throbber
Statistics Glossary
`
`http://www.stats.gla.ac.uk/steps/glossary/index.html
`
`Main Contents
`
`Alphabetical index of all entries
`
`Basic Definitions
`Presenting Data
`Sampling
`Probability
`Random Variables &
`Probability Distributions
`Confidence Intervals
`
`Hypothesis Testing
`Paired Data, Correlation &
`Regression
`Design of Experiments & ANOVA
`Categorical Data
`Nonparametric Methods
`Time Series Data
`
`STEPS Glossary Web version revised and updated Sep 97 by Stuart G. Young.
`Download the free STEPS software from the STEPS Web site
`
`
`PAGE 1 OF 6
`
`SONOS EXHIBIT 1018
`IPR of U.S. Pat. No. 8,942,252
`
`

`

`Statistics Glossary - time series data
`
`http://www.stats.gla.ac.uk/steps/glossary/time_series.html
`
`Time series data
`
`Time Series
`Trend Component
`Cyclical Component
`Seasonal Component
`Irregular Component
`Smoothing
`
`Exponential Smoothing
`Moving Average Smoothing
`Running Medians Smoothing
`Differencing
`Autocorrelation
`Extrapolation
`
`Main Contents page | Index of all entries
`
`Time Series
`
`A time series is a sequence of observations which are ordered in time (or space). If
`observations are made on some phenomenon throughout time, it is most sensible to
`display the data in the order in which they arose, particularly since successive
`observations will probably be dependent. Time series are best displayed in a scatter
`plot. The series value X is plotted on the vertical axis and time t on the horizontal axis.
`Time is called the independent variable (in this case however, something over which
`you have little control). There are two kinds of time series data:
`1.
`Continuous, where we have an observation at every instant of time, e.g. lie
`detectors, electrocardiograms. We denote this using observation X at time t,
`X(t).
`Discrete, where we have an observation at (usually regularly) spaced intervals.
`We denote this as Xt.
`Examples
`
`2.
`
`
`PAGE 2 OF 6
`
`SONOS EXHIBIT 1018
`IPR of U.S. Pat. No. 8,942,252
`
`

`

`Statistics Glossary - time series data
`
`http://www.stats.gla.ac.uk/steps/glossary/time_series.html
`
`Economics - weekly share prices, monthly profits
`Meteorology - daily rainfall, wind speed, temperature
`Sociology - crime figures (number of arrests, etc), employment figures
`
`Trend Component
`
`We want to increase our understanding of a time series by picking out its main
`features. One of these main features is the trend component. Descriptive techniques
`may be extended to forecast (predict) future values.
`Trend is a long term movement in a time series. It is the underlying direction (an
`upward or downward tendency) and rate of change in a time series, when allowance
`has been made for the other components.
`A simple way of detecting trend in seasonal data is to take averages over a certain
`period. If these averages change with time we can say that there is evidence of a
`trend in the series. There are also more formal tests to enable detection of trend in
`time series.
`It can be helpful to model trend using straight lines, polynomials etc.
`See also time series.
`See also cyclical component.
`See also seasonal component.
`See also irregular component.
`
`Cyclical Component
`
`We want to increase our understanding of a time series by picking out its main
`features. One of these main features is the cyclical component. Descriptive
`techniques may be extended to forecast (predict) future values.
`
`
`PAGE 3 OF 6
`
`SONOS EXHIBIT 1018
`IPR of U.S. Pat. No. 8,942,252
`
`

`

`Statistics Glossary - time series data
`
`http://www.stats.gla.ac.uk/steps/glossary/time_series.html
`
`In weekly or monthly data, the cyclical component describes any regular fluctuations.
`It is a non-seasonal component which varies in a recognisable cycle.
`See also time series.
`See also trend component.
`See also seasonal component.
`See also irregular component.
`
`Seasonal Component
`
`We want to increase our understanding of a time series by picking out its main
`features. One of these main features is the seasonal component. Descriptive
`techniques may be extended to forecast (predict) future values.
`In weekly or monthly data, the seasonal component, often referred to as seasonality,
`is the component of variation in a time series which is dependent on the time of year.
`It describes any regular fluctuations with a period of less than one year. For example,
`the costs of various types of fruits and vegetables, unemployment figures and
`average daily rainfall, all show marked seasonal variation.
`We are interested in comparing the seasonal effects within the years, from year to
`year; removing seasonal effects so that the time series is easier to cope with; and,
`also interested in adjusting a series for seasonal effects using various models.
`See also time series.
`See also trend component.
`See also cyclical component.
`See also irregular component.
`
`Irregular Component
`
`We want to increase our understanding of a time series by picking out its main
`features. One of these main features is the irregular component (or 'noise').
`Descriptive techniques may be extended to forecast (predict) future values.
`The irregular component is that left over when the other components of the series
`(trend, seasonal and cyclical) have been accounted for.
`See also time series.
`See also trend component.
`See also cyclical component.
`See also seasonal component.
`
`
`PAGE 4 OF 6
`
`SONOS EXHIBIT 1018
`IPR of U.S. Pat. No. 8,942,252
`
`

`

`Statistics Glossary - time series data
`
`http://www.stats.gla.ac.uk/steps/glossary/time_series.html
`
`Smoothing
`
`Smoothing techniques are used to reduce irregularities (random fluctuations) in time
`series data. They provide a clearer view of the true underlying behaviour of the
`series.
`In some time series, seasonal variation is so strong it obscures any trends or cycles
`which are very important for the understanding of the process being observed.
`Smoothing can remove seasonality and makes long term fluctuations in the series
`stand out more clearly.
`The most common type of smoothing technique is moving average smoothing
`although others do exist. Since the type of seasonality will vary from series to series,
`so must the type of smoothing.
`
`Exponential Smoothing
`
`Exponential smoothing is a smoothing technique used to reduce irregularities
`(random fluctuations) in time series data, thus providing a clearer view of the true
`underlying behaviour of the series. It also provides an effective means of predicting
`future values of the time series (forecasting).
`
`Moving Average Smoothing
`
`A moving average is a form of average which has been adjusted to allow for seasonal
`or cyclical components of a time series. Moving average smoothing is a smoothing
`technique used to make the long term trends of a time series clearer.
`When a variable, like the number of unemployed, or the cost of strawberries, is
`graphed against time, there are likely to be considerable seasonal or cyclical
`components in the variation. These may make it difficult to see the underlying trend.
`These components can be eliminated by taking a suitable moving average.
`By reducing random fluctuations, moving average smoothing makes long term trends
`clearer.
`
`Running Medians Smoothing
`
`Running medians smoothing is a smoothing technique analogous to that used for
`moving averages. The purpose of the technique is the same, to make a trend clearer
`by reducing the effects of other fluctuations.
`
`
`PAGE 5 OF 6
`
`SONOS EXHIBIT 1018
`IPR of U.S. Pat. No. 8,942,252
`
`

`

`Statistics Glossary - time series data
`
`http://www.stats.gla.ac.uk/steps/glossary/time_series.html
`
`Differencing
`
`Differencing is a popular and effective method of removing trend from a time series.
`This provides a clearer view of the true underlying behaviour of the series.
`
`Autocorrelation
`
`Autocorrelation is the correlation (relationship) between members of a time series of
`observations, such as weekly share prices or interest rates, and the same values at a
`fixed time interval later.
`More technically, autocorrelation occurs when residual error terms from observations
`of the same variable at different times are correlated (related).
`
`Extrapolation
`
`Extrapolation is when the value of a variable is estimated at times which have not yet
`been observed. This estimate may be reasonably reliable for short times into the
`future, but for longer times, the estimate is liable to become less accurate.
`Example
`Suppose Angela was 1.20m tall on January 1st 1975, and 1.40m tall on January 1st
`1976. By extrapolation, it could be estimated that by January 1st 1977 she would
`have grown another 0.20m to be 1.60m tall. This however assumes that she
`continued to grow at the same rate. This must eventually become a false assumption,
`otherwise by January 1st 1980, she would be a giantess.
`
`Top of page | Main Contents page
`
`PAGE 6 OF 6
`
`SONOS EXHIBIT 1018
`IPR of U.S. Pat. No. 8,942,252
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket