4 Canada
`FAX: (416) 971-2286
`
`rast President
`S, H. Lf.WIS
`Univ of California
`2()(,4 F.ng H
`IJavis. CA 95616
`FAX: (530) 752-8428
`
`F.lected for 2005-2007 Term
`W. BIDERMANN
`PIXIM, Inc.
`Mountain View, CJ\ 94043
`
`Elected for 200S-2008 Term
`\V. GASS
`6 Crownwood Ct.
`Dallas, TX 75225-2068
`
`Elected for 2007-2009 Term
`J, CORCORAN
`Agiknl Tcchnulugic,
`Palo Alto, CA 94303
`
`D. JOIINS
`Oept Elect Compu1. Eng
`(Jni,•. uf Tnrnnlo
`Toronto, ON M5S 3G4 Canada
`
`ADMINISTRATIVE COMMI1TEE
`T. flEZ
`Schoo I of EECS
`Oregon Slate Univ.
`Cof\·allis. OR 97331-3736
`
`A. HAJIMIRI
`California [nst ur Technol.
`l'asndcn&, C:A 91 125-IXJIJ I
`
`P. J HURST
`Univ, of California
`Dept, Elccl. Comp. Eng.
`Davis. CA 95611>
`
`T. SAKARAI
`lnsl of Ind Scifnce
`Univ, 0f Tokyo
`Tokyu I ~3-8505, fapan
`
`A MATSUZAWA
`Tokyu [n;l. of Technol
`Ooka)·:mrn. Mcgum•ku
`Tokyo 152-8505, Japan
`
`K. KORNEGAY
`S,·h. Elcetr Cunlpul. En~.
`( ieorgia Iu,1
`·1c::chnol.
`A1lan1a, GA 303.12-0250
`
`H -S LEE
`Dept Elect,, Eng.
`Massachusetts Inst Technol.
`Cambridge. \IA 02139
`
`T. H LEE
`Ctr lnl<gr. S)·,t
`St<1nl'onl Univ.
`Stanford, CA 94305-4070
`
`J. VAN DER SPIEG~I.
`Dept Elect Sysi Eng
`Univ. or Pennsyl\ani,a
`Philadelphia, PA 19104
`
`EDITOR
`JSSC ELmoR
`ll. NAUTA,
`Univ(rsity of Twenle
`Enschede, The Netherlands
`jssc@ewi.u1wentc.11l
`
`Enrnlive Of'Hce
`sscs@ icec org
`Executl,·e Director·
`A. O'NEILi.
`'
`(132) 98 1-34()()
`FAX:_ (732) 981-340!
`a.oneil I @1ecc.oq;
`
`M SOYUER
`IBM T. J Watson Res Ctr
`Yorktown Hei@hts, NY IOS9S
`
`l. You~o
`Ju1el Curp.
`Hillshorn, OR 9) J 24
`
`- - - - - - - - - - -- - - - - - - - - - - - - - - - - - Associate Editors
`B_K1M
`P. GILLINl.iHA~
`S. I. Liu
`B. BAAS
`Dept. Elccl Compul. Eng
`Mosaid Technologies Jnc.
`Qualcomm Tnc.
`Dept. r.leclr, 1-:ng.
`11 Hines Road
`67~ C'amphell Technology Pkwy.
`National Toiwan Univ.
`Univ. Califomia
`T:iipci I Do 17. Taiwan R.O.C.
`Davis. CA 95616
`Campbel I, CA 95008
`Konata, ON K2K 2X I
`beumsupk@quakomm.com
`Canada
`E'\X: (886) 02-2367-1909
`bbaa~@ut:lli:1vi~.edu
`FAX: (6L3) 591-3148
`l!-i@cc.ee.ntu edu.tw
`A. R. BEHUO
`gillinghamV!)mosaid.com
`Broadcom Corp
`I o.140 We,t Rcmarrln Dr.
`San Diego, CA 92127
`FAX: [858) 521-5622
`a1)·a@broadco111.com
`M. P. FLYNN
`Dept. F.F.CS
`IJniv. Michigan
`Ann Arbur. MI 48109-2122
`fAX: [734) 76.l-93 24
`mpflynn@eecs.umich.edu
`R. GHARPUREY
`Dept. Elect Comput Eng.
`Univ. Texas al Austin
`A usiiu, TX 78712
`phone: (5 J2) 2'12-7'.140
`ronjitg@m.iilcer,.ucexas.edu
`
`S. JAMAi.
`Marvell Semiconductor
`5488 Marvel I Lane
`.\1S }-3111
`Santa Cl:ira, CA 95054
`sjamal@marvell.com
`
`D. Lt~NAERTS
`N XP Semiconductors
`High Tech Campu, 5
`:\M6AE Eindhm·en,
`The Netherlands
`FAX: +31-40-27 44 1 IJ
`nominc.J .ei:nacrts(rfJnxp.com
`
`A. N. KAR_ANICOLAS
`ZeroCi \Virele<.~. Inc.
`990 Almanor Ave. Ste 250
`Sunnyvale. CA 94085
`(408) 773-0209 xl44
`!'J\X: (408) 773-0264
`:m k@zeragwirele_;;;s,corn
`
`J (H.-C.J LIN
`MSTAR Co1nrnmiicatiuns
`4F-l, No. 26, Tai-Yuan S1,
`ChuPei, H,inrhu I bien.
`)IJ2 ·raiwan
`jerry lin C!!'mstarsemi com
`
`P. K. T. MOK
`Dept Elect, Electron, Eng
`Hong Ko11g Univ Sci. Tcchnol.
`Clearwaier Bay. Hong Kon2
`eemok@ee.usc.hk
`
`U. MOON
`D~pt. Elect. Comput. Eng.
`Oregon State Univ.
`Corvallis, OR 97331-3211
`FAX: [541) 737-1300
`monn(<!'ccc.nregcms.1ate.crlu
`
`0 , NAIRN
`Dept Elect. Compuc, Eng.
`Univ. w~1crloo
`Waterloo. ON N2L 3GJ, Canada
`naim@uwaterloo ca
`
`A. ROTHERMEL
`l)e.pr Microe:lecrmn.
`Univ. Ulm
`D-890081 Ulm, Germany
`FAX: (49) 731-50-262222
`a.rothermel@ieee.org
`
`S, RLISU
`lnld Corp.
`221N) Mi,sion College Hl,ct.
`Santa Clara. CA 95052
`
`K. SATO
`Qimon<la. Jap•n
`Gale City o,aki
`F.a,1 Tc,wer 23f-
`l- I I -2 o,,,li, Shinagawa-Ku
`Tokyo, 141-11()-12 Japan
`FAX: SJ 3 574~ 7499
`ka1suyuki.sntol!!'4imonda.com
`
`D K. SH!<EFFEK
`Bccc.:m C'ornmunications, lnc.
`3960 Freedonl Cir., First Floor
`Santa C lara. CA 951154
`FAX: (408l 496-0 121
`d~haeftCr(g.'hcc.:.~':•ll comxum
`
`E SACKINGER
`Cu11t:xan1
`I 00 Schul, Dr,
`R«J Bank, NJ 0770 I
`FAX (732) 345-7598
`edunrd.sacki11ger@conex;1nt com
`
`D. You,G
`Dept Ek1,:t. Eng. Cnrnpu(, Sci
`c:a ... e \Vei;;tc m Ke ... ~r\ .! Uni\',
`ClcvelanJ, OH -14 106
`FAX: (216) _lfiX-6039
`djy C<!'p,uwru ~du
`
`I) Ml IKHERJEP.
`ScinterJ. Networks
`San Jo,-,, CA 95 129
`FAX: (408) 557-281 2
`debanjun@ieee org
`IEEE Officers
`\lict' JJrni,!nJI, l-'uhlira1im1 Servin•s mul f'rndrirl'i
`JOHN B. B.\ILLll:.tJL,
`PEDRO A. RA,·, Vice Pr.sidei11. /1.e~io,ra/ Ac1il'irie.,
`GEORGE 'w' ARNOLD. Pre.~i<lt>11t. IEE£ Stcmd,ml~· A.uo,:iation
`PETU( w. s ·1Af::CKl~K\ Vi,-,. pr,,1/,fnu, Tl"1.h11in1( A,~1ivirler
`lUHN W. MtKtUl'I H, Presid,•111, IEEE-US/I
`
`LEAH [I. JAMIESON, r,·eridel/J a,1d CEO
`LEWIS M. TERMAN, President-Elect
`cr~I.IA I.. Dl:\MONI>, Sf'Clt:1111 \'
`DAVID G. GREEN, Treasure,
`MICH,IEL R LIGHTNER, rosr !'resit/em
`MOSHE KAM, Vice Pr·t.:.rilJt:,ir, F.1/11n11,'mwl Acli\•itiP.r
`STEVEN J. HILLl:NJUS, Vir1:Clm; Divisirm I
`
`IEEE Executive St:ilT
`JErFRY W. RAYNES, CAE, Execulive Director & Cliief Opera1i11g Officer
`I3ET~Y DAVIS, SPHR, Hum,ui Re.rn11ru:.r
`MAl'IHl:.W LOEl:I, Cor110mte Strategy & Comnumin11imrfii
`RICHARD D SCH\\',\RTZ. 8u$ille.s.r Admir,isrrmim1
`ANTHUNY DURNIAK, 1'11b/irn1iorrs Aclil'ilfrs
`CHRIS BRANTLEY, IEEE- USA
`JUDITH GORMAN, S(amlmrl)' AClil'ities
`MAR'i \\/ARD-CALI ~~. Ti.·, /mfr.,/ Ai lii•ifit ~
`ffrgimwl . ..\c tidlie.~
`C: l:CF.1.1.-\ JA'.\KOW.'iKI,
`/11forma1io11 T,•c/1110/ary
`SALLY A WA~ELIK.
`
`TEEE Pcriorlicals
`Transactions/Journals I>eparlment
`.\'1<1.ff Oirrcwr: FkAN /.APPi II.I .~
`ProduU/011 Diri'clor: PETER M. TUOHY
`Ediwrial Direclui: DAWN MELLEY
`Managing Edi10r, MO~A MITTRA Se11ior Edilo,~ ELIZABET H STEWART
`IEEE JOURNAL or SOLID-STATE CtRcuns (ISSN 0018-9200) is published monthly by The ln\ tiiute nr 6 lcc1rical ond Electronics Engineel'5. Inc. Responsibili!) for 1h< oootcnts re>~
`upon the aulhors and no! upon the IEEE, the Society/Council, or ils memhers IEF:R Corporulc Olllce: 3 Pork Avenue, 17th Floor, New York, NY IOO!b-5997. IEE£ OpcrallOdl
`Ccnlcr: 445 Hoes Lane P.O. !lox 133 1, Piscataway, NJ 08855-1331. NJ Telephone: +I 732 981 0060. l'rkc/P ubllcnlion lnformollon: Individual copies: lEEE. meml'<'r> $20.00(~~t
`copy only), nonmembers $66.UU per copy. (Note: Postage and handling charge not included,) Me mber and nonmember sub.cnptlon price; avnllnble on 1eques1. Avo1lotilc 1m CO-R -~.1
`and DVD (see hltp://www.sscs.org/jssc/J a., well as in microfiche and microfilm. Copyright nod Reprint Permissions: Abstracting ,s perm1no.:d whh cn:di! 10 the sour-e U~
`are permilled to photocopy for priva1c use of patron,. provided the per-copy fee indicated in the code 01 the bouom of the tlr,;t page, i, paid through the Copyrigh1 Clcatan,~ C~~·
`222 Rosewood Drive. Danvers. MAO 1923. For all other copying. reprint, or republication permission, wrile 10 Copynglus nod Permissions Dtpnnment, IEEE Publicntinns AdminisU'll~
`445 Hoes Lane. P.O. Bnx I JJ I, Piscataway, NJ 08855- 133 1. Copyright © 2007 by The lnslimte of Electrical nnd Electronic., Engineer:<, Inc. All rlgh1, rl:scrvcd. Pcnod1cnl1 t>,1~t3~e J'j
`at New York, NY, and at additional mailing offices. Postmasler: Send address changes Lo IEEE JOURNAL OF Soul>-S1'A11! Ctl!C'UITS. !EEC:, 445 Hoes Lane, P.<). Do~ !331. Pi,C'!ll0~4.'
`NJ 08855- 1331. GST Regi,traJiun No. 125634188. CPC Sales Agreemenl #40013087. Return undcllvernble Cnnadn nddresscs to: Pitney Bowes !MEX. P.O. Box 4JJ2, St:int()II
`'
`Toronto, ON MSW JJ4, Canada. Printed in U.S.A.
`
`Digital Objecl Identifier I0.1109/JSSC.2007 .91 2792
`
`ii
`
`

`

`1~EE JOUR N AL OF
`SOLID-STATE
`CIRCUITS
`
`p. pUBLICATION OF THE IEEE SOLID-STATE CIRCUITS SOCIETY
`
`DECEMBER 2007
`
`VOLUME 42
`
`NUMBER12
`
`IJSCBC
`
`(ISSN 0018-9200)
`
`SPECIAL ISSUE ON THE 2007 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE (ISSCC)
`
`Introduction to the Special Issue on the 2007 IEEE International Solid-State Circuits Conference ........................ .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . , ......................... J. Sevenhans, J. T. Stanick, M. Miller, and J. E. D. Hunvitz
`
`2635
`
`ANALOG CIRCUITS AND CONVERTERS
`
`A Wide-Bandwidth 2.4 GHz ISM Band Fractional-N PLL With Adaptive Phase Noise Cancellation ..................... .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Swaminathan, K. J. Wang, and I. Galton
`A Micropower Interface ASIC for a Capacitive 3-Axis Micro-Accelerometer ............................................... .
`. . . , , , ........... , ......... M. Paavola, M. Kdmariiinen, J. A. M. Jarvinen, M. Saukoski, M. Laiho, and K. A. I. Halonen
`A 2 W CMOS Hybrid Switching Amplitude Modulator for EDGE Polar Transmitters ..................................... .
`........ ............. .... ... . ..... .. . . . .. ... . . . . ... .. . . .. ... . .. . .. . . ......... .. ....... .. . T.-W Kwak, M.-C. Lee, and G.-H. Cho
`A Zero-Crossing-Based 8-bit 200 MS/s Pipelined ADC ............................................. L. Brooks and H.-S. Lee
`A 10-bit 205-MS/s l.O-mm2 90-nm CMOS Pipeline ADC for Flat Panel Display Applications . . .................... . .... .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S.-C. Lee, Y.-D. Jeon, J,-K. Kwon, and J. Kim
`A 56 mW Continuous-Time Quadrature Cascaded :Eb. Modulator With 77 dB DR in a Near Zero-IF 20 MHz Band ....
`. . . . . . . . . . . . . . . . . . . . , ................................ L. .T. Breems, R. Rutten, R.H. M. van Veldhoven, and G. van der Weide
`A Single-Inductor Switching DC-DC Converter With Five Outputs and Ordered Power-Distributive Control ........... .
`............. ... ........... ... .. .. .. ..... .......... H.-P Le, C.-S. Chae, K.-C. Lee, S.-W Wang, G.-H. Cho, and G.-H. Cho
`
`WIREUNE
`40-Gb/s High-Gain Distributed Amplifiers With Cascaded Gain Stages in 0.18-1-im CMOS .... J.-C. Chien and L.-H. Lu
`A 40-44 Gb/s 3 x Oversampling CMOS CDR/ l: 16 DEMUX .................................................... N. Nedovic,
`N. Tzartzanis, H. Tamura, F. M. Rotella, M. Wiklund, Y. Mizutani, Y. Okaniwa, T. Kuroda, J. Ogawa, and W. W. Walker
`A Fully Integrated 4 x 10-Gb/s DWDM Optoelectronic Transceiver Implemented in a Standard 0.13 µm CMOS SOI
`Technology .................... A. Narasimha, B. Analui, Y. Liang, T. 1. Sleboda, S. Abdalla, E. Balmater, S. Gloeckner.
`D. Guckenberger, M. Harrison, R. G. M. P. Koumans, D. Kucharski, A. Mekis, S. Mirsaidi, D. Song, and T. Pinguet
`
`2639
`
`2651
`
`2666
`2677
`
`2688
`
`2696
`
`2706
`
`2715
`
`2726
`
`2736
`
`+.IEEE
`
`iii
`
`

`

`A 14-mW 6.25-Gb/s Transceiver in 90-mn CMOS .................................................................. ...... .... ~
`....................................... J. Poulton, R. Palmer, A. M. Fuller, T Gree,; J. Eyles, W J. Dally, and M. Horowitz.
`27
`45
`A Self-Calibrated On-Chip Phase-Noise Measurement Circuit With - 75 dBc Single-Tone Sensitivity at 100 kHz Offset . . .
`2
`........................ ..... ............................................................. W Khalil, B. Baklwloglu, and S. Kiaei
`758
`
`WIRELESS AND RF
`
`A Blocker Filtering Technique for SAW-Less Wireless Receivers ................ ... ......... ...................... H. Darabi
`A Multimode Transmitter in 0.13 ttm CMOS Using Direct-Digital RF Modulator .. ......... ............. ... ........... .... .
`. .. .. .. .. . .. . . .. .. .. .. .. . .. .. .. . .. .. .. .. .. .. .. .. . .. .. .. P. Eloranta, P. Seppinen, S. Kallioinen, T. Saarela, and A. Parssinen
`A Single-Chip Dual-Band CDMA2000 Transceiver in 0.13 µm CMOS ......... ... ............... . . .. ...... . ....... . ... . .. . . .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Zipper, C. Stager, G. Hueher, R. Vazny, W Sclzelmbauer, B. Adler, and R. Hagelauer
`A Fully Integrated MIMO Multiband Direct Conversion CMOS Transceiver for WLAN Applications (802.11 n) ........ .
`. . . . . . . . . . . . A. Behzad, K. A. Carter, H.-M. Chien, S. Wu, M.-A. Pan, C. P. Lee, Q. Li, J.C. Leete, S. Au, M. S. Kappes,
`Z. Zhou, D. Ojo, L. Zhang, A. Zolfaghari, J. Castanada, H. Darabi, B. Yeung, A. Rofnugaran, M. Rofo1igara11,
`J. Trachewsky, T. Moorti, R. Gaikwad, A. Bagchi, J. S. Hammerschmidt, J. Pattin, J. J. Rael, and B. Marhole1•
`SiP Tuner With Integrated LC Tracking Filter for Both Cable and Terrestrial TV Reception ............ .. . ....... ...... . .. .
`J. R. Tourret, S. Amiot, M. Bernard, M. Bouhamame, C. Caron, 0. Cramf, G. Denise, V. Fillatre, T. Kervaon, M. Kristen,
`L. Lo Coco, F. Macier, J. M. Paris, F Pichon, S. Prouet, V. Rambeau, S. Robert, J van Sinderen, and 0. Susplugas
`A 900 MHz UHF RFID Reader Transceiver IC ................................................................................. .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Chiu, I. Kipnis, M. Loyer, J. Rapp, D. Westberg, J. Johansson, and P Johansrnn
`An Integrated Ultra-Wideband Timed Array Receiver in 0.13 tim CMOS Using a Path-Sharing True Time Delay
`Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T.-S. Chu, J. Roderick, and H. Hashemi
`A 2.5 nJ/bit 0.65 V Pulsed UWB Receiver in 90 nm CMOS ............................. F. S. Lee and A. P. Chandrakasm,
`A 0.65-to- l .4 nJ/Burst 3-to-10 GHz UWB All-Digital TX in 90 nm CMOS for IEEE 802.15.4a .......................... .
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Ryckaert, G. Van der Plas, V. De Heyn, C. Desset, B. Van Poucke, and .l. Craninckx
`A Magnetically Tuned Quadrature Oscillator ........ .... G. Cusmai, M. Repossi, G. Albasini, A . Mazzanti, and F Svelto
`A 23-to-29 GHz Transconductor-Tuned VCO MMIC in 0.13 11m CMOS ....... .............. .... K. Kwok and J. R. Long
`Heterodyne Phase Locking: A Technique for High-Speed Frequency Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. Razavi
`Millimeter-Wave Devices and Circuit Blocks up to 104 GHz in 90 nm CMOS ............................................. ..
`.. .. .. .. .. ... .. .... .. . .. .. .. .. .. .. . .. .. . .. .. .. .. .. .. .. . .. .. . .. .. . .. .... . B. Heydari, M. Bohsali, E. Adabi, and A. M. Niknejad
`
`IMAGING, MEMS, MEDICAL, ANO DISPLAYS
`
`A Continuous-Grain Silicon-System LCD With Optical Input Function .................................................... , ..
`. ... .. ............. .... ........ ............................................... C. J. Brown, H. Kato, K. Maeda, and B. Hadwe11
`IO-bit Driver IC Using 3-bit DAC Embedded Operational Amplifier for Spatial Optical Modulators (SOMs) ............ .
`. . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . .. . . . . . . . .. . . . . . . . . . . . J.-S. Kang, J.-H. Kim, S.-Y. Kini, J.-Y. Song, 0.-K. Kwon,
`Y-J. Lee, B.-H. Kim, C.-W. Park, K.-S. Kwon, W-T. Choi, S.-K. Yun, 1.-J. Yeo, K.-B. Han, T.-S. Kim, and S.-l. Park
`CMOS Single-Chip Electronic Compass With Microcontroller ........ .... C. Schott, R. Racz, A. Manco, and N. Simonne
`A 2 µW 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field
`Potentials ............................ .. ...... ... T. Denison, K. Consoer, W Santa, A.-T. Avestruz, .I. Cooley, and A. Kelly
`A 232-Channel Epiretinal Stimulator ASIC ........................ M. Ortmanns, A. Rocke, M. Gehrke, and H.-J. Tiedtke
`A 1/2.7-in 2.96 MPixel CMOS Image Sensor With Double CDS Architecture for Full High-Definition Camcorders .....
`. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Takahashi, T. Noda, T. Matsuda,
`T. Watanabe, M. Shinohara, T. Endo, S. Takimoto, R. Mishima, S. Nishimura, K. Sakurai, H. Yuwrihara, and S. Inoue
`Multiple-Ramp Column-Parallel ADC Architectures for CMOS Image Sensors .................... ....... : ................. .
`.................................................... M. F. Snoeij, A. J. P. T-heuwissen, K. A. A. Makinwa, and J. H. Huijsing
`A Spatial-Temporal Multiresolution CMOS Image Sensor With Adaptive Frame Rates for Tracking the Moving Objects
`in Region-of-Interest and Suppressing Motion Blur .. ........ .. J. Choi, S. -W Han, S.-J. Kim, S.-1. Chang, and E. Yoon
`
`2007 INDEX ... .. .......... . ................... . .. ................. . ......... . ............•. . ............................•...........
`
`2
`766
`2774
`27Rs
`
`2795
`
`2809
`
`2822
`
`2834
`2851
`
`2860
`2870
`2878
`2887
`
`2893
`
`2904
`
`2913
`2923
`
`2934
`2946
`
`2960
`
`29681
`
`2978
`
`'2990
`
`iv
`
`

`

`This material may be protected by Copyright law (Title 17 U.S. Code)
`
`

`

`r.WAK tl al.: 2 W CMOS HYBRID SWITCHING AMPLITUDE MODULATOR FOR EDGE POLAR TRANSMITTERS
`
`2667
`
`R ( t )=~
`
`.----+--1
`
`v(t)
`
`I
`
`'
`
`'
`
`'
`
`Phase Modulator
`
`.
`.
`Amplitude Modulator
`.
`.
`.
`.
`.
`.
`.
`.-······---------------,
`'
`.
`.
`.
`.
`.
`:
`.
`.
`.
`.
`{c:::::~
`.
`'
`.
`.
`.
`.
`.
`.
`.
`'
`'
`',, ____________________ -~-
`----+ 8--+ Limiter
`:
`'
`: t
`·------------
`\ C
`t «MMUAM • t
`1hvvvvvvnn
`
`R(t)
`----+
`
`<p(!)
`
`l,Q
`
`to
`
`Polar
`
`-----
`
`91(1) = tan '(QI!)
`
`V(t)
`
`•,i
`:
`'
`.
`,/
`
`I
`I
`
`v(t)
`
`...
`' '
`:
`~ AA UUAMAA
`vvwnvn 01 •
`
`v(t) :~···
`
`I
`
`Pig. I. Block diagram of a polar transmitter.
`
`io = (1 + /3J-ia
`
`Linear Amp Switching Amp
`(a)
`
`(b)
`
`Fig. 2. (a) Conceptual diagram of the hybrid switching amplilit:r. (b) Phase
`diagram of each current.
`
`(EER) applications [6], it has not been used for polar transmit(cid:173)
`ters in CMOS process because of the difficulty of designing a
`linear amplifier with a wide bandwidth, a low output impedance,
`and a high current-driving capability. However, if the switching
`stage with a wide bandwidth and a low ripple current is used
`for the hybrid switching amplifier, such burdens of the linear
`amplifier can be reduced. By the way, a bandwidth and a ripple
`current arc influenced by the control method. Compared with
`pulsewidth modulation (PWM) control, a hystcretic control of
`the switching amplifier relatively has a narrow bandwidth and
`a large constant ripple current because the switching frequency
`varies according to the output voltage and the bandwidth is
`limited by the minimum switching frequency. Therefore, the
`conventional hybrid switching amplifier hased on the hysteretic
`control has a relatively lower bandwidth and a larger ripple
`current. To extend the narrow bandwidth wider, the linear
`amplifier must have a high current-driving capability according
`to (1) to provide more signal current for making up for the
`distortion from the switching stage. ln case of a large ripple
`current, in particular, the linear amplifier must have a lower
`output impedance at the switching frequency to reduce the
`output ripple voltage because the multiplication of the output
`illl.pedance of the linear amplifier and the ripple current makes
`the output ripple voltage.
`
`B. Proposed Hybrid Switching Amplifier
`As shown in Fig. 3(a), the PWM control is used for the
`switching stage to mitigate the difficulties in the design of the
`linear amplifier. Hence, the switching frequency Is is fixed,
`which makes the unity-gain frequency constant as well. In addi(cid:173)
`tion, the peak-to-peak ripple current of the PWM-based hybrid
`switching amplifier is less than that of the hysteresis-based one
`[5] with the constant ripple cwTent on the assumption that the
`switching frequency of the former is equal to the maximum
`switching frequency of the latter. This is because the relation
`between the switching frequency and the peak-to-peak ripple
`current 6.i,. is expressed as follows for both cases:
`ls· 6.ir = (V,Jd/L) · D · (1 - D)
`
`(2)
`
`where D is the duty ratio, V dd is the supply voltage, and L is
`the inductance.
`However, when we use the PWM control, we must consider
`ttle loop stability. From Fig. 3(a), the current loop gain() can be
`found by
`
`(3)
`
`where As, Ar, and A ,'H are the cmTent sense gain, integrator
`gain, and modulation gain, respectively, and (ZL + sL) is the
`impedance from a switching node Vx. The modulation gain AM
`is the ratio of Vdd to a peak-to-peak magnitude of a triangular
`wave. For loop compensation, as shown in Fig. 3(b), one zero
`at about 160 kHz is inserted into the integrator since two poles
`result from the integrator and the inductor in the current loop.
`
`C. Third-Order Ripple Filter and Current Feedback
`
`Although the linear amplifier has low output impedance, the
`switching ripple current should be reduced to decrease both
`the output ripple voltage and the power consumption of the
`linear amplifier. For this purpose, as shown in Fig. 4, a third(cid:173)
`order filter with L 1, L2, and CF is used in the current loop.
`
`

`

`2668
`
`IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 12, DECEMBB.(l
`2<X>;
`
`I
`I
`1~, I
`I
`$1t---~ _,_I -( l.,,·ln- --...J 1 '~ j
`I
`!
`..:>----v----r----- -~ v. I
`,.
`
`L,
`
`cf
`
`l z
`
`F t - - - - - '
`
`Fig. 4. Hybrid switching amplifier with the third-order ripple filter and the cur(cid:173)
`rent feedback.
`
`/At(s)
`.
`.
`! A-.o~
`:
`I•
`:
`l
`f. • .i
`................................. ·
`
`\
`
`I
`
`i "
`
`I
`
`f,
`
`t
`
`:
`
`I
`
`fp
`
`vdd
`
`'···········--·~ ·-··········--
`
`L
`
`.........
`
`I
`!
`j
`!
`Current Loop p
`.
`.
`! P(s) '"id/ ia = AsA,AM I (ZL + sl) !
`:
`
`~
`:
`
`.
`
`L
`
`,.
`>----0--........ - - - - - -- - - - - - v.
`
`F t-----'
`
`(a)
`
`2 Jk
`
`160k
`
`2M
`
`Oclll
`
`!Pl
`
`46dB
`
`OdB
`
`F t----'
`
`> - - - -0 - - - - - - - - - - - ---1 Vo
`
`-1.
`
`(b)
`
`fig. 5. Hybrid switching amplifier with the feedforward path.
`
`Fig. 3. (a) Simplified block diagram of the hybrid switching ampli lier. (b) Bode
`plots for the current loop design.
`
`In spite of the desirability of lowering the resonant frequency
`for greater reduction of the ripple current, two additional poles
`should have little impact on the current loop. Accordingly, the
`resonant frequency is chosen between the unity-gain frequency
`of the current loop and the switching frequency. Additionally,
`a damping resistor Rd is inserted, taking a quality factor into
`account, because an excessively small Rd can generate an un(cid:173)
`wanted resonance.
`To stabilize the current loop in spite of the relatively small
`Rd, the current feedback suggested in (7) is introduced. The
`ripple information is used for the hysteretic control in the ref(cid:173)
`erence, whereas only a high-frequency signal current passing
`through the capacitor CF is used for the PWM control with the
`same but negative gain as the current sense gain As, because the
`
`sensed ripple information is attenuated at the output of the in(cid:173)
`tegrator. The current loop therefore remains stable because the
`same voltage VsEN. as in the case of a single inductor, is recov(cid:173)
`ered without losing the high-frequency current component.
`
`D. Feedforward Path
`
`As given in ( 1 ), the linear amplifier should provide some corn·
`pensation current to prevent the output voltage from being dis·
`torted by the delay of the current loop at the high frequency. The
`higher the frequency, the more the compensation current fl ows.
`There are higher frequency components than the EDGE base(cid:173)
`band signal of about 270 kHz in the amplitude path of the polar
`transmitter. Hence, an auxiliary circuit is necessary to alleviate
`the burden of the linear amplifier.
`If we add a feedforward path, like the one shown in Fig. 5, we
`input signal can directly control the switching amplifier. s uch a
`
`

`

`f:WA't- el al.: 2 W CMOS HYBRJD SWITCHING AMPLlTUDE MODULATOR !:'OR EDGE POLAR TRANSMITfERS
`
`2669
`
`Summing Circuit + Integrator
`
`Ripple Filter +
`Current Feedback
`
`I Fig. 6. Detailed block diagram of the hybrid swi1ching amplifier.
`
`path is faster than the feedback current path formed by sensing
`the output current of the linear amplifier. Although the feedfor(cid:173)
`ward signal can be injected after the integrator, it is added before
`the integrator in Fig. 5 considering the implementation of the
`summing circuit and integrator as will be explained in the next
`section. With this feedforward path, we can express the output
`current as follows:
`
`. A,,J . Vin
`t 0 ==
`ZL
`
`.
`
`) A A
`. A
`(A
`1
`I • M • z
`S ' ia + F · Vin
`= ia +
`L
`1, + s
`'
`(4)
`
`Where Avt is the overall closed-loop gain of 1/ F. Since the
`output current of the linear amplifier i"- ideally has to be equal
`to zero, the gain of the feedforward path AJo' ( s) is given as
`
`AF(s) = Avf ,_1_ , 1+s/wp. zL+sL
`AM A10 1 + s/wz
`ZL
`1 + s/wp
`Av/
`1
`~AM· A10 · 1+s/w,,
`
`(5)
`
`\\>here the integrator gain Ar(s) is A10 · ((I +s/w.)/(l +s/wv) ).
`Notice that the gain of the feedforward path has the reciprocal
`Characteristic of the integrator and the inductor to compensate
`for their de]ays.
`
`E. Implementation of a Hybrid Switching Amplifier
`Fig. 6 shows the detailed circuit of the hybrid switching am(cid:173)
`plifier. In CMOS design, although three voltage signals can be
`added and then integrated as shown in Figs. 4 and 5, the simul(cid:173)
`taneous summation and integration of the signals at the node
`Ve, after the conversion of the three voltage signals into cur(cid:173)
`rent ones, is advantageous, that is, the sensed output current of
`the linear amplifier, the feedforward current, and the high-fre(cid:173)
`quency current through the ripple filter are added together and
`integrated at the node with the inverted polarity of the last one.
`In this case, the de gain of the integrator A10 is replaced by
`Rro and the sensing ratio of the output current of the linear
`amplifier is 1 to N so that the current sense gain As is 1/N.
`The feedforward path gain AF ( s) given in (5) can be expressed
`as AFv ( s) / RF because the input voltage Vin is converted into
`the current by RF after passing through the lead compensator
`Apv (s). As mentioned before, the zero and the pole of Apv(s)
`should be located at the pole and the zero of the integrator, re(cid:173)
`spective! y. If the transfer functions of the integrator and A Fv ( s)
`are given, the value of RF can be found to set the de gain of
`Ap ( s). The capacitor in the feedforward path C 1 is a coupling
`capacitor with a large capacitance.
`After the high-frequency current that passes through the
`ripple filter is sensed as a voltage by the damping resistor Rd,
`the voltage is converted into the current by Ref· Since the
`
`

`

`2670
`
`IEEE JOURNAL OF SOI .TD-STATE CIRCUITS. VOL. 42. NO. 12, OECtMlll,Q.
`~
`2
`
`high-frequency current should he transferred to the integrator
`with the same gain of 1 / N as the output current of the linear
`amplifier, the value of Rcr is set equal to N · R,1• The capacitor
`C2 is also a coupling capacitor like C 1.
`
`F Design for the Class-£2 EDGE
`The Class-E2 EDGE specifications require an average output
`power of 26 dBm and a peak-to-average power ratio of 3.2 dB.
`Accordingly, the amplitude modulator should be able to supply
`more than about 2.2 W, assuming that the RF power amplifier
`has a maximum efficiency of 40%. This means that the equiva(cid:173)
`lent de load resistance is approximately 4 n when the maximum
`output voltage of the amplitude modulator is 3 Vat Vdct = 3.5 V
`[2]. Hence, the hybrid switching amplifier is designed to drive a
`power amplifier with an equivalent impedance of 4 n while its
`output voltage varies from 0.4 to 3 V.
`Despite the EDGE signal bandwidth of about 270 kHz, the
`amplitude modulator should have a bandwidth wider than 2 MHz
`to satisfy the en-or vector magnitude (EVM) and the spectral
`mask requirements because, as mentioned before, the amplitude
`component for the polar modulator becomes much wider than
`that of the original EDGE signal in the process of extracting it
`[1], [2]. Fortunately, however, the low-speed switching amplifier
`can efficiently supply most of the output current because most of
`the EDGE amplitude signal power is concentrated on the low(cid:173)
`frequency band of less than 50 kHz, as shown in [ l]. This is why
`the cun-cnt loop f3 is designed to have a unity-gain frequency
`of about 460 kHz using a 2 MHz switching frequency with a
`4 ttH inductance, as shown in Fig. 3(b). As a result, a switching
`ripple current of about 110 mAµµ is generated without the use
`of the third-order ripple filter at a duty ratio of 0.5. However, it
`is reduced up to about 40 mAPP with the third-order ripple filter
`and the current feedback. The values of the used components are
`as follows: L1 = ] 11H, f,2 = I 11.H, Ct = 100 nF, Rd = 2 n,
`and R cf = :l!JO n.
`On the other hand, the linear amplifier should have a band(cid:173)
`width that is much wider than 2 MHz to compensate for the
`fast varying amplitude components that the switching ampli(cid:173)
`fier cannot follow. The driving capability of the linear amplifier
`should also be more than at least 80 mA, including a switching
`ripple current and a high-frequency signal current, because, ac(cid:173)
`cording to (I) and Fig. 3(b), the required output current of the
`linear amplifier is approximately 34 mA on the condition that
`the maximum output voltage at 50 kHz, v;, = l.25 · sin(21r ·
`50 k · t) + 1.75 V<k. is applied to a 4 f1 load. To put it con(cid:173)
`cretely, I.Bl = 9.2, B = 90° at 50 kHz from Fig. 3(b), and the
`output current from the switching stage is slower than the output
`current by a: = 6.2°.
`
`III. LINEAR AMPLIFIER WITH A NOVEL CLASS-AB BUFFER
`
`A. Critical Desi;111 Parameters for the Linear Amplifier
`If the amplitude modulator has an input signal of a(t) and
`( t) with a closed-loop gain of I, a1
`( t) is
`an output signal of a1
`expressed as the summation of a( t) and the switching ripple
`voltage of C¥R • cos(wRt +¢),where wn is the switching fre(cid:173)
`quency. By assuming the phase-modulated signal of cos(wct +
`O(t)) is applied at Lhe input of the RF power amplifier, we can
`
`express the output of the power amplifier s~: ( t) by the am l"
`tude modulation of ,L'(t) and crn:1(wct + B(t)) as follows: p 1-
`
`s~(t) =a(t) · cos (wet+ fl(t)) + CXR · cos(wnt + </>)
`· cos(wct + B(I.))
`
`(6)
`
`The last term is caused by the output ripple vohage of the 8.ll\
`pl itude modulator, Lhat is, the ripple voltage from the switch

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket