throbber
PCT
`INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
`
`WORLD INTELLECTUAL PROPERTY ORGANIZATION
`International Bureau
`
`(51) International Patent Classification 7 :
`A61K 47/10, C07D 498/18, A61K 3J.n15
`
`A2
`
`(11) International Publication Number:
`
`WO 00/33878
`
`(43) International Publication Date:
`
`15 June 2000 (15.06.00)
`
`(21) International Application Number:
`
`PCT/EP99/09521
`
`(22) International Filing Date:
`
`6 December 1999 (06.12.99)
`
`(30) Priority Data:
`9826882.4
`9904934.8
`
`7 December 1998 (07.12.98)
`4 March 1999 (04.03.99)
`
`GB
`GB
`
`(71) Applicant (for all designated States except AT US): NOV AR(cid:173)
`TIS AG [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel
`(CH).
`
`(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
`BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, EE, ES, FI,
`GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
`KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
`MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
`SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US,
`UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS,
`MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ,
`BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
`CH, CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC,
`NL, PT, SE), OAPI patent (BF, BJ, CF, CG, Cl, CM, GA,
`GN, GW, ML, MR, NE, SN, TD, TG).
`
`(71) Applicant (for AT only): NOVARTIS-ERFINDUNGEN VER-
`WALTUNGSGESELLSCHAFf M.B.H. [AT/AT]; Brunner
`Strasse 59, A-1230 Vienna (AT).
`
`Published
`Without international search report and to be republished
`upon receipt of that report.
`
`(72) Inventors; and
`(75) Inventors/Applicants (for US only): NAVARRO, Fran~ois
`[FR/FR]; 53, Rue Principale, F-68440 Bruebach (FR).
`PETIT, Samuel [FR/FR]; 11, Pare de la Risle, F-76130
`Mont-Saint-Aignan (FR). STONE, Guy [US/CH]; March(cid:173)
`bachstrasse 9, CH-4107 Ettingen (CH).
`
`(74) Agent: BECKER. Konrad; Novartis AG, Corporate Intellectual
`Property, Patent & Trademark Department, CH-4002 Basel
`(CH).
`
`(54) Title: MACROLIDES
`
`(57) Abstract
`
`The invention relates to the stabilization of poly-ene macrolides and to a particular macrolide obtained in crystalline form.
`
`West-Ward Exhibit 1003
`Navarro WO 00/33878
`Page 001
`
`

`

`FOR THE PURPOSES OF INFORMATION ONLY
`
`Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.
`
`AL
`AM
`AT
`AU
`AZ
`BA
`BB
`BE
`BF
`BG
`BJ
`BR
`BY
`CA
`CF
`CG
`CH
`CI
`CM
`CN
`cu
`CZ
`DE
`DK
`EE
`
`Albania
`Armenia
`Austria
`Australia
`Azerbaijan
`Bosnia and Herzegovina
`Barbados
`Belgium
`Burkina Faso
`Bulgaria
`Benin
`Brazil
`Belarus
`Canada
`Central African Republic
`Congo
`Switzerland
`Cbte d'Ivoire
`Cameroon
`China
`Cuba
`Czech Republic
`Germany
`Denmark
`Estonia
`
`ES
`FI
`FR
`GA
`GB
`GE
`GH
`GN
`GR
`HU
`IE
`IL
`IS
`IT
`JP
`KE
`KG
`KP
`
`KR
`KZ
`LC
`LI
`LK
`LR
`
`Spain
`Finland
`France
`Gabon
`United Kingdom
`Georgia
`Ghana
`Guinea
`Greece
`Hungary
`Ireland
`Israel
`Iceland
`Italy
`Japan
`Kenya
`Kyrgyzstan
`Democratic People's
`Republic of Korea
`Republic of Korea
`Kazakstan
`Saint Lucia
`Liechtenstein
`Sri Lanka
`Liberia
`
`LS
`LT
`LU
`LV
`MC
`MD
`MG
`MK
`
`ML
`MN
`MR
`MW
`MX
`NE
`NL
`NO
`NZ
`PL
`PT
`RO
`RU
`SD
`SE
`SG
`
`Lesotho
`Lithuania
`Luxembourg
`Latvia
`Monaco
`Republic of Moldova
`Madagascar
`The former Yugoslav
`Republic of Macedonia
`Mali
`Mongolia
`Mauritania
`Malawi
`Mexico
`Niger
`Netherlands
`Norway
`New Zealand
`Poland
`Portugal
`Romania
`Russian Federation
`Sudan
`Sweden
`Singapore
`
`SI
`SK
`SN
`sz
`TD
`TG
`TJ
`TM
`TR
`TT
`UA
`UG
`us
`uz
`VN
`YU
`zw
`
`Slovenia
`Slovakia
`Senegal
`Swaziland
`Chad
`Togo
`Tajikistan
`Turkmenistan
`Turkey
`Trinidad and Tobago
`Ukraine
`Uganda
`United States of America
`Uzbekistan
`Viet Nam
`Yugoslavia
`Zimbabwe
`
`West-Ward Exhibit 1003
`Navarro WO 00/33878
`Page 002
`
`

`

`WO 00/33878
`
`- 1 -
`
`PCT/EP99/09521
`
`MACROLIDES
`
`The present invention relates to the stabilization of a pharmaceutically active ingredient
`
`sensitive to oxidation, e.g. a poly-ene macrolide, preferably a poly-ene macrolide having
`
`immunosuppressant properties, particularly rapamycins.
`
`The handling and storage particularly in the bulk form of pharmaceutically active ingredients
`
`which are sensitive to oxidation is difficult. Special handling is necessary and often the
`
`oxidation-sensitive ingredient is stored in air-tight packaging under protective gas.
`
`Substantial amounts of stabilizers are added during the formulating process of such
`
`pharmaceutically active ingredients.
`
`Poly-ene macrolides have satisfactory stability properties. However, it has now been found
`
`that their stability to oxygen may substantially be improved by the addition of a stabilizer,
`
`e.g. an antioxidant, during their isolation step.
`
`According to the invention, there is provided
`
`1.
`
`A process for stabilizing a poly-ene macrolide comprising adding an antioxidant to the
`
`purified macrolide, preferably at the commencement of its isolation step.
`
`This process is particularly useful for the production of a stabilized poly-ene macrolide
`
`in bulk. The amount of antioxidant may conveniently be up to 1 %, more preferably
`
`from 0.01 to 0.5 % (based on the weight of the macrolide). Such a small amount is
`
`referred to hereinafter as a catalytic amount.
`
`As alternatives to the above the present invention also provides:
`
`2.
`
`A mixture, e.g. a bulk mixture, comprising a poly-ene macrolide and an anti-oxidant,
`
`preferably a catalytic amount thereof, preferably in solid form.
`
`The mixture may be in particulate form e.g. cristallized or amorphous form. It may be
`
`in a sterile or substantially sterile condition, e.g. in a condition suitable for
`
`pharmaceutical use.
`
`West-Ward Exhibit 1003
`Navarro WO 00/33878
`Page 003
`
`

`

`WO 00/33878
`
`PCT/EP99/09521
`
`- 2 -
`
`3.
`
`Use of a mixture as defined above in 2. in the manufacture of a pharmaceutical
`
`composition.
`
`Examples of poly-enes macrolides are e.g. molecules comprising double bonds, preferably
`
`conjugated double bonds, for example such having antibiotic and/or immunosuppressant
`
`properties, e.g. macrolides comprising a lactam or lactone bond and their derivatives, e.g.
`
`compounds which have a biological activity qualitatively similar to that of the natural
`
`macrolide, e.g. chemically substituted macrolides. Suitable examples include e.g.
`
`rapamycins and ascomycins. A preferred poly-ene macrolide is a macrolide comprising at
`
`least 2 conjugated double bonds, e.g. 3 conjugated double bonds.
`
`Rapamycin is a known lactam macrolide produceable, for example by Streptomyces
`
`hygroscopicus. The structure of rapamycin is given in Kessler, H. et al.; 1993; Helv. Chim.
`
`Acta, 76: 117. Rapamycin has antibiotic and immunosuppressant properties. Derivatives of
`
`rapamycin are known, e.g. 16-0-substituted rapamycins, for example as disclosed in WO
`
`94/02136 and WO 96/41807, 40-0-substituted rapamycins, for example as disclosed in WO
`
`94/09010, WO 92/05179, WO 95/14023, 94/02136, WO 94/02385 and WO 96/13273, all of
`
`which being incorporated herein by reference. Preferred rapamycin derivatives are e.g.
`
`rapamycins wherein the hydroxy in position 40 of formula A illustrated at page 1 of WO
`
`94/09010 is replaced by -OR wherein R is hydroxyalkyl, hydroxyalkoxyalkyl, acylaminoalkyl
`
`or aminoalkyl, e.g. 40-0-(2-hydroxy)ethyl-rapamycin, 40-0-(3-hydroxy)propyl-rapamycin,
`
`and 40-0-[2-(2-hydroxy)ethoxy]ethyl-rapamycin.
`
`Ascomycins, of which FK-506 and ascomycin are the best known, form another class of
`
`lactam macrolides, many of which have potent immunosuppressive and anti-inflammatory
`
`activity. FK506 is a lactam macrolide produced by Streptomyces tsukubaensis. The
`
`structure of FK506 is given in the Appendix to the Merck Index, 11th ed. (1989) as item AS.
`
`Ascomycin is described e.g. in USP 3,244,592. Ascomycin, FK506, other naturally occurring
`
`macrolides having a similar biological activity and their derivatives, e.g. synthetic analogues
`
`and derivatives are termed collectively "Ascomycins". Examples of synthetic analogues or
`
`derivatives are e.g. halogenated ascomycins, e.g. 33-epi-chloro-33-desoxy-ascomycin such
`
`as disclosed in EP-A-427,680, tetrahydropyran derivatives, e.g. as disclosed in EP-A-
`
`626,385.
`
`West-Ward Exhibit 1003
`Navarro WO 00/33878
`Page 004
`
`

`

`WO 00/33878
`
`PCT/EP99/09521
`
`- 3 -
`
`Particularly preferred macrolides are rapamycin and 40-0-(2-hydroxy)ethyl-rapamycin.
`
`Preferred antioxidants are for example 2,6-di-tert.-butyl-4-methylphenol (hereinafter BHT),
`
`vitamin E or C, BHT being particularly preferred.
`
`A particularly preferred mixture of the invention is a mixture of rapamycin or 40-0-(2-
`
`hydroxy)ethyl-rapamycin and 0.2% (based on the weight of the macrolide) of antioxidant,
`
`preferably BHT.
`
`The antioxidant may be added to the poly-ene macrolide at the commencement of the
`
`isolation steps, preferably the final isolation step, more preferably just prior to the final
`
`precipitation step. The macrolide is preferably in a purified state. It may be dissolved in an
`
`inert solvent and the antioxidant is added to the resulting solution, followed by a
`
`precipitation step of the stabilized macrolide, e.g. in an amorphous form or in the form of
`
`crystals. Preferably the mixture of the invention is in amorphous form.
`
`The resulting stabilized macrolide exhibits surprisingly an improved stability to oxidation and
`
`its handling and storage, e.g. in bulk form prior to its further processing for example into a
`
`galenic composition, become much easier. It is particularly interesting for macrolides in
`
`amorphous form.
`
`The macrolide stabilized according to the invention may be used as such for the production
`
`of the desired galenic formulation. Such formulations may be prepared according to
`
`methods known in the art, comprising the addition of one or more pharmaceutically
`
`acceptable diluent or carrier, including the addition of further stabilizer if required.
`
`Accordingly there is further provided:
`
`4.
`
`A pharmaceutical composition comprising, as active ingredient, a stabilized mixture as
`
`disclosed above, together with one or more pharmaceutically acceptable diluent or
`
`carrier.
`
`The composition of the invention may be adapted for oral, parenteral, topical (e.g. on
`
`the skin), occular, nasal or inhalation (e.g. pulmonary) administration. A preferred
`
`West-Ward Exhibit 1003
`Navarro WO 00/33878
`Page 005
`
`

`

`WO 00/33878
`
`PCT/EP99/09521 .
`
`-4-
`
`composition is one for oral administration, preferably a water-free composition when
`
`the active ingredient is a lactone macrolide.
`
`The pharmaceutical compositions of the invention may comprise further excipients, e.g. a
`
`lubricant, a disintegrating agent, a surfactant, a carrier, a diluent, a flavor enhancer, etc. It
`
`may be in liquid form, e.g. solutions, suspensions or emulsions such as a microemulsions,
`
`e.g. as disclosed in USP 5,536,729, or in solid form, e.g. capsules, tablets, dragees,
`
`powders (including micronized or otherwise reduced particulates), solid dispersions,
`
`granulates, etc.,e.g. as disclosed in WO 97/03654, the contents of which being
`
`incorporated herein by reference, or semi-solid forms such as ointments, gels, creams and
`
`pastes. They are preferably adapted to be in a form suitable for oral administration.
`
`Preferably they are in solid form. The pharmaceutical compositions of the invention may be
`
`prepared according to known methods, by mixing the macrolide stabilized according to the
`
`invention with the additional ingredients under stirring; the ingredients may be milled or
`
`ground and if desired compressed, e.g into tablets.
`
`This invention is particularly interesting for rapamycin compositions in liquid or solid form. A
`
`particularly preferred composition is a solid dispersion, e.g. comprising a stabilized
`
`rapamycin according to the invention and a carrier medium, e.g. a water-soluble polymer
`
`such as hydroxypropylmethylcellulose, e.g. as disclosed in WO 97/03654.
`
`The compositions of the invention are useful for the indications as known for the macrolide
`
`they contain at e.g. known dosages. For example, when the macrolide has
`
`immunosuppressant properties, e.g. rapamycin or a rapamycin derivative, the composition
`
`may be useful e.g. in the treatment or prevention of organ or tissue acute or chronic allo- or
`
`xeno-transplant rejection, autoimmune diseases or inflammatory conditions, asthma,
`
`proliferative disorders, e.g tumors, or hyperproliferative vascular disorders, preferably in the
`
`prevention or treatment of transplant rejection.
`
`The amount of macrolide and of the composition to be administered depend on a number of
`
`factors, e.g. the active ingredient used, the conditions to be treated, the duration of the
`
`treatment etc. For e.g. rapamycin or 40-0-(2-hydroxy)ethyl-rapamycin, a suitable daily
`
`dosage form for oral administration comprise from 0.1 to 1 O mg, to be administered once or
`in divided form.
`
`West-Ward Exhibit 1003
`Navarro WO 00/33878
`Page 006
`
`

`

`WO 00/33878
`
`PCT/EP99/09521
`
`- 5 -
`
`In another aspect, this invention also provides 40-0-(2-hydroxy)ethyl-rapamycin in a
`
`crystalline form, particularly in a substantially pure form. Preferably the crystal form is
`
`characterized by the absence or substantial absence of any solvent component; it is in non(cid:173)
`
`solvate form.
`
`40-0-(2-hydroxy)ethyl-rapamycin in crystalline form belongs to the monoclinic sytem. The
`
`resulting crystals have a m.p. of 146°-147°C, especially 146.5°C. To assist identification of
`
`the new crystalline form, X-ray diffraction analysis data are provided. The conditions under
`
`which these data are obtained are as follows:
`
`Temperature
`
`Wavelength
`
`Space group
`
`Unit cell dimensions
`a
`b
`c
`
`Volume
`z
`Density (calculated)
`
`Absorption coefficient
`
`F(OOO)
`
`Crystal size
`
`293(2)K
`1.54178 A
`P21
`
`14.378.(2) d
`11.244(1) A
`18.310(2) A
`108.58(1 )0
`2805.8(6) d3
`2
`1.134 g/cm3
`0.659 mm·1
`1040
`
`0.59x0.11 x0.03 mm
`
`0 range for data collection
`
`2.55 to 57 .20°
`
`Reflections collected
`
`Independent reflections
`
`Intensity decay
`
`Refinement method
`
`Data/restraints/parameters
`Goodness-of-fit on F2
`Final R indices [1>2 sigma(I)]
`
`Largest diff. peak and hole
`
`4182
`
`4037 [R(int) = 0.0341]
`
`32%
`Full-matrix least-squares on F2
`3134/1/613
`
`1.055
`
`R1=0.057 4, WR2=0.1456
`0.340 and -0.184 e!d3
`
`West-Ward Exhibit 1003
`Navarro WO 00/33878
`Page 007
`
`

`

`WO 00/33878
`
`PCT/EP99/09521
`
`- 6 -
`
`40-0-(2-hydroxy)ethyl-rapamycin in crystalline form may be prepared by dissolving the
`
`amorphous compound in a solvant e.g. ethyl acetate and adding an aliphatic hydrocarbon
`
`CnH2n+2 (n=5, 6 or 7). After addition of the hydrocarbon, the resulting mixture may be
`warmed e.g. at a temperature of 25 to 50°C, e.g. up to 30-35°C. Storing of the resulting
`
`mixture may conveniently take place at a low temperature, e.g. below 25°C, preferably from
`
`O to 25°C. The crystals are filtered and dried. Heptane is preferred as an aliphatic
`
`hydrocarbon. If desired, nucleation procedures may be commenced e.g. by sonication or
`
`seeding.
`
`The present invention also provides a process for purifying 40-0-(2-hydroxy)ethyl(cid:173)
`
`rapamycin comprising crystallizing 40-0-(2-hydroxy)ethyl-rapamycin from a crystal bearing
`
`medium, e.g. as disclosed above, and recovering the crystals thus obtained. The crystal
`
`bearing medium may include one or more components in addition to those recited above. A
`
`particularly suitable crystal bearing medium has been found to be one comprising ca. 2
`
`parts ethyl acetate and ca. 5 parts aliphatic hydrocarbon, e.g. heptane.
`
`40-0-(2-hydroxy)ethyl-rapamycin in crystalline form has been found to possess in vitro and
`
`in vivo immunosuppressive activity comparable to that of the amorphous form. In the
`
`localized GvHD, maximal inhibition (70-80%) of lymph node swelling is achieved with a
`
`dosage of 3 mg with 40-0-{2-hydroxy)ethyl-rapamycin in crystalline form.
`
`40-0-(2-hydroxy)ethyl-rapamycin may be useful for the same indications as known for the
`
`amorphous compound, e.g. to prevent or treat acute and chronic allo- or xeno-transplant
`
`rejection, autoimmune diseases or inflammatory conditions, asthma, proliferative disorders,
`
`e.g tumors, or hyperproliferative vascular disorders, e.g as disclosed in WO 94/09010 or in
`
`WO 97/35575, the contents thereof being incorporated herein by reference. In general,
`
`satisfactory results are obtained on oral administration at dosages on the order of from 0.05
`
`to 5 or up to 20 mg/kg/day, e.g. on the order of from 0.1 to 2 or up to 7.5 mg/kg/day
`
`administered once or, in divided doses 2 to 4x per day. Suitable daily dosages for patients
`
`are thus on the order of up to 1 O mg., e.g. 0.1 to 1 O mg.
`
`40-0-(2-hydroxy)ethyl-rapamycin in crystalline form may be administered by any
`
`conventional route, e.g. orally, for example tablets or capsules, or nasallly or pulmonary (by
`
`inhalation). It may be administered as the sole active ingredient or together with other
`
`West-Ward Exhibit 1003
`Navarro WO 00/33878
`Page 008
`
`

`

`WO 00/33878
`
`PCT/EP99/09521
`
`- 7 -
`
`drugs, e.g. immunosuppressive and/or immunomodulatory and/or anti-inflammatory agents,
`
`e.g. as disclosed in WO 94/09010.
`
`In accordance with the foregoing, the present invention also provides:
`
`5.
`
`A method for preventing or treating acute or chronic allo- or xeno-transplant rejection,
`
`autoimmune diseases or inflammatory conditions, asthma, proliferative disorders, or
`
`hyperproliferative vascular disorders, in a subject in need of such treatment, which
`
`method comprises administering to said subject a therapeutically effective amount of
`
`40-0-(2-hydroxy)ethyl-rapamycin in crystalline form;
`
`6.
`
`40-0-(2-hydroxy)ethyl-rapamycin in crystalline form for use as a pharmaceutical;, e.g.
`
`in a method as disclosed above;
`
`7.
`
`A pharmaceutical composition comprising 40-0-(2-hydroxy)ethyl-rapamycin in
`
`crystalline form together with a pharmaceutically acceptable diluent or carrier therefor;
`
`8.
`
`A kit or package for use in immunosuppression or inflammation, including a
`
`pharmaceutical composition as disclosed above and a pharmaceutical composition
`
`comprising an immunosuppressant or immunomodulatory drug or an anti-inflammatory
`
`agent.
`
`The following examples illustrate the invention without limiting it.
`
`Example 1: Crystallisation
`
`0.5 g amorphous 40-0-(2-hydroxy)ethyl-rapamycin is dissolved in 2.0 ml ethyl acetate at
`
`40°C. 5.0 ml heptane is added and the solution becomes "milky". After warming to 30°C, the
`
`solution becomes clear again. Upon cooling to 0°C and with scratching an oil falls out of the
`
`solution. The test tube is closed and stored at 10°C overnight. The resulting white
`
`voluminous solid is then filtered and washed with 0.5 ml of a mixture of ethyl
`
`acetate/hexane (1 :2.5) and the resulting crystals are dried at 40°C under 5 mbar for 16
`
`hours. 40-0-(2-hydroxy)ethyl-rapamycin in crystalline form having a m.p. of 146.5°C is thus
`
`obtained.
`
`Crystallisation at a larger scale may be performed as follows:
`
`West-Ward Exhibit 1003
`Navarro WO 00/33878
`Page 009
`
`

`

`WO 00/33878
`
`PCT/EP99/09521
`
`- 8 -
`
`250 g amorphous 40-0-(2-hydroxy)ethyl-rapamycin is dissolved in 1.0 I ethyl acetate under
`
`argon with slow stirring. This solution is heated at 30°C and then during 45 minutes, 1.5 I
`
`heptane is added dropwise. 0.25 g of seed crystals prepared as disclosed above are added
`
`under the same conditions in portions. The mixture is further stirred at 30°C over a period of
`
`2 hours and the crystallisation mixture is cooled to 25°C over 1 hour and then to 10°c for 30
`
`minutes and filtered. The crystals are washed with 100 ml of a mixture ethyl acetate/hexane
`
`(2:3). Subsequent drying is performed at 50°C and ca 5 mbar. m.p. 146.5°C
`
`IRinKBr: 3452,2931, 1746, 1717, 1617, 1453, 1376, 1241, 1191, 1163, 1094, 1072,
`1010, 985, 896 cm·1
`
`Single X-ray structure with coordinates are indicated in Figures 1 to 3 below.
`
`Example 2: Production of stabilized 40-0-(2-hydroxy)ethyl-rapamycin
`
`1 OOg 40-0-(2-hydroxy)ethyl-rapamycin are dissolved in 6001 abs. ethanol. After addition of
`
`0.2g BHT, the resulting solution is added dropwise with stirring to 3.0 I water within 1 hour.
`
`The resulting suspension is stirred for an additional 30 minutes. Filtration with subsequent
`
`washing (3x200 ml water/ethanol at a v/v ratio of 5:1) results in a moist white product which
`
`is further dried under vacuum (1 mbar) at 30°C for 48 hours. The resulting dried product
`
`contains 0.2% (w/w) BHT.
`
`The resulting product shows improved stability on storage. The sum of by-products and
`
`degradation products in % after 1 week storage are as follows:
`
`Compound
`
`50°C in open flask
`
`Ex. 2 (0.2% BHT)
`
`Without BHT
`
`1.49
`
`>10
`
`The procedure of above Example may be repeated but using, as active ingredient,
`
`rapamycin.
`
`West-Ward Exhibit 1003
`Navarro WO 00/33878
`Page 0010
`
`

`

`WO 00/33878
`
`PCT/EP99/09521
`
`- 9 -
`
`CLAIMS
`
`1.
`
`2.
`
`A mixture comprising a poly-ene macrolide and an antioxidant.
`
`A mixture according to claim 1, wherein the antioxidant is present in an amount of up
`
`to 1 % based on the macrolide weight.
`
`3.
`
`A mixture according to claim 1 , wherein the antioxidant is present in an amount of
`
`0.2% based on the macrolide weight.
`
`4.
`
`A mixture according to claim 1, wherein the antioxidant is 2,6-di-tert.-butyl-4-
`
`methylphenol.
`
`5.
`
`A mixture according to claim 1, wherein the poly-ene macrolide is rapamycin or 40-0-
`
`6.
`
`7.
`
`(2-hydroxy)ethyl-rapamycin.
`
`A mixture according to claim 1, in solide form.
`
`A pharmaceutical composition comprising, as active ingredient, a mixture according to
`
`claim 1 together with one or more pharmaceutically acceptable carrier or diluent.
`
`8.
`
`A process for stabilizing a poly-ene macrolide comprising adding an antioxidant to the
`
`purified macrolide.
`
`9.
`
`40-0-(2-hydroxy)ethyl-rapamycin in crystalline form.
`
`10. The compound according to claim 9, in crystalline non-solvate form.
`
`11. The compound according to claim 9, having a crystal lattice
`a = 14.37 A., b = 11.24A., c = 18.31 A., the volume being 2805 A. 3
`12. A pharmaceutical composition comprising a compound according to claim 11 or 12,
`
`together with one or more pharmaceutically acceptable diluents or carriers therefor.
`
`13. A process for purifying 40-0-(2-hydroxy)ethyl-rapamycin, comprising crystallizing 40-
`
`0-(2-hydroxy)ethyl-rapamycin from a crystal bearing medium and recovering the
`
`crystals thus obtained.
`
`West-Ward Exhibit 1003
`Navarro WO 00/33878
`Page 0011
`
`

`

`WO 00/33878
`
`1 I 4
`FIGURE 1/3
`
`PCT /EP99/09521
`
`Atomic coordinates and equivalent isotropic displacement parameters (A 2
`(U(eq) is defined as one third of the trace of the orthogonalized Uij tensor)
`
`)
`
`x/a
`
`y/b
`
`zlc
`
`U(eq)
`
`C(l)
`0(1)
`C(2)
`C(3)
`C(4)
`C(5)
`C(6)
`N(7)
`C(8)
`0(8)
`C(9)
`0(9)
`C(lO}
`0(10)
`C(ll)
`C(llM)
`C(l2)
`C(l3)
`C(l4)
`0(14)
`C(l5)
`C(l6)
`0(16)
`C(l6M)
`C(17)
`C(l7M)
`C(l8)
`C(19)
`C(20)
`C(21)
`C(22)
`C(23)
`C(23M)
`C(24)
`C(25)
`C(25M)
`C(26)
`0(26)
`C(27)
`0(27)
`C(27M)
`C(28)
`0(28)
`
`.9065(6)
`.9239(4)
`.8041(5)
`.7847(7)
`.7627(7)
`.6795(7)
`.7005(6)
`.7272(4)
`.6781(5)
`.6965(4)
`.5940(6)
`.6074(4)
`.4962(5)
`.5045(4)
`.4079(6}
`.4107(7)
`.3135(6)
`.3099(6)
`.4002(6)
`.4868(4)
`.4070(6)
`.4953(7)
`.4841(5)
`.5697(8)
`.5056(6)
`.4268(7)
`.5806(7)
`.6018(7)
`.6768(8)
`.7032(8)
`.7771(8)
`.8086(8)
`.7254(9)
`.8912(8)
`.9826(9)
`1.0348(12)
`1.0512(10)
`1.1132(8)
`1.0375(8)
`1.0877(7)
`1.0445(17)
`1.0824(7)
`1.1827(4)
`
`.0121(9)
`-.0736(6)
`.0615(8)
`.1748(10)
`.1515(10)
`.0653(11)
`-.0496(9)
`-.0269(6)
`-.0693(7)
`-.0432(6)
`-.1566(8)
`-.2513(6)
`-.1136(8)
`-.1009(6)
`-.1951(8}
`-.3114(9)
`-.1252(10)
`-.0061(10)
`.0651(9)
`-.0019(5)
`.01811(10)
`.2564(8)
`.3639(6)
`.4308(10)
`.2802(9)
`.3541(11)
`.2368(10)
`.2458(11)
`.1937(12)
`.2069(13)
`.1565(15)
`.1781(16)
`.2152(23)
`.2643(18)
`.2329(20)
`.1245(20)
`.3412(22)
`.3601(21)
`.4278(16)
`.5366(13)
`.6202(22)
`.3750(11)
`.3501(7)
`
`.5077(5)
`.5482(4)
`.4625(4)
`.4984(6)
`.5725(7)
`.5610(6)
`.5256(5)
`.4567(4)
`.3883(5)
`.3287(3)
`.3784(5)
`.4074(4)
`.3223(5)
`.2486(3)
`.3160(5)
`.2776(6)
`.2738(6)
`.3115(7)
`.3156(6)
`.3559(3)
`.3592(6)
`.3624(6)
`.4015(4)
`.4288(7)
`.2841(6)
`.2307(6)
`.2680(6)
`.1964(6)
`.1809(6)
`.1094(7)
`.0948(7)
`.0240(6)
`-.0474(7)
`.0406(6)
`.1069(6)
`.0884(8)
`.1293(7)
`.0998(7)
`.1891(7)
`.1901(7)
`.1382(13)
`.2699(6)
`.2818(4)
`
`.060(2)
`.076(2)
`.060(2)
`.087(3)
`.098(3)
`.094(3)
`.074(3)
`.059(2)
`.055(2)
`.074(2)
`.056(2)
`.084(2)
`.057(2)
`.075(2)
`.068(3)
`.088(3)
`.088(3)
`.099(4)
`.078(3)
`.065(2)
`.082(3)
`.079(3)
`.095(2)
`.102(3)
`.073(3)
`.103(4)
`.079(3)
`.092(3)
`.097(3)
`.111(4)
`.121(5)
`.128(5)
`.184(9)
`.140(6)
`.141(6)
`.178(8)
`.157(8)
`.281(11)
`.118(5)
`.185(5)
`.256(13)
`.091(3)
`.108(2)
`
`West-Ward Exhibit 1003
`Navarro WO 00/33878
`Page 0012
`
`

`

`WO 00/33878
`
`2 I 4
`FIGURE 1/3 (Cont.)
`
`PCT/EP99/09521
`
`Atomic coordinates and equivalent isotropic displacement parameters (A2
`(cont.)
`
`)
`
`x/a
`
`rib
`
`zlc
`
`U(eq)
`
`C(29)
`C(29M)
`C(30)
`C(31)
`C(31M)
`C(32)
`0(32)
`C(33)
`C(34)
`0(34)
`C(35)
`C(35M)
`C(36)
`C(37)
`C(38)
`C(39)
`0(39)
`C(39M)
`C(40)
`0(40)
`C(41)
`C(42)
`C(43)
`C(44)
`0(45)
`
`1.0329(7)
`.9318(6)
`1.0764(7)
`1.0376(7)
`1.0198(9)
`1.1046(7)
`1.1436(7)
`1.1271(6)
`1.0764(5)
`.9735(3)
`1.1115(5)
`1.1060(7)
`1.2149(6)
`1.2650(6)
`1.2091(7)
`1.2680(9)
`1.2082(8)
`1.2099(20)
`1.3640(9)
`1.4177(7)
`1.4221(7)
`1.3653(6)
`1.4272(14)
`1.5146(20)
`1.4956(12)
`
`.2733(10)
`.2995(10)
`.1700(10)
`.0581(10)
`-.0385(13)
`.0210(10)
`-.0747(9)
`.1025(9)
`.0601(8)
`.0853(5)
`.1217(9)
`.2562(10)
`.0757(9)
`.1298(9)
`.1198(14)
`.1650(16)
`.1584(20)
`.2512(47)
`.0982(13)
`.1412(10)
`.1138(13)
`.0697(11)
`.0621(20)
`-.0307(24)
`-.1215(13)
`
`.2922(5)
`.2984(6)
`.3100(5)
`.3340(5)
`.2723(7)
`.4103(6)
`.4183(5)
`.4776(5)
`.5342(5)
`.4967(3)
`.6132(5)
`.6069(6)
`.6578(5)
`. 7370(5)
`. 7935(5)
`.8735(6)
`.9206(6)
`.9702(17)
`.9048(6)
`.9790(5)
`.8506(6)
`.7702(5)
`1.0408(9)
`1.0549(10)
`.9899(7)
`
`.073(3)
`.094(3)
`.077(3)
`.081(3)
`.124(4)
`.079(3)
`.132(3)
`.071(3)
`.062(2)
`.071(2)
`.064(2)
`.092(3)
`.072(3)
`.074(3)
`.110(4)
`.128(5)
`.243(9)
`.498(36)
`.. 0116(4)
`.151(4)
`.110(4)
`.096(3)
`.171(7)
`.238(12)
`.215(5)
`
`West-Ward Exhibit 1003
`Navarro WO 00/33878
`Page 0013
`
`

`

`WO 00/33878
`
`PCT/EP99/09521
`
`3 I 4
`FIGURE2/3
`
`Bond lengths (A)
`
`C(l)-0(1)
`C(l)-0(34)
`C(1)-C(2)
`C(2)-N(7)
`C(2)-C(3)
`C(3 )-C(4)
`C(4)-C(5)
`C(5)-C(6)
`C(6)-N(7)
`N(7)-C(8)
`C(8)-0(8)
`C(8)-C(9)
`C(9)-0(9)
`C(9)-C(10)
`C(l0)-0(10)
`C(l0)-0(14)
`C(10)-C(11)
`C(11)-C(11M)
`C(11)-C(12)
`C(12)-C(13)
`C(13)-C(14)
`C(14)-0(14)
`C(14)-C(15)
`C(15)-C(16)
`C(16)-0(16)
`C(16)-C(17)
`0(16)-C(16M)
`C(17)-C(18)
`C(17)-C(17M)
`C(18)-C(19}
`C(19)-C(20)
`C(20)-C(21)
`C(21 )-C(22)
`C(22 )-C(23)
`C(23 )-C(24)
`C(23 )-C(23M)
`
`1.193(10)
`1.329(10)
`1.545(11)
`1.465(10)
`1.500(13)
`1.511(14)
`1.502(13)
`1.518(14)
`1.453(10)
`1.315(9)
`1.237(9)
`1.523(11)
`1.178(9)
`1.532(11)
`1.398(9)
`1.425(10)
`1.540(11)
`1.491(13)
`1.546(12)
`1.51(2)
`1.506(13)
`1.441(10)
`1.516(14)
`1.511(12)
`1.439(11)
`1.512(14)
`1.392(11)
`1.301(12)
`1.491(13)
`1.441(14)
`1.333(14)
`1.48(2)
`1.30(2)
`1.52(2)
`1.49(2)
`1.52(2)
`
`C(24 )-C(25)
`C(25)-C(25M)
`C(25)-C(26)
`C(26)-0(26)
`C(26)-C(27)
`C(2 7)-0(2 7)
`C(27)-C(28)
`0(2 7)-C(2 7M)
`C(28)-0(28)
`C(28)-C(29)
`C(29)-C(30)
`C(29)-C(29M)
`C(30)-C(31)
`C(31)-C(32)
`C(31)-C(31M)
`C(32)-0(32)
`C(32)-C(33)
`C(33)-C(34)
`C(34)-0(34)
`C(34 )-C(35)
`C(35)-C(35M)
`C(35)-C(36)
`C(36)-C(37)
`C(37)-C(38)
`C(37)-C(42)
`C(38)-C(39)
`C(39)-0(39)
`C(39)-C(40)
`0(39)-C(39M)
`C(40)-0(40)
`C(40)-C(41)
`0(40)-C(43)
`C(41 )-C(42)
`C(43)-C(44)
`C(44)-0(45)
`
`1.52(2)
`1.53(2)
`1.54(3)
`1.20(2)
`1.53(2)
`1.42(2)
`1.533(14)
`1.34(2)
`1.415(10)
`1.471(14)
`1.311(13)
`1.523(12)
`1.497(14)
`1.482(13)
`1.53(2)
`1.201(11)
`1.487(13)
`1.521(11)
`1.447(9)
`1.537(11)
`1.517(13)
`1.540(11)
`1.525(12)
`1.503(11)
`1.532(12)
`1.526(14)
`1.399(13)
`1.51 (2)
`1.38(4)
`1.417(13)
`1.50(2)
`1.41(2)
`1.521(14)
`1.59(3)
`1.52(2)
`
`West-Ward Exhibit 1003
`Navarro WO 00/33878
`Page 0014
`
`

`

`WO 00/33878
`
`Bond angles (0
`
`)
`
`0( 1)-C(1)-0(34)
`O(l)-C(l)-C(2)
`0(34)-C(1)-C(2)
`N(7)-C(2)-C(3)
`N(7)-C(2)-C(l)
`C(3 )-C(2)-C(l)
`C(2)-C(3)-C(4)
`C(5)-C(4)-C(3)
`C(4 )-C(5 )-C( 6)
`N(7)-C(6)-C(5)
`C(8)-N(7)-C(6)
`C( 8)-N(7)-C(2)
`C( 6)-N(7)-C(2)
`0(8)-C(8)-N(7)
`0(8)-C(8)-C(9)
`N(7)-C(8)-C(9)
`0(9)-C(9)-C(8)
`0(9)-C(9)-C(10)
`C(8)-C(9)-C(10)
`0(10)-C(l0)-0{14)
`0( 10 )-C(l O)-C{9)
`0( 14 )-C(l O)-C{9)
`0(10)-C(lO)-C{l l)
`0(14 )-C(l 0)-C{l l)
`C{9)-C(10)-C{l 1)
`C{11M)-C(l l )-C(lO)
`C(l lM)-C(l 1 )-C(12)
`C(lO)-C(l 1 )-C(12)
`C{13)-C(12)-C(l 1)
`C{14)-C{13)-C(12)
`0{14)-C(14)-C(13)
`0(14)-C(14)-C(15)
`C(13 )-C(l 4)-C(15)
`C( 10)-0(14)-C(14)
`C( 16)-C( 15)-C( 14)
`0(16)-C(l 6)-C(15)
`0(16)-C(16)-C(17)
`C(l5)-C( 16)-C(l 7)
`C( 16M)-0( 16 )-C(l 6)
`C( 18)-C( 17)-C(l 7M)
`C(l8)-C(l 7)-C(16)
`C(17M)-C(17)-C(16)
`C(l 7)-C(18)-C(19)
`C(i.O)-C(19)-C(18)
`C(l9)-C(20)-C(21)
`C(22)-C(21)-C(20)
`C(21)-C(22)-C(23)
`C(24 )-C(23 )-C(23M)
`C(24)-C(23)-C(22)
`C(23M)-C(23 )-C(22)
`
`125.1(7)
`126.8(8)
`108.0(8)
`111.5(6)
`111.3(7)
`110.4(7)
`111.6(9)
`111.8(9)
`110.6(7)
`111.4(8)
`123.5(7)
`118.6(7)
`117.3(6)
`123.6(7)
`115.6(7)
`120.8(8)
`121.3(7)
`124.8(8)
`113.6(7)
`112.1(7)
`109.7(6)
`100.5(6)
`108.1(6)
`111.6(6)
`114.9(7)
`114.3(7)
`111.2(8)
`107.9(7)
`111.9(8)
`109.9(9)
`109.8(8)
`106.2(7)
`113.2(8)
`115.1(6)
`114.5(7)
`105.4(7)
`112.5(8)
`113.4(8)
`114.0(7)
`124.9(9)
`119.2(9)
`115.9(8)
`127.7(10)
`125.6(11)
`126.6(11)
`126.3(12)
`126.0(13)
`111(2)
`111.4(10)
`114.2(10)
`
`4 I 4
`FIGURE 3/3
`
`PCT /EP99/0952 l
`
`C(23 )-C(24 )-C(25)
`C(24 )-C(25)-C(25M)
`C(24 )-C(25)-C(26)
`C(25M)-C(25)-C(26)
`0(26)-C(26)-C(27)
`0(26)-C(26)-C(25)
`C(27)-C(26)-C(25)
`0(27)-C(27)-C(26)
`0(27)-C(27)-C(28)
`C(26)-C(27)-C(28)
`C(27M)-0(27)-C(27)
`0(28)-C(28)-C(29)
`0(28)-C(28)-C(27)
`C(29)-C(28)-C(27)
`C(30)-C(29)-C(28)
`C( 30 )-C(29)-C(29M)
`C(28)-C(29)-C(29M)
`C(29)-C(30)-C(31)
`C(32)-C(31)-C(30)
`C(32)-C(31)-C(31M)
`C(30)-C(31)-C(31M)
`0{32)-C(32)-C(31)
`0(32)-C(32)-C(33)
`C(31)-C(32)-C(33)
`C(32)-C(33)-C(34)
`0( 34 )-C( 34 )-C( 33)
`0(34 )-C(34 )-C(35)
`C(33 )-C(34 )-C(35)
`C(1)-0(34)-C(34)
`C(35M)-C(35)-C(34)
`C( 35 M )-C( 3 5 )-C( 3 6)
`C(34 )-C(35)-C(36)
`C(37)-C(36)-C(35)
`C(38)-C(37)-C(36)
`C(38)-C(37)-C(42)
`C(36)-C(37)-C(42)
`C(37)-C(38)-C(39)
`0(39)-C(39)-C(40)
`0(39)-C(39)-C(38)
`C(40)-C(39)-C(38)
`C(39)-0(39)-C(39M)
`0(40)-C(40)-C(41)
`0(40)-C(40)-C(39)
`C(41)-C(40)-C(39)
`C(43)-0(40)-C(40)
`C(40)-C(41)-C(42)
`C( 41)-C(42)-C(37)
`0(40)-C(43)-C(44)
`0(45)-C(44)-C(43)
`
`116(2)
`111.7(14)
`110(2)
`111.9(12)
`120(2)
`122(2)
`118.5(12)
`112.2(12)
`105.4(12)
`109.5(12)
`118.5(14)
`111.3(9)
`108.7(8)
`118.4(10)
`121.5(9)
`122.9(10)
`115.4(9)
`128.7(9)
`108.8(8)
`113.7(10)
`111.8(8)
`120.3(11)
`118.8(10)
`120.8(9)
`110.2(8)
`104.8(6)
`109.8(6)
`114.5(7)
`119.2(7)
`112.6(8)
`113.2(8)
`108.6(7)
`116.9(8)
`115.6(7)
`109.6(8)
`107.5(8)
`112.5(8)
`113.9(13)
`108.2(10)
`111.0(11)
`119(2)
`110.3(10)
`110.2(12)
`108.9(10)
`115.9(12)
`111.2(9)
`112.8(9)
`114(2)
`112.2(14)
`
`West-Ward Exhibit 1003
`Navarro WO 00/33878
`Page 0015
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket