throbber
POINT SUR ...
`© John Libbey Eurotext
`
`La rapamycine et Ie CCI-779
`
`Rapamycin and CCI-779
`
`Bull Cancer 1999; 86 (10): 808·11
`
`Jerome ALExANDRE
`~ric RAYMOND
`Jean-Pierre ARMAND
`
`Dc!partement de mc!decine. Institut
`Gustave-Roussy. 94805 Villejuif
`Cedcx.
`
`Article rer;u Ie 15 juin 1999, accepte apces
`revision Ie 9 aout 1999.
`Tires a pact: J. Alexandre.
`
`Resume - La rapamycine (sirolimus) est un macrolide proche de la cidosporine
`possedant des proprietes immunosuppressives et une activite antiproliferative in
`vitro sur plusieurs lignees tumorales humaines et sur des modeIes de tumeurs trans(cid:173)
`plan tees. La kinase cytoplasmique mTOR. qui contrDIe l'iniciation de Ia traduction
`des ARN messagers en reponse a des facteurs de croissance, est Ia principale cible
`cellulaire connue de Ia rapamycine. Au cours des essais diniques, la rapamycine uti(cid:173)
`Iisee par voie orale comme agent immunosuppresseur ne presentait pas de toxicite
`!imitanre et etait responsable uniquement de thrombopenies et d'hyperlipidemies
`asymptomatiques. Dans des modeIes murins, une meilleure activite antitumorale
`etait observee en utilisant une administration parenterale. Le CCI-779, un analogue
`con~u pour ulle administration intraveineuse, possede chez Ia souris une activite
`tumoraIe sans propriete immunosuppressive significative et fait actuellement I'objet
`d' essais de phase I chez l'homme. A
`Mots des: rapamycine, mTOR, CCI·779.
`
`Abstract - Rapamycin (sirolimUJ) is a macrolide, related to eydosporine with immuno(cid:173)
`suppressive properties and antiproliferative activity in various human tumor cells lines
`and tumor xenograft models. The eytosolic kinase mTOR which controls the initiation
`of the translation of messenger RNA is the main known target of rapamycin. During cli(cid:173)
`nical studies, rapamycin given by oral route as immunosuppressant did not show dose(cid:173)
`limited toxicity and only asymptomatic thrombopenia and hyperlipemia were observed.
`In murine models. best antitumoral activity was observed using parental routes. CCI-
`779. an analog formulated for intravenous use, has antitumor activity without signifi(cid:173)
`cant immurlosuppressive property in mice and is currently in phase I trials in man. A
`Key words: rapamycin, mTOR, CCf·779.
`
`La rapamycine (figure 1) ou sirolimus est un macrolide
`
`produit par Streptomyces hygroscopicus, proche de la
`cic/osporine et du FK506 (tacrolimus). Elle fut initiale(cid:173)
`ment identifiee eomme un agent antifongique il ya mainte·
`nant trente ans [1]. Secondairement, elle a surtout ete deve(cid:173)
`loppee comme un agent immunosuppresseur (Rapamune'8>,
`Wyeth~Leder/e). Plusieurs essais c1iniques ont montre son
`interet dans Ie traitement du rejet de greffe d'organe (2]. Ses
`proprietes antitumorales sur differents modelescellulaires
`sont egalement connues depuis plusieurs annees, mais n'ont
`jamais fait f'objet de publications en C/inique humaine (3].
`L'originalite de fa rapamycine tient a son mecanisme d'ae(cid:173)
`tion. Elle inhibe specifiquement une proteine kinase eyto(cid:173)
`plasmique, mTOR (pour mammalian target of rapamycin)
`qui intervient dans une voie de signalisation mitogenique
`reglant I'initiation de la traduction (4].
`L'interet pour la rapamycine a recemment etc relance par
`Ie developpement d'ana'logues tels que Ie ((1-779
`(figure 1) temoignant, sur des modeles preC/iniques, d'une
`
`___ 808
`
`aetivite antiproliferative et d'un faible effet immunosup(cid:173)
`presseur [5].
`
`Figure 1. La rapamycine et Ie CCI·779.
`
`West-Ward Exhibit 1030
`Alexandre 1999
`Page 001
`
`

`

`La rapamycine
`
`Activite antitumorale
`
`/n vitro, la rapamycine inhibe la croissance de plusieurs
`lignees tumorales humaines, en particulier d'osteosarcome
`[6]' de rhabdomyosarcomes Rhl et Rh30 [7), de cancers
`bronchiques a petites cellules H69, H345 et H51 0 [S]' d'he(cid:173)
`patome H4 (9) et de cancer du sein hormonodependant
`MCF7 [10). La gamme des concentrations efficaces va de
`0,3 a 50 nM. Dans plusieurs de ces lignees, il a ete montre
`que la rapamycine bloque les cellules en phase Gl du cyele
`cellulaire. Cet effet cytostatique a ete confirme in vivo sur
`des modeles de xenogreffes de tumeurs humaines chez la
`souris nude [3). Un effet proapoptotique a egalement ete
`observe sur des lignees de rhabdomyosarcome cultivees
`sans facteur de croissance (11) et en association avec Ie cis(cid:173)
`platine sur une I ignee de carcinome ovarien [12).
`
`Mecanisme d'action moltkulaire
`
`La rapamycine peut etre consideree comme une « pro(cid:173)
`drogue» dans la mesure OU son action intracellulaire neces(cid:173)
`site sa fixation a une immunophiline denommee FKBP12
`(FKS06 binding protein, car elle fixe egalement Ie FK506)
`[13). Le complexe ainsi forme est tres stable (temps de
`demi-dissociation de 17,5 h) et autorise un effet biologique
`prolonge de la rapamycine (7 jours apres une heure d'expo(cid:173)
`sition in vitro) [11 J, suggerant que celle-ci puisse etre admi(cid:173)
`nistree de fa~on discontinue.
`La seule cible actuellement connue du complexe rapamy(cid:173)
`cinelFKBP12 est la proteine mTOR. Celle-ci est une serine(cid:173)
`threonine kinase de la famille des phosphatidyl inositol
`kinases [4). Elle est activee par un grand nombre de facteurs
`de croissance, en particulier les interleukines2, 4 et 6, I'in(cid:173)
`suline, et J'insulin-like growth factor 1. En reponse a ces sti(cid:173)
`muli mitogeniques, mTOR va activer I'initiation de la tra(cid:173)
`duction d'un grand nombre d' ARNm par deux voies
`paralleles [4, 14) (figure2):
`- Ie facteur d'initiation de la traduction 4E (eIF4E) est a I'etat
`basal sequestre et inhibe par la proteine 4E-BP1. mTOR, en
`phosphoryl ant cette derniere, va permettre la liberation de
`elF4E et I'initiation de la traduction. Les proteines ainsi syn(cid:173)
`thetisees sont supposees induire, directement ou indirecte(cid:173)
`ment, la transition GlIS;
`- mTOR active la p70/S6 kinase qui active alors a son tour
`la proteine ribosomique 56. Sous sa forme phosphorylee,
`cette derniere contrale selectivement la traduction d' ARNm
`possedant un domaine riche en pyrimidine a leur
`extremite 5'. Ces ARNm codent pour des proteines riboso(cid:173)
`miqucs et des facteurs d'elongation.
`Les facteurs proteiques actives en amont de mTOR apres
`fixation du facteur de croissance sur son recepteur sont
`moins bien connus. Une isoforme de la pS5/PI3 kinase serait
`en particulier impliquee [15}.
`L'inhibition de la fonction biologique de mTOR par la rapa(cid:173)
`mycine semble jouer un role essentiel dans son action cyto(cid:173)
`statique. Cependant, il reste encore beaucoup a apprendre
`sur, d'une part, les mecanismes exacts par lesquels mTOR
`c.:ontrale la transition G 115 et, d'autre part, d'eventuelles· autres
`cibles cellulaires de la rapamycine. Ainsi, iI a ete recemment
`montre sur des fibroblastes murins 3T3 stimules par du serum
`
`La rapamycine et Ie CCl-779
`
`Recepteur
`
`;1;1
`••
`
`I
`I
`\
`
`--."J.
`
`-::; elF4E:"'~
`.; -. ". '
`4E-BPl
`
`P
`
`P
`
`Initiation de la traduction
`
`Figure 2. Voie de transduction impliquant mTOR. Fc: facteur de
`croissance; PllKase: phosphatidyl inositol 3 kinase; mTOR: mam(cid:173)
`ma/ian target of rapamycin; rapa: rapamycine; FKBP: FKS06 bin(cid:173)
`ding protein; p70/56 Kase : kinase de la proteine ribosomique 56;
`eIF4E: facteur d'initiation eucaryote 4E; 4E-BPl : elF4E binding
`protein.
`
`que la rapamycine diminuait Ie taux de cyeline 01. Cepen(cid:173)
`dant, contrairement a ce que I'on pouvait croire, cela n'etait
`pas dO a un defaut de synthese mais a une degradation acce(cid:173)
`leree de la proteine (16). Sur d'aulres modeles, la rapamycine
`induit I'accumulation de I'inhibiteur de cyeline p27kip1 (17).
`L'action proapoptotique de la rapamycine est egalement
`mal connue. Elle semble dependante de I'inhibition de
`mTOR, mais pas de p53 (11), ni de bel-2 (18).
`Une meilleure connaissance des mecanismes d'action de la
`rapamycine au niveau moleculaire permettrait idealement
`de predire la sensibilite des tumeurs a cette molecule en
`fonction de I'expression ou de la non-expression de tel ou
`tel gene. 1/ a ainsi deja ete montre que des tumeurs surex(cid:173)
`primant c-myc etaient resistantes a la rapamycine [19], de
`meme que celles issues de patients atteints d'ataxie-telan(cid:173)
`giectasie (20). De fat;on interessante, Ie gene ATM, deficient
`au cours de I'ataxie-telangiectasie, code pour une phospha(cid:173)
`tidyl inositol kinase proche de mTOR.
`
`Experience clinique
`
`Elle concerne essentiellement I'utilisation de la rapamycine
`comme agent immunosuppresseur, seule ou en association
`
`West-Ward Exhibit 1030
`Alexandre 1999
`Page 002
`
`

`

`J. Alexandre et al.
`
`avec la cielosporine. La rapamycine est administree par
`voie orale et est metabolisee par Ie cytochrome P450 3A en
`I?lusieurs metabolites inactifs (21).
`A la dose recommandee pour les phases II de 7 mglm2/j, la
`toxicite porte essentiellement sur des parametres biologiques
`[2]. II existe une toxicite hematologique dose-dependante
`predominante sur les plaquettes, et generalement asympto(cid:173)
`matique et ne mkessitant pas de transfusion. Cette hemato(cid:173)
`toxicite est d'origine centrale et pourrait etre liee a I'inhibition
`par la rapamycine des signaux mitogenes transmis par les
`cytokines. La rapamycine augmente Ie taux de triglycerides et
`de cholesterol parfois de fa~on considerable. Cette hyperlipe(cid:173)
`mie pourrait surtout poser des problemes lors d'une adminis(cid:173)
`tration au long cours du fait de Vaugmentation du risque car(cid:173)
`diovasculaire. II n'a jamais ete observe de pancreatite aigue
`liee a I'hypertriglyceridemie, ni d'autre manifestation eli(cid:173)
`nique. Chez ces patients deja lourdement immunodeprimes,
`la rapamycine ne semble pas augmenter Ie risque d'infec(cid:173)
`tions, sauf peut-etre celles liees au virus herpes simplex. Cette
`constatation est a rapprocher du fait que la rapamycine aug(cid:173)
`mente la traduction des ARNm de certains virus (22).
`
`Un nouvel analogue de la rapamycine:
`Ie CCI-779
`
`Dans plusieurs modeles murins, I'action antitumorale de la
`rapamycine est plus importante lorsqu'une administration
`parenterale est utilisee. Cependant, celle-ci est difficilement
`realisable en pratique elinique courante du fait d'une faible
`solubilite de la molecule (5]. Des analogues de la rapamy(cid:173)
`cine ont donc ete developpes dont les proprietes physico-
`
`chimiques permettent une administration par voie intravei(cid:173)
`neuse ·aisee.
`Le CCI-779 est I'un de ces analogues. II presente une actio
`vite cytostatique sur plusieurs modeles de xenogreffes de
`tumeurs humaines a des souris nude, en particulier dans des
`glioblastomes, carcinomes de prostate, du pancreas et du
`sein (23) et des medulloblastomes (24).
`Tout comme la rapamycine, la fixation du CCI-779 a la
`FKBP12 est une etape indispensable a son action (23). II reste
`cependant a determiner si Ie meqnisme d'action du CCI-779
`est entierement superposable a celui de la rapamycine.
`De fat;on interessante, I'activite antitumorale decrite chez la
`souris nude est maintenue pendant 14 jours apres une admi(cid:173)
`nistration quotidienne de 5 jours alors que I'effet immuno(cid:173)
`suppresseur disparait au bout de 24 h (23).
`Des essais therapeutiques de phase I sont en cours en
`France et aux Etats-Unis.
`
`Conclusion
`
`La rapamycine est Ie premier representant d'une nou(cid:173)
`velle classe d'anticancereux au mecanisme d'action tout
`a fait original et au profil de toxitite favorable. Les
`etudes precliniques suggerent pour ces molecules une
`action essentiellement cytostatique. Le CCI-779, premier
`analogue administrable par voie parenterale, fait actuel(cid:173)
`lement I'objet d'essais c1iniques de phase I. Parallele(cid:173)
`ment, une meilleure connaissance des cibles molecu(cid:173)
`laires de la rapamycine et de ses analogues pourrait
`gUider la realisation de futurs essais c1iniques de
`phase II. T
`
`REFERENCES
`
`1. Vezina C. Antimicrobial activity of streptomyces and fungi isolated
`from rapa Nui soil samples. 5th annual m~~ting ofth~ Canadian Sod~ty of
`Chnnotherapy, Toronto, April 16, 1969.
`2. Kahan BD. Rapamycin: personal algorithms for use based on 250 trea(cid:173)
`ted renal allograft recipients. Transplant Proc 1998; 30: 2185-8.
`3. Morris RE. Rapamycins: antifungal, antitumor, antiproliferative, and
`immunosuppressive molecules. Transplant RtII 1992; 6: 39.87.
`4. Thomas G, Hall MN. TOR signalling and control of cell growth.
`Cu" Op CtO Bioi 1997 ; 9: 782-7.
`5. Sausville EA. New agents-noneyroroxics, antiangiogenesis. ASCO Edu(cid:173)
`cational Book 1998: 112-7.
`6. Albers MW, Williams RT, Brown EJ. Tanaka A, Hall FL,
`Schreiber SL. FKBP-rapamycin inhibits a eyelin-dependent kinase activity
`and a eyelin Dl-cdk association in early Gl of an osteosarcoma cell line.
`] Bioi Ch~m 1993; 268: 22825-9.
`7. Dilling MB. Dias P, Shapiro DN, Germain GS. Johnson RK, Hough·
`ton PJ. Rapamycin selectively inhibits the growth of childhood rhabdo(cid:173)
`myosarcoma cells through inhibition of signaling via the type I insulin(cid:173)
`like growth factor receptor. Cancer Rts 1994; 54: 903·7.
`8. Seufferlein T, Rozengurt E. Rapamycin inhibits constitutive p70S6K
`phosphorylation, cell proliferation, and colony formation in small cell
`lung cancer cells. Canm Rts 1996; 56: 3895-7.
`
`9. Price DJ. Grove JR. Calvo V. Avruch J. Bierer BE. Rapamycin-indu(cid:173)
`ced inhibition of the 70-kilodalton S6 protein kinase. Scimu 1992; 257 :
`973-7.
`10. Magge KP. Pryor AD, Marks JR, Iglehart JD. Miron A. Rapamycin
`{sirolimus} blocks estrogen mediated growth of breast cancer cell lines.
`Proc Am Ass Cancer Rts 1999; 40: 636 (absrr. 4197).
`11. Hosoi H, Dilling MB. Shikata T. Liu LN, Shu L, Ashmun RA. Rapa(cid:173)
`mycin causes poorly reversible inhibition of m:rOR and induces p53-
`dependent apoptosis in human rhabdomyosarcoma cells. Canc~r Rts
`1999; 59: 886-94.
`12. Shi Y, Frankel A. Radvanyi LG, Penn LZ. Miller RG. Mills GB.
`Rapamycin enhances apoptosis and increases sensitivity to cisplatin in
`vitro. Cancer Rts 1995; 55: 1982-8.
`13. Sabers CJ. M~in MM. Brunn GJ. Isolation of a protein target of the
`FKBPl2-rapamycin complex in mammalian cells. ] Bioi Chnn 1995.
`270: 815-22.
`14. Beretta L. Grolleau A. La rapamycine: identification d'une nouvelle
`voie de signalisation des facteurs de croissance, reglant Ie debut de la tra(cid:173)
`duction. Midecin~/Jcitnm 1998; 14: 600-2.
`15. Conus NM, Hemmings BA. Pearson RB. Differential regulation by
`calcium reveals distinct signaling requirements for the activation of Akt
`and p70S6K
`• ] Bioi Chtm 1998; 273: 4776-82.
`16. Hashemolhosseini S. Nagamine Y. Morley SJ. Desrivieres S,
`Mercep L, Ferrari S. Rapamycin inhibition of the G 1 to S transition is
`mediated by effects on eyelin D 1 mRNA and protein stabiliry. ] Bioi
`Ch~ 1998; 273: 14424-9.
`
`Q1()
`
`West-Ward Exhibit 1030
`Alexandre 1999
`Page 003
`
`

`

`La rapamycine et Ie CCI-779
`
`17. Nourse j, Firpo E, Flanagan WM, Coars S, Polyak K, Lee MH, ~t al
`Interleukin-2-mediated elimination of the p27kipl cyclin-dependent
`kinase inhibitor prevented by rapamycin. NatuT~ 1994; 372: 570-3.
`18. Veverka KA. Germain GS, Dilling MB. Houghton P]. Overexpres(cid:173)
`sion of bel2 fails to prO[ect rhabdomyosarcoma cells from rapamycin(cid:173)
`induced apoptosis. Proc Am Ass Canc~r Res 1998; 39: 571 (abstr. 3880).
`19. Dilling MB. Hosoi H. Liu LN. Germain GS, Houghton PJ.lntrinsic
`resistance to rapamycin in human tumor cells may correlate with c-myc
`protein levels. Proc Am Ass Canctr R~s 1999; 40: 428 (abstr. 2827).
`20. Beamish H. Williams R, Chen p. Khanna KK. Hobson K, Watters D.
`Rapamycin resistance in ataxia-telangiectasia. Oncogm; 1996; 13: 963-70.
`21. Trepanier OJ. Gallant H, Legan OF, Yarscoff RW. Rapamycin: dis-
`
`tribution, pharmacokinetics and therapeutic range investigations: an
`update. Clin Bioch~ 1998; 31: 345-51.
`22. Beretta L. Svitkin YV. Sonenberg N. Rapamycin stimulates viral pro(cid:173)
`tein synthesis and augmenrs the shutoff of host protein synthesis upon
`picornavirus infection. J Virol 1996; 70: 8993-6.
`23. Gibbons JJ. Discafani C. Peterson R. Hernandez R. Skotnicki J.
`Frost P. The effect of CCI-779. a novel macrolide anti-tumor agent. on
`the growth of human tumor cells in vitro and in nude mouse xenografrs
`in vivo. Proc Am Ass CanuT R~s 1999; 40: 301 (abStr. 2000).
`24. Geoerger B. Kerr K. Janss AJ. Sutton LN. Phillips PC. Rapamycin
`analog CCI-779 inhibirs growth of human medulloblastoma xenografrs.
`Proc Am Ass Can," R~s 1999; 40: 603 (abstr. 3978).
`
`West-Ward Exhibit 1030
`Alexandre 1999
`Page 004
`
`

`

`
`
`
`
`
`
`Rapamycin and CCI-779
`
`
`
`Jérôme ALEXANDRE
`
`Éric RAYMOND
`
`Jean-Pierre ARMAND
`
`
`
`Department of Medicine,
`
`Gustave-Roussy Institute, 94805 Villejuif
`
`Cedex.
`
`
`
`
`
`Article received on June 15, 1999,
`
`accepted after revision
`
`on August 9, 1999.
`
`
`
`Reprints: J. Alexandre.
`
`West-Ward Exhibit 1030
`Alexandre 1999
`Page 005
`
`

`

`
`
`
`
`Rapamycin (Figure 1) or sirolimus is a macrolide produced by Streptomyces hygroscopicus
`
`that is similar to cyclosporine and FK506 (tacrolimus). Now it has been thirty years since it was
`
`initially identified as an antifungal agent [1]. Secondarily, it has been developed as an
`
`immunosuppressant (Rapamune®, Wyeth-Léderlé). Several clinical trials have demonstrated its
`
`usefulness in the treatment of organ graft rejection [2]. Its antitumor properties on different cell
`
`models have also been known for several years, but they have never been the subject of publications
`
`in human clinical medicine [3]. The originality of rapamycin is due to its mechanism of action. It
`
`specifically inhibits a cytoplasmic protein kinase mTOR (mammalian target of rapamycin) which
`
`intervenes in a mitogenic signaling pathway regulating the initiation of translation [4].
`
`
`
`The interest in rapamycin has recently been rekindled by the development of analogs such as
`
`CCI-779 (Figure 1) which have demonstrated an antiproliferative activity and a slight
`
`immunosuppressive effect in preclinical models [5].
`
`
`
`Rapamycin
`
`CCI-779
`
`
`
`Figure 1. Rapamycin and CCI-779.
`
`
`
`West-Ward Exhibit 1030
`Alexandre 1999
`Page 006
`
`

`

`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`
`Rapamycin and CCI-779
`
`
`
`
`
`Rapamycin
`
`Antitumor activity
`
`
`
`In vitro, rapamycin inhibits the growth of several human tumor lines, in particular
`
`osteosarcoma [6], rhabdomyosarcomas Rh1 and Rh30 [7], small-cell bronchial cancers H69, H345
`
`and H510 [8], hepatoma H4 [9] and hormone-dependent breast cancer MCF7 [10]. The range of
`
`effective concentrations is from 0.3 to 50 nM. In several of these lines, it has been shown that
`
`rapamycin blocks the cells in the G1 phase of the cell cycle. This cytostatic effect was confirmed in
`
`vivo on xenograft models of human tumors in nude mice [3]. A proapoptotic effect has also been
`
`observed on rhabdomyosarcoma lines cultured without growth factor [11] and in combination with
`
`cisplatin on an ovarian carcinoma line [12].
`
`
`
`Mechanism of molecular action
`
`
`
`Rapamycin can be considered a "prodrug" to the extent that its intracellular action requires
`
`that it be bound to an immunophilin called FKBP12 (FK506 binding protein, because it also binds
`
`FK506) [13]. The complex so formed is very stable (half-dissociation time of 17.5 h) and allows a
`
`prolonged biological effect of rapamycin (7 days after an hour of exposure in vitro) [11], suggesting
`
`that it can be administered discontinuously.
`
`
`
`The only currently known target of the rapamycin/FKBP12 complex is the protein mTOR.
`
`The latter is a serine-threonine kinase of the family of the phosphatidyl inositol kinases [4]. It is
`
`activated by a large number of growth factors, in particular the interleukins 2, 4 and 6, insulin, and
`
`insulin-like growth factor 1. In response to these mitogenic stimuli, mTOR will activate the initiation
`
`of the translation of a large number of mRNA by two parallel pathways [4, 14] (Figure 2):
`
`West-Ward Exhibit 1030
`Alexandre 1999
`Page 007
`
`

`

`
`
`– the translation initiation factor 4E (elF4E) is sequestered in the basal state and inhibited by
`
`the protein 4E-BP1. mTOR, by phosphorylating the latter, will allow the release of elF4E and the
`
`initiation of the translation. The resulting synthesized proteins are assumed to induce, directly or
`
`indirectly, the G1/S transition;
`
`
`
`– mTOR activates the p70/S6 kinase, which in turn activates the ribosomal protein S6. In its
`
`phosphorylated form, the latter selectively controls the translation of mRNA having a pyrimidine-
`
`rich domain at their 5' end. These mRNA code for ribosomal proteins and elongation factors.
`
`
`
`The protein factors activated upstream of mTOR after the binding of the growth factor to its
`
`receptor are less well known. An isoform of p85/PI3 kinase is thought to be involved in particular
`
`[15].
`
`
`
`The inhibition of the biological function of mTOR by rapamycin seems to play an essential
`
`role in its cytostatic action. However, much remains to be learned about, on the one hand, the exact
`
`mechanisms by which mTOR controls the G1/S transition, and, on the other hand, other possible
`
`target cells of rapamycin. Thus, it has been demonstrated recently on murine fibroblasts 3T3
`
`stimulated with serum that rapamycin decreases the cyclin D1 level. However, in contrast to what
`
`one might believe, this was not due to a synthesis defect, but to an accelerated degradation of the
`
`protein [16]. On other models, rapamycin induces the accumulation of the inhibitor of cyclin P27kip1
`
`[17]. The proapoptotic action of rapamycin is also poorly known. It seems to be dependent on the
`
`inhibition of mTOR, but not of p53 [11] or bcl-2 [18].
`
`
`
`West-Ward Exhibit 1030
`Alexandre 1999
`Page 008
`
`

`

`Receptor
`
`Initiation of the translation
`
`
`
`Figure 2. Translation pathway involving mTOR. Fc: growth factor; Pl3Kase: phosphatidyl inositol 3
`
`kinase; mTOR: mammalian target of rapamycin; rapa: rapamycin; FKBP: FK506 binding protein;
`
`p70/S6Kase: ribosomal protein S6 kinase; elF4E: eukaryotic initiation factor 4E; 4E-BP1: elF4E
`
`binding protein.
`
`
`
`
`
`A better knowledge of the mechanism of action of rapamycin on the molecular level would
`
`ideally make it possible to predict the sensitivity of the tumors to this molecule as a function of the
`
`expression or non-expression of a given gene. Thus, it was demonstrated that c-myc over-expressing
`
`tumors were resistant to rapamycin [19], as was the case for those originating from patients with
`
`ataxia-telangiectasia [20]. Interestingly, the ATM gene, which is deficient in ataxia-telangiectasia,
`
`codes for a phosphatidyl inositol kinase similar to mTOR.
`
`West-Ward Exhibit 1030
`Alexandre 1999
`Page 009
`
`

`

`
`
`Clinical experimentation
`
`
`
`The clinical experimentation relates essentially to the use of rapamycin as
`
`immunosuppressant, alone or in combination with cyclosporine. Rapamycin is administered by the
`
`oral route and is metabolized by cytochrome P450 3A into several inactive metabolites [21].
`
`
`
`At the dose recommended for the phases II of 7 mg/m2/day, the toxicity relates essentially to
`
`biological parameters [2]. Dose-dependent hematological toxicity affecting mainly the platelets
`
`exists and, in general, it is asymptomatic and does not require transfusion. This hematotoxicity is of
`
`central origin and could be associated with the inhibition by rapamycin of the mitogenic signals
`
`transmitted by the cytokines. Rapamycin increases the level of triglycerides and cholesterol,
`
`sometimes considerably. This hyperlipidemia could pose problems during long-term administration
`
`due to the increase in cardiovascular risk. No acute pancreatitis associated with hypertriglyceridemia
`
`or other clinical manifestations have ever been observed. In these already severely immunodepressed
`
`patients, rapamycin does not seem to increase the risk of infections, except perhaps infections
`
`associated with the herpes simplex virus. This observation should be considered in light of the fact
`
`that rapamycin increases the translation of the mRNA of certain viruses [22].
`
` A
`
`
`
` new analog of rapamycin: CCI-779
`
`In several murine models, the antitumor action of rapamycin is greater when a parenteral
`
`administration is used. However, this is difficult to carry out in routine clinical practice due to low
`
`solubility of the molecule [5]. Analogs of rapamycin have therefore been developed, the
`
`physicochemical properties of which allow an easy administration by the intravenous route.
`
`West-Ward Exhibit 1030
`Alexandre 1999
`Page 0010
`
`

`

`
`
`CCI-779 is one of these analogs. It has a cytostatic activity on several models of xenografts
`
`of human tumors in nude mice, in particular in glioblastomas, carcinomas of the prostate, the
`
`pancreas and the breast [23], and medulloblastomas [24].
`
`
`
`As in the case of rapamycin, the binding of CCI-779 to FKBP12 is an indispensable step for
`
`its action [23]. However, it remains to be determined whether the mechanism of action of CCI-779
`
`and that of rapamycin entirely overlap.
`
`
`
`Interestingly, the antitumor activity described in nude mice is maintained for 14 days after
`
`daily administration for 5 days, while the immunosuppressive effect disappears after 24 h [23].
`
`Phase I therapeutic trials are in progress in France and in the United States.
`
`
`
`
`
`Conclusion
`
`
`
`Rapamycin is the first representative of a new class of anticancer agents with an entirely
`
`original mechanism of action and a favorable toxicity profile. The preclinical studies suggest that
`
`these molecules have an essentially cytostatic action. CCI-779, the first analog that can be
`
`administered by the parenteral route, is currently undergoing phase I clinical trials. In parallel, a
`
`better understanding of the molecular targets of rapamycin and of its analogs could guide the
`
`performance of future phase II clinical trials. 
`
`
`
`
`
`West-Ward Exhibit 1030
`Alexandre 1999
`Page 0011
`
`

`

`REFERENCES
`
`
`
`
`
`West-Ward Exhibit 1030
`Alexandre 1999
`Page 0012
`
`

`

`May l l, 2017
`
`Certification
`
`Park IP Translations
`
`TRANSLATOR'S DECLARATION:
`
`I, Francois Lux, hereby declare:
`
`That I possess advanced knowledge of the French and English languages. The
`attached French into English translation has been translated by me and to the
`best of my knowledge and belief, it is a true and accurate translation of the
`article titled "La rapamycine et le CCl-779" in French and "Rapamycin and CCl-
`779" in English, written by Jerome Alexandre, Eric Raymond, and Jean-Pierre
`Armand at the Department of Medicine, Gustave-Roussy Institute, 94805 Villejuif
`Ced ex.
`
`Francois Lux
`
`Project Number: MEGOP _ 1705_004
`
`15 W. 37th Street 8th Floor
`New York, NY 10018
`212.581.8870
`ParklP.com
`
`West-Ward Exhibit 1030
`Alexandre 1999
`Page 0013
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket