throbber
Renewable and Efficient
`Electric Power Systems
`
`Gilbert M. Masters
`Stanford University .
`
` “M)INTERSCIENCE
`
`JOHN WILEY & SONS, INC., PUBLICATION
`
`-
`
`oe
`
`ce 01
`estas v. GE
`PROOTE.01015
`
`i
`
`GE 2013
`Vestas v. GE
`IPR2018-01015
`
`i
`
`

`

`ve
`
`‘ti
`
`Copyright © 2004 by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved.
`
`Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
`Published simultaneously in Canada.
`
`Nopart of this publication may be reproduced, stored in a retrieval system or transmitted
`in any form or by any means, electronic, mechanical, photocopying, recording, scanning
`or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
`Copyright Act, withouteither the prior written permission of the Publisher, or
`authorization through paymentof the appropriate per-copy fee to the Copyright
`Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
`(978) 750-4470. Requests to the Publisher for permission should be addressed to the
`Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
`(201) 748-6011, fax (201) 748-6008.
`
`Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
`efforts in preparing this book, they make no representations or warranties with respect to the
`accuracy or completeness of the contents of this book and specifically disclaim any implied
`warranties of merchantability or fitness for a particular purpose. No warranty may be created or
`extended by sales representatives or written sales materials. The advice and strategies contained
`herein may not be suitable for your situation. You should consult with a professional where
`appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
`commercial damages, including but not limited to special, incidental, consequential, or other
`damages.
`
`For general information on our other products and services please contact our Customer Care
`Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or
`fax 317-572-4002.
`
`Wiley also publishes its books in a variety of electronic formats, Some content that appears in
`print, however, may not be available in electronic format.
`
`Library of Congress Cataloging-in-Publication Data
`
`Masters, Gilbert M.
`Renewable and efficient electric power systems / Gilbert M. Masters.
`p. cm.
`Includes bibliographical references and index.
`ISBN 0-471-28060-7 (cloth)
`.
`1. Electric power systems—Energy conservation. 2. Electric power systems—Electric
`losses. I. Title
`
`TK1005.M33 2004
`621.31-de22
`
`Printed in the United States of America.
`
`10987654
`
`2003062035
`
`ii
`
`

`

`3.10 TRANSMISSION AND DISTRIBUTION
`
`TRANSMISSION AND DISTRIBUTION
`
`145
`
`While the generation side of electric power systems usually receives the most
`attention, the shift toward utility restructuring, along with the emergence ofdis-
`tributed generation systems, is causing renewed interest in the transmission and
`distribution (T&D) side of the business.
`.
`Figure 3.33 showsthe relative capital expenditures on T&D over time com-
`_
`_ pared with generation by U.S. investor-owned utilities. The moststriking feature
`__ of the graph is the extraordinary period of power plant construction that lasted
`from the early 1970s through the mid-1980s, driven largely by huge spending for
`~ nuclear powerstations. Except for that anomalous period, T&D construction has
`generally cost utilities more than they have spent on generation. In the latter half
`of the 1990s, T&D expenditures were roughly double that of generation, with
`
`
`most of that being spent on the distribution portion of T&D.
`ae
`Theutility grid system starts with transmission lines that carry large bios:
`
`power, at voltages ranging from 161 kV to 765 kV, over relatively long
`
`distances from central generating stations toward major load centers. Lower-
`
`oltage subtransmission lines may carry it to distribution substations located
`
`
`oser to the loads. At substations, the voltage is lowered once again, to typi-
`
`ally 4.16 to 24.94 kV and sent out over distribution feeders to customers. An
`
`example of a simple distribution substation is diagrammedin Fig. 3.34. Notice
`combination of switches, circuit breakers, and fuses that protect key com-
`
`ents and which allow different segments of the system to be isolated for
`rntenance or during emergency faults(short circuits) that may occur in the
`
`
`
`—— Transmission and distribution ~-- Generation
`
`
`
`
`
`
`
`30.+1995 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 19961998
`
`Year
`
`
`Transmission and distribution (T&D) construction expenditures at U.S.
`edutilities compared with generation. Except for the anomalous spurt in
`struction during the 1970s and early 1980s, T&D costs have generally
`ration. From Lovins et al. (2002), using Edison Electric Institute data.
`
`
`
`

`

`146
`
`THE ELECTRIC POWER INDUSTRY
`
`Bus Breaker
`
`Radial
`
`‘
`
`Overcurrent
`Feeder
`ete
`
`.
`.
`Distribution.
`Disconnect Relay
`Disconnect
`Substation
`Transformer—=I
`Substation
`Z\ A
`t
`Dis
`cc!
`a
`isconnect
`;
`=
`_ : ee+Distribution
`
`Buse &
`Feeders
`e
`g QO
`QO
`4.16 kV —
`=
`= Overcurrent
`Bho kY
`_.
`vee
`—
`Relay
`Lightning.
`Arrestors
`
`_.
`Subtransmission
`System
`34.5 kV - 138 kV
`
`Main Bus
`
`‘
`C)
`
`Feeder
`Breakers
`
`Voltage
`Regulators
`
`Figure 3.34
`<A simple distribution station. For simplication, this is drawn as a one-line
`diagram, which meansthat a single conductor on the diagram corresponds to the three
`lines in a three-phase system.
`
`3.10.4 The National Transmission Grid
`The United States has close to 275,000 miles of transmission lines, most of which .
`
`carry high-voltage, three-phase ac power. Investor owned utilities (IOUs) own
`—
`
`three-fourths of those lines (200,000 miles), with the remaining 75,000 miles :
`- owned by federal, public, and cooperative utilities. Independent power produ
`ers do not own transmission lines so their ability to wheel power to custor
`
`
`depends entirely on their ability to have access to that grid. As will be described
`in the regulatory section of this chapter, Federal Energy Regulatory Commissi
`
`(FERC) Order 2000 is attempting to dramatically change the utility-ownershi
`
`of the grid as part of its efforts to promote a fully competitive wholesale.po
`market. Order 2000 encourages the establishment of independent regionaltr
`
`mission organizations (RTOs), which could shift transmission line ownershi
`a handful of separate transmission companies (TRANSCOs), or it could
`
`continued utility ownership but withcontrol turned over to independent,
`operators (ISQs).
`:
`As shown in Fig. 3.35, the transmission network in the United States
`
`
`nized around three major power grids:
`the Eastern Interconnect,
`the We
`
`
`Interconnect, and the Texas Interconnect. Texas is unique in that its powe
`not cross state lines so it is not subject to control by the Federal Ener;
`
`ulatory Commission (FERC). Within each of these three interconnection ;
`utilities buy and sell power among themselves. There are very limite
`
`connections between the three major power grids. After a major blac
`the Northeastern United States in 1965, the North American Electric
`
`ity Council (NERC) was formed to help coordinate bulk power pol
`affect the reliability and adequacy ofservice within 10 designatedrc
`US. grid.While almost all power in the United States is transmitted0
`
`phase ac transmission lines,
`there are circumstances in which hig
`
`
`
`
`

`

`
`
`
`
`
`
`Texas Interconnect
`
`TRANSMISSION AND DISTRIBUTION
`
`147
`
`
`
`
`Western
`
`Interconnect
`
` Eastern
`interconnect
`
`_Figure 3.35 Transmission of U.S. electric power is divided into three quite separate
`power grids, which are further subdivided into 10 North American Electric Reliability
`
`
`Council Regions. ECAR, East Central Area Reliability Coordination Agreement; ERCOT,
`
`Electric Reliability Council of Texas; FRCC, Florida Reliability Coordinating Council;
`
`MAAC, Mid-Atlantic Area Council; MAPP, Mid-Continent Area Power Pool; MAIN,
`
`Mid-America Interconnected Network; NPCC, Northeast Power Coordinating Council;
`SERC, Southeastern Electric Reliability Council; SPP, Southwest Power Pool; WSCC,
`festern‘Systems Coordinating Council. (FTA 2001).
`
`HVDC) lines have certain benefits. They are especiaily useful for inter-
`
`
`necting the power grid in one part of the country to a grid in another
`_since problems associated with exactly matching frequency, phase, and
`
`
`ages are eliminated in dc. An example of such a system is the 600-
`6000-MW Pacific Intertie between the Pacific Northwest and South-
`alifornia. Similar situations occur between countries, and indeed many
`
`-HVDC.
`links around the world are used to link the grid of one
`
`to another—examples include: Norway—Denmark, Finland—Sweden,
`
`
`Denmark, Canada—United States,
`.Germany—Czechoslovakia, Aus-
`
`wary, Argentina—Brazil, France—England, and Mozambique—South
`control and interfacing simplicity of de makes HVDClinks particu-
`uitedfor connecting ac grids that operate with different frequencies,
`
`se,for example, in Japan, with its 50-Hz and 60-Hz regions.
`inks. require converters at both ends of the dc transmission line to
`
`0 de and then to invert de back to ac. The converters at each end
`either as a rectifier or as an inverter, which allows power flow
`
`
`

`

`148
`
`THE ELECTRIC POWER INDUSTRY
`
`AC Generators
`
`Loads
`
`AC System
`
`HVDC Link
`CKO DC Line
`
` Transformer
`
`Transformer
`
`Rectifier
`
`Inverter en
`AC System
`
`Figure 3.36 A one-line diagram of a dc link between ac systems. The inverter and
`rectifier can switch roles to allow bidirectional power flow.
`
`:
`On
`te 4
`
`in either direction. A simple one-line drawing of an HVDC link is shownin
`Fig. 3.36. HVDC lines offer the most economic form of transmission over very
`long distances—that is, distances beyond about 500 miles or so. For these longer
`distances, the extra costs of converters at each end can be more than offset by
`the reduction in transmission line and towercosts.
`|
`
`
`
`3.10.2 Transmission Lines
`The physical characteristics of transmission lines depend very much on the volt- |
`ages that they carry. Cables carrying higher voltages must be spaced further apart
`from each other and from the ground to prevent arcing from line to line, and:
`higher current levels require thicker conductors. Table 3.5 lists the most common_
`
`
`
`
`voltages in use in the United States along with their usual designation as being
`ae
`transmission, subtransmission, distribution, or utilization voltages.
`
`Figure 3.37 shows examples of towers used for various representative trans- .
`mission and subtransmission voltages. Notice that the 500-kV tower has three
`
`suspended connections for the three-phase current, but it also shows a fourth
`connection, namely, a ground wire above the entire structure. This groundwir
`not only serves as a return path in case the phases are not balanced, butalso
`pROvaneS a certain amountof lightning protean:
`
`eee sae
`
`TABLE 3.5 Nominal Standard T&D System Voltages
`Transmission (kV)
`Subtransmission (kV) Distribution (kV) Utilization(V)
`
`765
`500
`345
`230
`161
`
`.
`
`138
`115
`69
`AG
`34.5
`
`24.94
`22.86
`13.8
`13.2.
`12.47
`8.32
`4.16
`
`600...
`480.
`240.
`208.
`120
`
`
`
`
`

`

`pooscvnbdeam
`
`CHAPTER6
`
`
`
` WIND POWER SYSTEMS
`
`
`
`6.1 HISTORICAL DEVELOPMENT OF WIND POWER
`
`
`Wind has been utilized as a source of power for thousands of years for such
`asks as propelling sailing ships, grinding grain, pumping water, and powering
`
`ctory machinery. The world’s first wind turbine used to generate electric-
`
`ity was built by a Dane, Poul
`la Cour, in 1891. It is especially interesting
`
`note that La Cour used the electricity generated by his turbines to elec-
`
`
`lyze water, producing hydrogen for gas lights inthe local schoolhouse. In
`
`at regard we could say that he was 100 years ahead of his time since the
`
`sionthat many have for the twenty-first century includes photovoltaic and
`
`indpower systems making hydrogen by electrolysis to generate electric power
`fuelcells.
`
`
`. In1941 one of the largest wind-powered systems ever built went into
`
`
`tion at Grandpa’s Knob in Vermont. Designed to produce 1250 kW from
`
`
`Viniles per hour before it catastrophically failed in 1945 in a modest 25-
`nd(one ofits 8-ton blades broke loose and was hurled 750 feet away).
`
`
`é andd Efficient Electric Power Systems. By Gilbert M. Masters
`471-28060-7 © 2004 John Wiley & Sons, Inc.
`
`307
`
`

`

`308
`
`WIND POWER SYSTEMS
`
`‘Subsequent interest in wind systems declined as the utility grid expanded and
`became morereliable and electricity prices declined. The oil shocks of the 1970s,
`which heightened awareness of our energy problems, coupled with substantial
`financial and regulatory incentives for alternative energy systems, stimulated a
`renewal of interest in windpower. Within a decade or so, dozens of manufac-
`turers installed thousands of new wind turbines (mostly in California). While
`many of those machines performed below expectations, the tax credits and other
`incentives deserve credit for shortening the time required to sort out the best
`technologies. The wind boom in California was short-lived, and when the tax
`credits were terminated in the mid-1980s, installation of new machines in the
`United States stopped almost completely for a decade. Since most of the world’s
`wind-power sales, up until about 1985, were in the United States,
`this sud- .
`den drop in the market practically wiped out the industry worldwide until the |
`early 1990s.
`Meanwhiley, wind turbine technology development continued—especially in~
`Denmark, Germany, and Spain—and those countries were ready when sales.
`began to boom in the mid-1990s. As shown in Fig. 6.1,
`the global installed
`capacity of wind turbines has been growing at over 25% per year.
`.
`Globally, the countries with the most installed wind capacity are shown in
`Fig. 6.2. As of 2003, the world leader is Germany, followed by Spain, the United _
`States, Denmark, and India. In the United States, California continuesto have the_
`most installed capacity, but as shownin Fig. 6.3, Texas is rapidly closing the gap.
`Large numbersof turbines have beeninstalled along the Columbia River Gorge in_
`the Pacific Northwest, and the windy Great Plains states are experiencing mayor_
`growth as well.
`
`35,000
`
`30,000
`
`25,000
`
`20,000
`
`
`
`Capacity(MW)
`
`15,000.
`
`10,000
`
`5000
`
`| 0
`
`Figure 6.1 Worldwide installed wind-power capacity and net annual additionstto ci
`ity have grown by over 25% per year since the mid-1990s. Data from AWEA.
`
`
`
`: 40,000
`
`
`
`E} Installed Capacity
`
`B® Net Additions
`
`=
`
`

`

`
`500
`
`Minnesota
`
`Wasnington
`
`Oregon.
`
`Wyoming
`
`Kansas
`
`Texas
`
`lowa
`
`gCc_
`
`2c
`
`I
`oO
`
`
`
`
`_ Figure 6.3
`
`Installed wind capacity in the United States in 1999 and 2002.
`
`YPES OF WIND TURBINES
`
`
`
`early wind turbines were used to grind grain into flour, hence the name
`Ki mill.” Strictly speaking, therefore, calling a machine that pumps water or
`eselectricity a windmill is somewhat of a misnomer. Instead, people are
`
`TYPES OF WIND TURBINES
`
`309
`
`Germany
`12,001
`
`Figure 6.2. Total installed capacity in 2002, by country. AWEA data.
`
`2000
`
`
`
` 1500
`
`1000
`
`
`
`

`

`310
`
`WIND POWER SYSTEMS
`
`using more accurate, but generally clumsier, terminology: ‘““Wind-driven gener-
`a>
`66.
`ator,”
`“wind generator,” “wind turbine,” “wind-turbine generator”? (WTG), and
`“wind energy conversion system” (WECS) all are in use. For our purposes,
`“wind turbine” will suffice even though often we will be talking about system
`components (e.g., towers, generators, etc.) that clearly are not part of a “turbine.”
`' One way to classify wind turbines is in terms of the axis around which the
`turbine blades rotate. Most are horizontal axis wind turbines (HAWT), butthere
`are some with blades that spin around a vertical axis (VAWT). Examples of the
`two types are shownin Fig. 6.4.
`The only vertical axis machine that has had any commercial success is the
`Darrieus rotor, named after. its inventor the French engineer G. M. Darricus,
`who first developed the turbines in the 1920s. The shape of the blades is that
`which would result from holding a rope at both ends and spinning it around a
`vertical axis, giving it a look that is not unlike a giant eggbeater. Considerable
`developmentof these turbines, including a 500-kW, 34-m diameter machine,was
`undertaken in the 1980s by Sandia National Laboratories in the United States.
`An American company, FloWind, manufactured and installed a number ofthese
`wind turbines before leaving the business in 1997.
`The principal advantage of vertical axis machines, such as the Darrieusrotor,
`is that they don’t need any kind of yaw control to keep them facing into the
`wind. A second advantage is that the heavy machinery contained in the nacelle
`(the housing around the generator, gear box, and other mechanical components)
`can be located down on the ground, where it can be serviced easily. Since the
`heavy equipment is not perched on top of a tower, the tower itself need not
`be structurally as strong as that for a HAWT. The tower can be lightened even
`further when guy wires are used, which is fine for towers located on land but not
`for offshore installations. The blades on a Darrieus rotor, as they spin around,are
`almost always in pure tension, which meansthat they can berelatively lightweight
`
`Gear
`
`
`/ box Generator
`
`secs
`
`
`
`|| Tower
`
`
`
`Guy wires
`a
`
`Wind
`
`Wind
`
`> -
`_—
`
` Rotor bladesaoeef 4
`Wind
`|| Nacele
`Wing
`ae
`
`
`
`
`Generator,
`Gear Box
`
`Darrieus
`VAWT
`
`Rotor
`blades
`
`i ih ;
`
`Upwin
`HAWT
`
`SHEER
`
`Downwind
`HAWT
`
`(a)
`
`(b)
`
`(c)
`
`Figure 6.4 Horizontal axis wind turbines (HAWT) are either upwind machines (a) of
`downwind machines (b). Vertical axis wind turbines (VAWT)accept the wind from any
`direction (c).
`
`
`
`
`
`

`

`336
`
`WIND POWER SYSTEMS
`
`
`
`
`
`Powerdelivered(kW)
`
`500
`
`400
`
`100
`
`300
`
`200
`
`Wind speed (m/s)
`
`Figure 6.20 Example of the impact that a three-step rotational speed adjustment has
`on delivered power. For winds below 7.5 m/s, 20 rpm is best; between 7.5 and 11 m/s,
`30 rpm is best; and above 11 m/s, 40 rpm is best.
`
`
`
`
`
`
`
`
`
`shows the impact of varying rotor speed from 20 to 30 to 40 rpm for a 30-m
`rotor with efficiency given in Fig. 6.19, along with an assumed gear and generator
`efficiency of 70%.
`_ While blade efficiency benefits from adjustments in speed as illustrated in
`Figs. 6.19: and 6.20, the generator may need to spin at a fixed rate in order to
`deliver current and voltage in phase with the grid that it is feeding. So, for
`grid-connected turbines, the challenge is to design machines that can somehow
`accommodate variable rotor speed and somewhat fixed generator speed—or at
`least attempt to do so. If the wind turbine is not grid-connected, the generator
`electrical output can be allowed to vary in frequency (usually it is converted to _
`dc), so this dilemma isn’t a problem.
`—
`
`
`
`
`
`Induction generators spin at a frequency that is largely controlled by the number
`of poles. A two-pole, 60-Hz generator rotates at very close to 3600 rpm; with
`four poles it rotates at close to 1800 rpm; and so on. If we could change the
`
`number of poles, we could allow the wind turbine to have several operating
`speeds, approximating the performance shown in Figs. 6.19 and 6.20. A key f
`
`this approach is that as far as the rotor is concerned, the number ofpoles it
`
`the stator of an induction generator is irrelevant. That is, the stator can have
`external connections that switch the number of poles from one value to anotbet
`
`without needing any change in the rotor. This approach is common in household
`appliance motors such as those used in washing machines and exhaust fans
`give two- or three-speed operation.
`
`6.7.2 Pole-Changing Induction Generators
`
`
`
`

`

`(cid:14)(cid:12)(cid:5)(cid:5)(cid:4)(cid:19)(cid:3)(cid:11)(cid:10)(cid:15)(cid:13)(cid:11)(cid:8)(cid:19)(cid:6)(cid:11)(cid:13)(cid:19)(cid:9)(cid:2)(cid:7)(cid:9)(cid:16)(cid:9)(cid:19)(cid:12)(cid:11)(cid:17)(cid:5)(cid:13)(cid:19)
`SPEED CONTROL FOR MAXIMUM POWER
`
`(cid:1)(cid:1)(cid:18)(cid:19)
`33)
`
`(cid:7)(cid:2)(cid:9)(cid:2)(cid:4)(cid:35) (cid:14)(cid:32)(cid:24)(cid:31)(cid:22)(cid:28)(cid:23)(cid:21)(cid:35)(cid:12)(cid:21)(cid:17)(cid:29)(cid:18)(cid:27)(cid:33)(cid:21)(cid:30)(cid:35)
`6.7.3 Multiple Gearboxes
`(cid:33)(cid:95)(cid:84)(cid:51)(cid:134) (cid:123)(cid:74)(cid:90)(cid:45)(cid:134) (cid:113)(cid:120)(cid:101)(cid:39)(cid:74)(cid:90)(cid:51)(cid:112)(cid:134) (cid:68)(cid:38)(cid:121)(cid:51)(cid:134) (cid:113)(cid:123)(cid:95)(cid:134) (cid:67)(cid:51)(cid:38)(cid:102)(cid:39)(cid:95)(cid:126)(cid:51)(cid:112)(cid:134) (cid:123)(cid:74)(cid:113)(cid:68)(cid:134) (cid:112)(cid:51)(cid:97)(cid:38)(cid:102)(cid:38)(cid:113)(cid:51)(cid:134) (cid:67)(cid:51)(cid:90)(cid:51)(cid:102)(cid:38)(cid:113)(cid:95)(cid:102)(cid:112)(cid:134) (cid:38)(cid:113)(cid:113)(cid:38)(cid:40)(cid:68)(cid:51)(cid:45)(cid:134) (cid:113)(cid:95)(cid:134)
`Some wind turbines have two gearboxes with separate generators attached to
`(cid:51)(cid:38)(cid:40)(cid:68)(cid:3)(cid:134)(cid:67)(cid:74)(cid:121)(cid:74)(cid:90)(cid:67)(cid:134)(cid:38)(cid:134)(cid:83)(cid:95)(cid:123)(cid:5)(cid:123)(cid:74)(cid:90)(cid:45)(cid:6)(cid:112)(cid:97)(cid:51)(cid:51)(cid:45)(cid:134)(cid:67)(cid:51)(cid:38)(cid:102)(cid:134)(cid:102)(cid:38)(cid:113)(cid:74)(cid:95)(cid:134)(cid:38)(cid:90)(cid:45)(cid:134)(cid:67)(cid:51)(cid:90)(cid:51)(cid:102)(cid:38)(cid:113)(cid:95)(cid:102)(cid:134)(cid:97)(cid:83)(cid:118)(cid:112)(cid:134)(cid:38)(cid:134)(cid:68)(cid:74)(cid:67)(cid:68)(cid:6)(cid:123)(cid:74)(cid:90)(cid:45)(cid:6)(cid:112)(cid:97)(cid:51)(cid:51)(cid:45)(cid:134)
`each, giving a low-wind-speed gear ratio and generator plus a high-wind-speed
`(cid:67)(cid:51)(cid:38)(cid:102)(cid:134)(cid:102)(cid:38)(cid:113)(cid:74)(cid:95)(cid:134)(cid:38)(cid:90)(cid:45)(cid:134)(cid:67)(cid:51)(cid:90)(cid:51)(cid:102)(cid:38)(cid:113)(cid:95)(cid:102)(cid:11)(cid:134)
`gear ratio and generator.
`
`(cid:7)(cid:3)(cid:9)(cid:2)(cid:5)(cid:35) (cid:16)(cid:17)(cid:29)(cid:22)(cid:17)(cid:18)(cid:24)(cid:21)(cid:1)(cid:15)(cid:24)(cid:22)(cid:28)(cid:35)(cid:13)(cid:26)(cid:20)(cid:32)(cid:19)(cid:31)(cid:22)(cid:27)(cid:26)(cid:35)(cid:12)(cid:21)(cid:26)(cid:21)(cid:29)(cid:17)(cid:31)(cid:27)(cid:29)(cid:30)(cid:35)
`_ 6.7.4 Variable-Slip Induction Generators
`(cid:22)(cid:134)(cid:90)(cid:95)(cid:109)(cid:38)(cid:83)(cid:134) (cid:74)(cid:90)(cid:45)(cid:118)(cid:40)(cid:113)(cid:74)(cid:95)(cid:90)(cid:134) (cid:67)(cid:51)(cid:90)(cid:51)(cid:102)(cid:38)(cid:113)(cid:95)(cid:102)(cid:134)(cid:84)(cid:38)(cid:74)(cid:90)(cid:113)(cid:38)(cid:74)(cid:90)(cid:112)(cid:134)(cid:74)(cid:113)(cid:112)(cid:134) (cid:112)(cid:97)(cid:51)(cid:51)(cid:45)(cid:134)(cid:123)(cid:74)(cid:113)(cid:68)(cid:74)(cid:90)(cid:134)(cid:38)(cid:39)(cid:95)(cid:118)(cid:113)(cid:134) (cid:28)(cid:1)(cid:134) (cid:95)(cid:58)(cid:134) (cid:113)(cid:68)(cid:51)(cid:134) (cid:112)(cid:127)(cid:90)(cid:130)
`A normal induction generator maintains its speed within about 1% of the syn-
`(cid:40)(cid:68)(cid:102)(cid:95)(cid:90)(cid:95)(cid:118)(cid:112)(cid:134)(cid:112)(cid:97)(cid:51)(cid:51)(cid:45)(cid:10)(cid:134) (cid:22)(cid:112)(cid:134)(cid:74)(cid:113)(cid:134)(cid:113)(cid:118)(cid:110)(cid:112)(cid:134)(cid:95)(cid:118)(cid:113)(cid:3)(cid:134) (cid:113)(cid:68)(cid:51)(cid:134)(cid:112)(cid:83)(cid:74)(cid:97)(cid:134)(cid:74)(cid:90)(cid:134)(cid:112)(cid:118)(cid:40)(cid:68)(cid:134)(cid:67)(cid:51)(cid:90)(cid:51)(cid:102)(cid:38)(cid:113)(cid:95)(cid:102)(cid:112)(cid:134)(cid:74)(cid:112)(cid:134)(cid:38)(cid:134)(cid:60)(cid:120)(cid:90)(cid:40)(cid:113)(cid:74)(cid:95)(cid:90)(cid:134)(cid:95)(cid:58)(cid:134)(cid:113)(cid:68)(cid:51)(cid:134)
`__ chronousspeed.Asit turns out, the slip in such generators is a function of the
`(cid:45)(cid:54)(cid:134)(cid:102)(cid:51)(cid:112)(cid:74)(cid:112)(cid:113)(cid:38)(cid:90)(cid:40)(cid:51)(cid:134)(cid:74)(cid:90)(cid:134)(cid:113)(cid:68)(cid:51)(cid:134)(cid:102)(cid:95)(cid:113)(cid:95)(cid:102)(cid:134)(cid:40)(cid:95)(cid:90)(cid:45)(cid:118)(cid:40)(cid:113)(cid:95)(cid:102)(cid:112)(cid:11)(cid:134)(cid:23)(cid:127)(cid:134)(cid:97)(cid:118)(cid:102)(cid:97)(cid:95)(cid:112)(cid:51)(cid:83)(cid:127)(cid:134)(cid:38)(cid:45)(cid:45)(cid:74)(cid:90)(cid:67)(cid:134)(cid:121)(cid:38)(cid:102)(cid:74)(cid:38)(cid:39)(cid:83)(cid:51)(cid:134)(cid:102)(cid:51)(cid:112)(cid:74)(cid:112)(cid:113)(cid:38)(cid:90)(cid:40)(cid:51)(cid:134)(cid:113)(cid:95)(cid:134)
`dc resistance in the rotor conductors. By purposely adding variable resistance to
`(cid:113)(cid:68)(cid:51)(cid:134)(cid:102)(cid:95)(cid:113)(cid:95)(cid:102)(cid:3)(cid:134)(cid:113)(cid:68)(cid:51)(cid:134)(cid:38)(cid:88)(cid:95)(cid:118)(cid:90)(cid:113)(cid:134) (cid:95)(cid:58)(cid:134)(cid:112)(cid:83)(cid:74)(cid:97)(cid:134) (cid:40)(cid:38)(cid:90)(cid:134) (cid:102)(cid:38)(cid:90)(cid:67)(cid:51)(cid:134) (cid:118)(cid:97)(cid:134) (cid:113)(cid:95)(cid:134)(cid:38)(cid:102)(cid:95)(cid:118)(cid:90)(cid:45)(cid:134)(cid:15)(cid:14)(cid:1)(cid:134) (cid:95)(cid:102)(cid:134) (cid:112)(cid:95)(cid:3)(cid:134) (cid:123)(cid:68)(cid:74)(cid:40)(cid:68)(cid:134)(cid:4)(cid:123)(cid:95)(cid:118)(cid:83)(cid:45)(cid:134)
`the rotor, the amount of slip can range up to around 10% or so, which would
`(cid:85)(cid:51)(cid:38)(cid:90)(cid:3)(cid:134)(cid:63)(cid:102)(cid:134)(cid:51)(cid:126)(cid:38)(cid:84)(cid:97)(cid:83)(cid:51)(cid:3)(cid:134)(cid:113)(cid:68)(cid:38)(cid:113)(cid:134)(cid:38)(cid:134)(cid:63)(cid:118)(cid:102)(cid:7)(cid:97)(cid:95)(cid:83)(cid:51)(cid:3)(cid:134)(cid:15)(cid:21)(cid:14)(cid:14)(cid:8)(cid:111)(cid:84)(cid:134)(cid:84)(cid:38)(cid:40)(cid:68)(cid:74)(cid:90)(cid:51)(cid:134)(cid:40)(cid:95)(cid:118)(cid:83)(cid:45)(cid:134)(cid:95)(cid:97)(cid:51)(cid:102)(cid:38)(cid:113)(cid:51)(cid:134)(cid:38)(cid:90)(cid:127)(cid:123)(cid:68)(cid:51)(cid:102)(cid:51)(cid:132)(cid:134)
`mean, for example, that a four-pole, 1800-rpm machine could operate anywhere
`(cid:64)(cid:95)(cid:84)(cid:134) (cid:38)(cid:39)(cid:95)(cid:118)(cid:113)(cid:134) (cid:15)(cid:21)(cid:14)(cid:14)(cid:134) (cid:113)(cid:95)(cid:134) (cid:18)(cid:14)(cid:14)(cid:14)(cid:134)(cid:111)(cid:84)(cid:10)(cid:134) (cid:32)(cid:90)(cid:51)(cid:134) (cid:123)(cid:38)(cid:127)(cid:134) (cid:113)(cid:95)(cid:134) (cid:97)(cid:102)(cid:95)(cid:121)(cid:74)(cid:45)(cid:51)(cid:134) (cid:113)(cid:68)(cid:74)(cid:112)(cid:134)(cid:40)(cid:38)(cid:97)(cid:38)(cid:39)(cid:74)(cid:83)(cid:74)(cid:113)(cid:127)(cid:134) (cid:74)(cid:112)(cid:134) (cid:113)(cid:95)(cid:134) (cid:68)(cid:38)(cid:121)(cid:51)(cid:134)
`_ from about 1800 to 2000 rpm. One wayto provide this capability is to have
`(cid:38)(cid:45)(cid:81)(cid:118)(cid:112)(cid:113)(cid:38)(cid:39)(cid:83)(cid:51)(cid:134) (cid:102)(cid:51)(cid:112)(cid:74)(cid:112)(cid:113)(cid:95)(cid:102)(cid:112)(cid:134) (cid:51)(cid:126)(cid:113)(cid:51)(cid:110)(cid:38)(cid:83)(cid:134) (cid:113)(cid:95)(cid:134) (cid:113)(cid:68)(cid:52)(cid:134) (cid:67)(cid:51)(cid:90)(cid:51)(cid:102)(cid:38)(cid:113)(cid:95)(cid:102)(cid:3)(cid:134) (cid:39)(cid:118)(cid:113)(cid:134) (cid:113)(cid:68)(cid:51)(cid:134) (cid:113)(cid:102)(cid:38)(cid:45)(cid:51)(cid:6)(cid:95)(cid:61)(cid:134)(cid:74)(cid:112)(cid:134) (cid:113)(cid:68)(cid:38)(cid:113)(cid:134) (cid:90)(cid:95)(cid:123)(cid:134) (cid:38)(cid:90)(cid:134)
`adjustable resistors external to the generator, but the trade-off is that now an
`(cid:51)(cid:83)(cid:51)(cid:40)(cid:113)(cid:102)(cid:74)(cid:40)(cid:38)(cid:83)(cid:134) (cid:40)(cid:95)(cid:90)(cid:90)(cid:51)(cid:40)(cid:113)(cid:74)(cid:95)(cid:90)(cid:134) (cid:74)(cid:112)(cid:134)(cid:90)(cid:51)(cid:51)(cid:45)(cid:51)(cid:45)(cid:134)(cid:39)(cid:51)(cid:113)(cid:123)(cid:51)(cid:51)(cid:90)(cid:134) (cid:113)(cid:68)(cid:51)(cid:134) (cid:102)(cid:95)(cid:113)(cid:95)(cid:102)(cid:134) (cid:38)(cid:90)(cid:45)(cid:134)(cid:102)(cid:51)(cid:112)(cid:74)(cid:112)(cid:113)(cid:95)(cid:102)(cid:112)(cid:11)(cid:134)(cid:34)(cid:68)(cid:38)(cid:113)(cid:134)(cid:40)(cid:38)(cid:90)(cid:134)(cid:84)(cid:51)(cid:38)(cid:90)(cid:134)
`_.electrical connection is needed between the rotor and resistors. That can mean
`(cid:38)(cid:39)(cid:38)(cid:90)(cid:45)(cid:95)(cid:90)(cid:74)(cid:90)(cid:67)(cid:134)(cid:113)(cid:68)(cid:51)(cid:134)(cid:51)(cid:83)(cid:51)(cid:67)(cid:38)(cid:90)(cid:113)(cid:134)(cid:40)(cid:38)(cid:67)(cid:51)(cid:134)(cid:102)(cid:95)(cid:113)(cid:95)(cid:102)(cid:134)(cid:40)(cid:95)(cid:90)(cid:40)(cid:51)(cid:97)(cid:113)(cid:134)(cid:38)(cid:90)(cid:45)(cid:134)(cid:74)(cid:90)(cid:112)(cid:113)(cid:51)(cid:38)(cid:45)(cid:134)(cid:118)(cid:112)(cid:74)(cid:90)(cid:67)(cid:134)(cid:38)(cid:134)(cid:123)(cid:95)(cid:118)(cid:90)(cid:45)(cid:134)(cid:102)(cid:95)(cid:113)(cid:95)(cid:102)(cid:134)(cid:123)(cid:74)(cid:113)(cid:68)(cid:134)
`_ abandoning the elegant cage rotor concept and instead using a woundrotor with
`(cid:112)(cid:83)(cid:74)(cid:97)(cid:134)(cid:102)(cid:74)(cid:90)(cid:67)(cid:112)(cid:134) (cid:38)(cid:90)(cid:45)(cid:134) (cid:39)(cid:102)(cid:118)(cid:112)(cid:68)(cid:51)(cid:112)(cid:134) (cid:112)(cid:74)(cid:84)(cid:74)(cid:83)(cid:38)(cid:102)(cid:134) (cid:113)(cid:95)(cid:134) (cid:123)(cid:68)(cid:38)(cid:113)(cid:134) (cid:38)(cid:134) (cid:112)(cid:127)(cid:90)(cid:40)(cid:68)(cid:102)(cid:95)(cid:90)(cid:95)(cid:118)(cid:112)(cid:134) (cid:67)(cid:51)(cid:90)(cid:51)(cid:102)(cid:38)(cid:113)(cid:95)(cid:102)(cid:134) (cid:68)(cid:38)(cid:112)(cid:11)(cid:134) (cid:22)(cid:90)(cid:45)(cid:134) (cid:113)(cid:68)(cid:38)(cid:113)(cid:134)
`co lip rings and brushes similar to what a synchronous generator has. And that
`
`(cid:85)(cid:51)(cid:38)(cid:90)(cid:112)(cid:134)(cid:84)(cid:95)(cid:102)(cid:51)(cid:134)(cid:84)(cid:38)(cid:74)(cid:90)(cid:113)(cid:51)(cid:90)(cid:38)(cid:90)(cid:40)(cid:51)(cid:134)(cid:123)(cid:74)(cid:83)(cid:83)(cid:134)(cid:39)(cid:51)(cid:134)(cid:102)(cid:51)(cid:100)(cid:118)(cid:74)(cid:102)(cid:51)(cid:45)(cid:12)(cid:134)
`_ means more maintenance will be required.
`(cid:22)(cid:90)(cid:95)(cid:113)(cid:71)(cid:51)(cid:102)(cid:134)(cid:123)(cid:38)(cid:127)(cid:134)(cid:113)(cid:95)(cid:134)(cid:97)(cid:102)(cid:95)(cid:121)(cid:74)(cid:45)(cid:51)(cid:134)(cid:121)(cid:38)(cid:102)(cid:74)(cid:38)(cid:39)(cid:83)(cid:51)(cid:134)(cid:102)(cid:51)(cid:112)(cid:74)(cid:112)(cid:113)(cid:38)(cid:90)(cid:40)(cid:51)(cid:134)(cid:63)(cid:102)(cid:134)(cid:113)(cid:68)(cid:51)(cid:134)(cid:102)(cid:95)(cid:113)(cid:95)(cid:102)(cid:134)(cid:74)(cid:112)(cid:134)(cid:113)(cid:95)(cid:134)(cid:97)(cid:68)(cid:127)(cid:112)(cid:74)(cid:40)(cid:38)(cid:83)(cid:83)(cid:127)(cid:134)(cid:84)(cid:95)(cid:118)(cid:90)(cid:113)(cid:134)
`_ Another wayto provide variable resistance for the rotor is to physically mount
`
`(cid:113)(cid:69)(cid:51)(cid:134)(cid:102)(cid:51)(cid:112)(cid:74)(cid:112)(cid:113)(cid:95)(cid:102)(cid:112)(cid:134)(cid:38)(cid:90)(cid:45)(cid:134)(cid:113)(cid:68)(cid:51)(cid:134)(cid:51)(cid:83)(cid:51)(cid:40)(cid:113)(cid:102)(cid:95)(cid:90)(cid:79)(cid:40)(cid:112)(cid:134)(cid:113)(cid:68)(cid:38)(cid:113)(cid:134)(cid:38)(cid:102)(cid:51)(cid:134)(cid:90)(cid:51)(cid:51)(cid:45)(cid:51)(cid:45)(cid:134)(cid:113)(cid:95)(cid:134)(cid:40)(cid:95)(cid:90)(cid:113)(cid:102)(cid:95)(cid:83)(cid:134)(cid:113)(cid:68)(cid:51)(cid:84)(cid:134)(cid:95)(cid:90)(cid:134)(cid:113)(cid:68)(cid:51)(cid:134)(cid:102)(cid:95)(cid:113)(cid:95)(cid:102)(cid:134)(cid:74)(cid:113)(cid:112)(cid:51)(cid:83)(cid:58)(cid:10)(cid:134)
`_the resistors and the electronics that are needed to control them ontherotoritself.
`
`(cid:24)(cid:118)(cid:113)(cid:134)(cid:113)(cid:68)(cid:51)(cid:90)(cid:134)(cid:127)(cid:95)(cid:118)(cid:134)(cid:90)(cid:51)(cid:51)(cid:45)(cid:134)(cid:112)(cid:95)(cid:84)(cid:51)(cid:134)(cid:123)(cid:38)(cid:127)(cid:134)(cid:113)(cid:95)(cid:134)(cid:112)(cid:51)(cid:90)(cid:45)(cid:134)(cid:112)(cid:74)(cid:67)(cid:90)(cid:38)(cid:83)(cid:112)(cid:134)(cid:113)(cid:95)(cid:134)(cid:113)(cid:68)(cid:51)(cid:134)(cid:102)(cid:95)(cid:113)(cid:95)(cid:102)(cid:134)(cid:113)(cid:51)(cid:83)(cid:83)(cid:74)(cid:90)(cid:67)(cid:134)(cid:74)(cid:113)(cid:134)(cid:68)(cid:95)(cid:123)(cid:134)(cid:84)(cid:118)(cid:40)(cid:68)(cid:134)(cid:112)(cid:83)(cid:74)(cid:97)(cid:134)
`_ But then you need some wayto sendsignalsto the rotor telling it how muchslip
`(cid:113)(cid:95)(cid:134)(cid:97)(cid:102)(cid:95)(cid:121)(cid:74)(cid:45)(cid:51)(cid:10)(cid:134)(cid:29)(cid:90)(cid:134)(cid:95)(cid:90)(cid:51)(cid:134)(cid:112)(cid:127)(cid:112)(cid:113)(cid:51)(cid:84)(cid:3)(cid:134)(cid:40)(cid:38)(cid:83)(cid:83)(cid:51)(cid:45)(cid:134)(cid:32)(cid:97)(cid:113)(cid:74)(cid:134)(cid:33)(cid:83)(cid:74)(cid:97)(cid:1)(cid:3)(cid:134) (cid:38)(cid:9

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket