throbber
Macheras-FM.qxd 11/17/05 9:36 AM Page i
`
`Interdisciplinary Applied Mathematics
`
`Volume 30
`
`Editors
`S.S. Antman J.E. Marsden
`L. Sirovich S. Wiggins
`
`Geophysics and Planetary Sciences
`
`Mathematical Biology
`L. Glass, J.D. Murray
`
`Mechanics and Materials
`R.V. Kohn
`
`Systems and Control
`S.S. Sastry, P.S. Krishnaprasad
`
`Problems in engineering, computational science, and the physical and biological
`sciences are using increasingly sophisticated mathematical techniques. Thus, the
`bridge between the mathematical sciences and other disciplines is heavily traveled.
`The correspondingly increased dialog between the disciplines has led to the estab-
`lishment of the series: Interdisciplinary Applied Mathematics.
`
`The purpose of this series is to meet the current and future needs for the interaction
`between various science and technology areas on the one hand and mathematics on
`the other. This is done, firstly, by encouraging the ways that that mathematics may be
`applied in traditional areas, as well as point towards new and innovative areas of
`applications; and, secondly, by encouraging other scientific disciplines to engage in a
`dialog with mathematicians outlining their problems to both access new methods
`and suggest innovative developments within mathematics itself.
`
`The series will consist of monographs and high-level texts from researchers working
`on the interplay between mathematics and other fields of science and technology.
`
`Page 1
`
`SHIRE EX. 2035
`KVK v. SHIRE
`IPR2018-00290
`
`

`

`Macheras-FM.qxd 11/17/05 9:36 AM Page ii
`
`Interdisciplinary Applied Mathematics
`Volumes published are listed at the end of the book
`
`Page 2
`
`

`

`Macheras-FM.qxd 11/17/05 9:36 AM Page iii
`
`Panos Macheras
`
`Athanassios Iliadis
`
`Modeling in
`Biopharmaceutics,
`Pharmacokinetics, and
`Pharmacodynamics
`Homogeneous and Heterogeneous
`Approaches
`
`With 131 Illustrations
`
`Page 3
`
`

`

`Macheras-FM.qxd 11/17/05 9:36 AM Page iv
`
`Panos Macheras
`School of Pharmacy
`Zographou 15771
`Greece
`Macheras@pharm.uoa.gr
`
`Athanassios Iliadis
`Faculty of Pharmacy
`Marseilles 13385 CX 0713284
`France
`Iliadis@pharmacie.univ-mrs.fr
`
`J.E. Marsden
`Series Editors
`Control and Dynamical Systems
`S.S. Antman
`Mail Code 107-81
`Department of Mathematics and
`Institute for Physical Science and Technology California Institute of Technology
`University of Maryland
`Pasadena, CA 91125
`USA
`College Park, MD 20742
`marsden@cds.caltech.edu
`USA
`ssa@math.umd.edu
`
`L. Sirovich
`Laboratory of Applied Mathematics
`Department of Biomathematics
`Mt. Sinai School of Medicine
`Box 1012
`NYC 10029
`USA
`
`S. Wiggins
`School of Mathematics
`University of Bristol
`Bristol BS8 1TW
`UK
`s.wiggins@bris.ac.uk
`
`Cover illustration: Left panel: Stochastic description of the kinetics of a population of particles,
`Fig 9.15. Middle panel: Dissolution in topologically restricted media, Fig. 6.8B (reprinted with
`permission from Springer). Right panel: A pseudophase space for a chaotic model of cortisol
`kinetics, Fig.11.11.
`
`Mathematics Subject Classification (2000): 92C 45 (main n°), 62P10, 74H65, 60K20.
`
`Library of Congress Control Number: 2005934524
`
`ISBN-10: 0-387-28178-9
`ISBN-13: 978-0387-28178-0
`© 2006 Springer Science+Business Media, Inc.
`All rights reserved. This work may not be translated or copied in whole or in part without the
`written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street,
`New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly
`analysis. Use in connection with any form of information storage and retrieval, electronic adap-
`tation, computer software, or by similar or dissimilar methodology now known or hereafter
`developed is forbidden.
`The use in this publication of trade names, trademarks, service marks, and similar terms, even
`if they are not identified as such, is not to be taken as an expression of opinion as to whether
`or not they are subject to proprietary rights.
`
`While the advice and information in this book are believed to be true and accurate at the date
`of going to press, neither the authors nor the editors nor the ublisher can accept any legal
`responsibility for any errors or omissions that may be made. The publisher makes no warranty,
`express or implied, with respect to the material contained herein.
`
`Printed in the United States of America.
`
`(MVY)
`
`9 8 7 6 5 4 3 2 1
`
`springeronline.com
`
`Page 4
`
`

`

`Macheras-FM.qxd 11/17/05 9:36 AM Page v
`
`♦ To our ancestors who inspired us
`♦ To those teachers who guided us
`♦ To our families
`
`Page 5
`
`

`

`Macheras-FM.qxd 11/17/05 9:36 AM Page vi
`
`Interdisciplinary Applied Mathematics
`
`4.
`
`1. Gutzwiller: Chaos in Classical and Quantum Mechanics
`2. Wiggins: Chaotic Transport in Dynamical Systems
`3.
`Joseph/Renardy: Fundamentals of Two-Fluid Dynamics: Part I:
`Mathematical Theory and Applications
`Joseph/Renardy: Fundamentals of Two-Fluid Dynamics: Part II:
`Lubricated Transport, Drops and Miscible Liquids
`5. Seydel: Practical Bifurcation and Stability Analysis: From Equilibrium to
`Chaos
`6. Hornung: Homogenization and Porous Media
`7. Simo/Hughes: Computational Inelasticity
`8. Keener/Sneyd: Mathematical Physiology
`9. Han/Reddy: Plasticity: Mathematical Theory and Numerical Analysis
`10. Sastry: Nonlinear Systems: Analysis, Stability, and Control
`11. McCarthy: Geometric Design of Linkages
`12. Winfree: The Geometry of Biological Time (Second Edition)
`13. Bleistein/Cohen/Stockwell: Mathematics of Multidimensional Seismic
`Imaging, Migration, and Inversion
`14. Okubo/Levin: Diffusion and Ecological Problems: Modern Perspectives
`(Second Edition)
`15. Logan: Transport Modeling in Hydrogeochemical Systems
`16. Torquato: Random Heterogeneous Materials: Microstructure and
`Macroscopic Properties
`17. Murray: Mathematical Biology I: An Introduction (Third Edition)
`18. Murray: Mathematical Biology II: Spatial Models and Biomedical
`Applications (Third Edition)
`19. Kimmel/Axelrod: Branching Processes in Biology
`20. Fall/Marland/Wagner/Tyson (Editors): Computational Cell Biology
`21. Schlick: Molecular Modeling and Simulation: An Interdisciplinary Guide
`22. Sahimi: Heterogeneous Materials: Linear Transport and Optical Properties
`(Vol. I)
`23. Sahimi: Heterogeneous Materials: Nonlinear and Breakdown Properties
`and Atomistic Modeling (Vol. II)
`24. Bloch: Nonholonomic Mechanics and Control
`25. Beuter/Glass/Mackey/Titcombe: Nonlinear Dynamics in Physiology and
`Medicine
`26. Ma/Soatto/Kosecka/Sastry: An Invitation to 3-D Vision
`27. Ewens: Mathematical Population Genetics (2nd Edition)
`28. Wyatt: Quantum Dynamics with Trajectories
`29. Karniadakis: Microflows and Nanoflows
`30. Macheras/Iliadis: Modeling in Biopharmaceutics, Pharmacokinetics, and
`Pharmacodynamics: Homogeneous and Heterogeneous Approaches
`
`Page 6
`
`

`

`Preface
`
`H µεγ ´αλη τ´εχνη βρ´ισκετ αι oπoυδ´ηπoτ ε o ´ανθρωπoς κατ oρθ ´ωνει
`ν(cid:1)αναγνωρ´ιζει τ oν εαυτ ´oν τ oυ και να τ oν εκϕρ´αζει µε πληρ´oτ ητ α
`µες στ o ελ´αχιστ o.
`
`Great art is found wherever man achieves an understanding of self
`and is able to express himself fully in the simplest manner.
`Odysseas Elytis (1911-1996)
`1979 Nobel Laureate in Literature
`The magic of Papadiamantis
`
`Biopharmaceutics, pharmacokinetics, and pharmacodynamics are the most
`important parts of pharmaceutical sciences because they bridge the gap between
`the basic sciences and the clinical application of drugs. The modeling approaches
`in all three disciplines attempt to:
`• describe the functional relationships among the variables of the system
`under study and
`• provide adequate information for the underlying mechanisms.
`
`Due to the complexity of the biopharmaceutic, pharmacokinetic, and phar-
`macodynamic phenomena, novel physically physiologically based modeling ap-
`proaches are sought. In this context, it has been more than ten years since we
`started contemplating the proper answer to the following complexity-relevant
`questions: Is a solid drug particle an ideal sphere? Is drug diffusion in a well-
`stirred dissolution medium similar to its diffusion in the gastrointestinal fluids?
`Why should peripheral compartments, each with homogeneous concentrations,
`be considered in a pharmacokinetic model? Can the complexity of arterial and
`venular trees be described quantitatively? Why is the pulsatility of hormone
`plasma levels ignored in pharmacokinetic-dynamic models? Over time we real-
`ized that questions of this kind can be properly answered only with an intuition
`about the underlying heterogeneity of the phenomena and the dynamics of the
`processes. Accordingly, we borrowed geometric, diffusional, and dynamic con-
`cepts and tools from physics and mathematics and applied them to the analysis
`of complex biopharmaceutic, pharmacokinetic, and pharmacodynamic phenom-
`ena. Thus, this book grew out of our conversations with fellow colleagues,
`
`vii
`
`Page 7
`
`

`

`viii
`
`Preface
`
`correspondence, and joint publications. It is intended to introduce the concepts
`of fractals, anomalous diffusion, and the associated nonclassical kinetics, and
`stochastic modeling, within nonlinear dynamics and illuminate with their use
`the intrinsic complexity of drug processes in homogeneous and heterogeneous
`media. In parallel fashion, we also cover in this book all classical models that
`have direct relevance and application to the biopharmaceutics, pharmacokinet-
`ics, and pharmacodynamics.
`The book is divided into four sections, with Part I, Chapters 1—3, presenting
`the basic new concepts: fractals, nonclassical diffusion-kinetics, and nonlinear
`dynamics; Part II, Chapters 4—6, presenting the classical and nonclassical mod-
`els used in drug dissolution, release, and absorption; Part III, Chapters 7—9,
`presenting empirical, compartmental, and stochastic pharmacokinetic models;
`and Part IV, Chapters 10 and 11, presenting classical and nonclassical phar-
`macodynamic models. The level of mathematics required for understanding
`each chapter varies. Chapters 1 and 2 require undergraduate-level algebra and
`calculus. Chapters 3—8, 10, and 11 require knowledge of upper undergraduate
`to graduate-level linear analysis, calculus, differential equations, and statistics.
`Chapter 9 requires knowledge of probability theory.
`We would like now to provide some explanations in regard to the use of
`some terms written in italics below, which are used extensively in this book
`starting with homogeneous vs. heterogeneous processes. The former term refers
`to kinetic processes taking place in well-stirred, Euclidean media where the
`classical laws of diffusion and kinetics apply. The term heterogeneous is used
`for processes taking place in disordered media or under topological constraints
`where classical diffusion-kinetic laws are not applicable. The word nonlinear
`is associated with either the kinetic or the dynamic aspects of the phenomena.
`When the kinetic features of the processes are nonlinear, we basically refer to
`Michaelis—Menten-type kinetics. When the dynamic features of the phenomena
`are studied, we refer to nonlinear dynamics as delineated in Chapter 3.
`A process is a real entity evolving, in relation to time, in a given environment
`under the influence of internal mechanisms and external stimuli. A model is an
`image or abstraction of reality: a mental, physical, or mathematical represen-
`tation or description of an actual process, suitable for a certain purpose. The
`model need not be a true and accurate description of the process, nor need the
`user have to believe so, in order to serve its purpose. Herein, only mathematical
`models are used. Either processes or models can be conceived as boxes receiv-
`ing inputs and producing outputs. The boxes may be characterized as gray or
`black, when the internal mechanisms and parameters are associated or not with
`a physical interpretation, respectively. The system is a complex entity formed
`of many, often diverse, interrelated elements serving a common goal. All these
`elements are considered as dynamic processes and models. Here, determinis-
`tic, random, or chaotic real processes and the mathematical models describing
`them will be referenced as systems. Whenever the word “system” has a specific
`meaning like process or model, it will be addressed as such.
`For certain processes, it is appropriate to describe globally their properties
`using numerical techniques that extract the basic information from measured
`
`Page 8
`
`

`

`Preface
`
`ix
`
`data. In the domain of linear processes, such techniques are correlation analysis,
`spectral analysis, etc., and in the domain of nonlinear processes, the correlation
`dimension, the Lyapunov exponent, etc. These techniques are usually called
`nonparametric models or, simply, indices. For more advanced applications, it
`may be necessary to use models that describe the functional relationships among
`the system variables in terms of mathematical expressions like difference or dif-
`ferential equations. These models assume a prespecified parametrized structure.
`Such models are called parametric models.
`Usually, a mathematical model simulates a process behavior, in what can
`be termed a forward problem. The inverse problem is, given the experimental
`measurements of behavior, what is the structure? A difficult problem, but an
`important one for the sciences. The inverse problem may be partitioned into the
`following stages: hypothesis formulation, i.e., model specification, definition of
`the experiments, identifiability, parameter estimation, experiment, and analysis
`and model checking. Typically, from measured data, nonparametric indices are
`evaluated in order to reveal the basic features and mechanisms of the underlying
`processes. Then, based on this information, several structures are assayed for
`candidate parametric models. Nevertheless, in this book we look only into
`various aspects of the forward problem: given the structure and the parameter
`values, how does the system behave?
`Here, the use of the term “model” follows Kac’s remark, “models are cari-
`catures of reality, but if they are good they portray some of the features of the
`real world” [1]. As caricatures, models may acquire different forms to describe
`the same process. Also, Fourier remarked, “nature is indifferent toward the dif-
`ficulties it causes a mathematician,” in other words the mathematics should be
`dictated by the biology and not vice versa. For choosing among such compet-
`ing models, the “parsimony rule,” Occam’s “razor rule,” or Mach’s “economy
`of thought” may be the determining criteria. Moreover, modeling should be
`dependent on the purposes of its use. So, for the same process, one may de-
`velop models for process identification, simulation, control, etc. In this vein,
`the tourist map of Athens or the system controlling the urban traffic in Mar-
`seilles are both tools associated with the real life in these cities. The first is an
`identification model, the second, a control model.
`Over the years we have benefited enormously from discussions and collab-
`orations with students and colleagues.
`In particular we thank P. Argyrakis,
`D. Barbolosi, A. Dokoumetzidis, A. Kalampokis, E. Karalis, K. Kosmidis, C.
`Meille, E. Rinaki, and G. Valsami. We wish to thank J. Lukas whose suggestions
`and criticisms greatly improved the manuscript.
`
`A. Iliadis
`Marseilles, France
`August 2005
`
`P. Macheras
`Piraeus, Greece
`August 2005
`
`Page 9
`
`

`

`Contents
`
`Preface
`
`List of Figures
`
`I BASIC CONCEPTS
`
`1 The Geometry of Nature
`1.1 Geometric and Statistical Self-Similarity . . . . . . . . . . . . . .
`1.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`1.3 Fractal Dimension . . . . . . . . . . . . . . . . . . . . . . . . . .
`1.4 Estimation of Fractal Dimension . . . . . . . . . . . . . . . . . .
`1.4.1
`Self-Similarity Considerations . . . . . . . . . . . . . . . .
`1.4.2 Power-Law Scaling . . . . . . . . . . . . . . . . . . . . . .
`1.5 Self-Affine Fractals . . . . . . . . . . . . . . . . . . . . . . . . . .
`1.6 More About Dimensionality . . . . . . . . . . . . . . . . . . . . .
`1.7 Percolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`2 Diffusion and Kinetics
`2.1 Random Walks and Regular Diffusion . . . . . . . . . . . . . . .
`2.2 Anomalous Diffusion . . . . . . . . . . . . . . . . . . . . . . . . .
`2.3 Fick’s Laws of Diffusion . . . . . . . . . . . . . . . . . . . . . . .
`2.4 Classical Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . .
`2.4.1 Passive Transport Processes . . . . . . . . . . . . . . . . .
`2.4.2 Reaction Processes: Diffusion- or Reaction-Limited? . . .
`2.4.3 Carrier-Mediated Transport . . . . . . . . . . . . . . . . .
`2.5 Fractal-like Kinetics
`. . . . . . . . . . . . . . . . . . . . . . . . .
`2.5.1
`Segregation of Reactants . . . . . . . . . . . . . . . . . . .
`2.5.2 Time-Dependent Rate Coefficients . . . . . . . . . . . . .
`2.5.3 Effective Rate Equations . . . . . . . . . . . . . . . . . . .
`2.5.4 Enzyme-Catalyzed Reactions . . . . . . . . . . . . . . . .
`2.5.5
`Importance of the Power-Law Expressions . . . . . . . . .
`2.6 Fractional Diffusion Equations
`. . . . . . . . . . . . . . . . . . .
`
`xi
`
`vii
`
`xvii
`
`1
`
`5
`6
`8
`9
`11
`11
`12
`12
`13
`14
`
`17
`18
`22
`23
`27
`28
`29
`30
`31
`31
`32
`34
`35
`36
`36
`
`Page 10
`
`

`

`xii Contents
`
`3 Nonlinear Dynamics
`3.1 Dynamic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . .
`3.2 Attractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`3.3 Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`3.4 Sensitivity to Initial Conditions . . . . . . . . . . . . . . . . . . .
`3.5 Reconstruction of the Phase Space . . . . . . . . . . . . . . . . .
`3.6 Estimation and Control in Chaotic Systems . . . . . . . . . . . .
`3.7 Physiological Systems
`. . . . . . . . . . . . . . . . . . . . . . . .
`
`II MODELING IN BIOPHARMACEUTICS
`
`4 Drug Release
`4.1 The Higuchi Model . . . . . . . . . . . . . . . . . . . . . . . . . .
`4.2 Systems with Different Geometries . . . . . . . . . . . . . . . . .
`4.3 The Power-Law Model . . . . . . . . . . . . . . . . . . . . . . . .
`4.3.1 Higuchi Model vs. Power-Law Model . . . . . . . . . . . .
`4.4 Recent Mechanistic Models
`. . . . . . . . . . . . . . . . . . . . .
`4.5 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . .
`4.5.1 Verification of the Higuchi Law . . . . . . . . . . . . . . .
`4.5.2 Drug Release from Homogeneous Cylinders . . . . . . . .
`4.5.3 Release from Fractal Matrices . . . . . . . . . . . . . . . .
`4.6 Discernment of Drug Release Kinetics
`. . . . . . . . . . . . . . .
`4.7 Release from Bioerodible Microparticles . . . . . . . . . . . . . .
`4.8 Dynamic Aspects in Drug Release
`. . . . . . . . . . . . . . . . .
`
`39
`41
`42
`43
`45
`47
`49
`51
`
`53
`
`57
`58
`60
`63
`64
`67
`68
`69
`70
`75
`82
`83
`86
`
`89
`5 Drug Dissolution
`90
`. . . . . . . . . . . . . . . . . . . . .
`5.1 The Diffusion Layer Model
`92
`5.1.1 Alternative Classical Dissolution Relationships
`. . . . . .
`93
`5.1.2 Fractal Considerations in Drug Dissolution . . . . . . . .
`94
`5.1.3 On the Use of the Weibull Function in Dissolution . . . .
`97
`5.1.4
`Stochastic Considerations . . . . . . . . . . . . . . . . . .
`5.2 The Interfacial Barrier Model
`. . . . . . . . . . . . . . . . . . . . 100
`5.2.1 A Continuous Reaction-Limited Dissolution Model
`. . . . 100
`5.2.2 A Discrete Reaction-Limited Dissolution Model . . . . . . 101
`5.2.3 Modeling Supersaturated Dissolution Data . . . . . . . . 107
`5.3 Modeling Random Effects . . . . . . . . . . . . . . . . . . . . . . 109
`5.4 Homogeneity vs. Heterogeneity . . . . . . . . . . . . . . . . . . . 110
`5.5 Comparison of Dissolution Profiles . . . . . . . . . . . . . . . . . 111
`
`113
`6 Oral Drug Absorption
`6.1 Pseudoequilibrium Models . . . . . . . . . . . . . . . . . . . . . . 114
`6.1.1 The pH-Partition Hypothesis . . . . . . . . . . . . . . . . 114
`6.1.2 Absorption Potential . . . . . . . . . . . . . . . . . . . . . 115
`6.2 Mass Balance Approaches . . . . . . . . . . . . . . . . . . . . . . 117
`6.2.1 Macroscopic Approach . . . . . . . . . . . . . . . . . . . . 118
`
`Page 11
`
`

`

`Contents
`
` xiii
`
`6.2.2 Microscopic Approach . . . . . . . . . . . . . . . . . . . . 121
`6.3 Dynamic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
`6.3.1 Compartmental Models
`. . . . . . . . . . . . . . . . . . . 122
`6.3.2 Convection—Dispersion Models
`. . . . . . . . . . . . . . . 124
`6.4 Heterogeneous Approaches . . . . . . . . . . . . . . . . . . . . . . 129
`6.4.1 The Heterogeneous Character of GI Transit . . . . . . . . 129
`6.4.2
`Is in Vivo Drug Dissolution a Fractal Process? . . . . . . 130
`6.4.3 Fractal-like Kinetics in Gastrointestinal Absorption . . . . 132
`6.4.4 The Fractal Nature of Absorption Processes . . . . . . . . 134
`6.4.5 Modeling Drug Transit in the Intestines . . . . . . . . . . 136
`6.4.6 Probabilistic Model for Drug Absorption . . . . . . . . . . 142
`6.5 Absorption Models Based on Structure . . . . . . . . . . . . . . . 147
`6.6 Regulatory Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . 148
`6.6.1 Biopharmaceutics Classification of Drugs
`. . . . . . . . . 148
`6.6.2 The Problem with the Biowaivers . . . . . . . . . . . . . . 151
`6.7 Randomness and Chaotic Behavior . . . . . . . . . . . . . . . . . 158
`
`III MODELING IN PHARMACOKINETICS
`
`161
`
`165
`7 Empirical Models
`7.1 Power Functions and Heterogeneity . . . . . . . . . . . . . . . . . 167
`7.2 Heterogeneous Processes . . . . . . . . . . . . . . . . . . . . . . . 169
`7.2.1 Distribution, Blood Vessels Network . . . . . . . . . . . . 169
`7.2.2 Elimination, Liver Structure . . . . . . . . . . . . . . . . . 171
`7.3 Fractal Time and Fractal Processes . . . . . . . . . . . . . . . . . 174
`7.4 Modeling Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . 175
`7.4.1 Fractal Concepts . . . . . . . . . . . . . . . . . . . . . . . 176
`7.4.2 Empirical Concepts
`. . . . . . . . . . . . . . . . . . . . . 177
`7.5 Heterogeneity and Time Dependence . . . . . . . . . . . . . . . . 178
`7.6 Simulation with Empirical Models
`. . . . . . . . . . . . . . . . . 181
`
`183
`8 Deterministic Compartmental Models
`8.1 Linear Compartmental Models
`. . . . . . . . . . . . . . . . . . . 184
`8.2 Routes of Administration . . . . . . . . . . . . . . . . . . . . . . 186
`8.3 Time—Concentration Profiles
`. . . . . . . . . . . . . . . . . . . . 187
`8.4 Random Fractional Flow Rates . . . . . . . . . . . . . . . . . . . 188
`8.5 Nonlinear Compartmental Models
`. . . . . . . . . . . . . . . . . 189
`8.5.1 The Enzymatic Reaction . . . . . . . . . . . . . . . . . . . 191
`8.6 Complex Deterministic Models
`. . . . . . . . . . . . . . . . . . . 193
`8.6.1 Geometric Considerations . . . . . . . . . . . . . . . . . . 194
`8.6.2 Tracer Washout Curve . . . . . . . . . . . . . . . . . . . . 195
`8.6.3 Model for the Circulatory System . . . . . . . . . . . . . . 197
`8.7 Compartmental Models and Heterogeneity . . . . . . . . . . . . . 199
`
`Page 12
`
`

`

`xiv
`
` Contents
`
`205
`9 Stochastic Compartmental Models
`9.1 Probabilistic Transfer Models . . . . . . . . . . . . . . . . . . . . 206
`9.1.1 Definitions
`. . . . . . . . . . . . . . . . . . . . . . . . . . 206
`9.1.2 The Basic Steps
`. . . . . . . . . . . . . . . . . . . . . . . 208
`9.2 Retention-Time Distribution Models . . . . . . . . . . . . . . . . 210
`9.2.1 Probabilistic vs. Retention-Time Models . . . . . . . . . . 210
`9.2.2 Markov vs. Semi-Markov Models . . . . . . . . . . . . . . 212
`9.2.3
`Irreversible Models . . . . . . . . . . . . . . . . . . . . . . 214
`9.2.4 Reversible Models
`. . . . . . . . . . . . . . . . . . . . . . 217
`9.2.5 Time-Varying Hazard Rates . . . . . . . . . . . . . . . . . 222
`9.2.6 Pseudocompartment Techniques
`. . . . . . . . . . . . . . 225
`9.2.7 A Typical Two-Compartment Model . . . . . . . . . . . . 231
`9.3 Time—Concentration Profiles
`. . . . . . . . . . . . . . . . . . . . 235
`9.3.1 Routes of Administration . . . . . . . . . . . . . . . . . . 236
`9.3.2
`Some Typical Drug Administration Schemes . . . . . . . . 237
`9.3.3 Time-Amount Functions . . . . . . . . . . . . . . . . . . . 239
`9.3.4 Process Uncertainty or Stochastic Error . . . . . . . . . . 243
`9.3.5 Distribution of Particles and Process Uncertainty . . . . . 245
`9.3.6 Time Profiles of the Model
`. . . . . . . . . . . . . . . . . 249
`9.4 Random Hazard-Rate Models . . . . . . . . . . . . . . . . . . . . 251
`9.4.1 Probabilistic Models with Random Hazard Rates . . . . . 253
`9.4.2 Retention-Time Models with Random Hazard Rates . . . 258
`9.5 The Kolmogorov or Master Equations
`. . . . . . . . . . . . . . . 260
`9.5.1 Master Equation and Diffusion . . . . . . . . . . . . . . . 263
`9.5.2 Exact Solution in Matrix Form . . . . . . . . . . . . . . . 265
`9.5.3 Cumulant Generating Functions
`. . . . . . . . . . . . . . 265
`9.5.4
`Stochastic Simulation Algorithm . . . . . . . . . . . . . . 267
`9.5.5
`Simulation of Linear and Nonlinear Models . . . . . . . . 272
`9.6 Fractals and Stochastic Modeling . . . . . . . . . . . . . . . . . . 281
`9.7 Stochastic vs. Deterministic Models
`. . . . . . . . . . . . . . . . 285
`
`IV MODELING IN PHARMACODYNAMICS
`
`289
`
`293
`10 Classical Pharmacodynamics
`10.1 Occupancy Theory in Pharmacology . . . . . . . . . . . . . . . . 293
`10.2 Empirical Pharmacodynamic Models . . . . . . . . . . . . . . . . 295
`10.3 Pharmacokinetic-Dynamic Modeling . . . . . . . . . . . . . . . . 296
`10.3.1 Link Models . . . . . . . . . . . . . . . . . . . . . . . . . . 297
`10.3.2 Response Models . . . . . . . . . . . . . . . . . . . . . . . 303
`10.4 Other Pharmacodynamic Models . . . . . . . . . . . . . . . . . . 305
`10.4.1 The Receptor—Transducer Model
`. . . . . . . . . . . . . . 305
`10.4.2 Irreversible Models . . . . . . . . . . . . . . . . . . . . . . 305
`10.4.3 Time-Variant Models . . . . . . . . . . . . . . . . . . . . . 306
`10.4.4 Dynamic Nonlinear Models . . . . . . . . . . . . . . . . . 308
`10.5 Unification of Pharmacodynamic Models . . . . . . . . . . . . . . 309
`
`Page 13
`
`

`

`Contents
`
`xv
`
`10.6 The Population Approach . . . . . . . . . . . . . . . . . . . . . . 310
`10.6.1 Inter- and Intraindividual Variability . . . . . . . . . . . . 310
`10.6.2 Models and Software . . . . . . . . . . . . . . . . . . . . . 311
`10.6.3 Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
`10.6.4 Applications
`. . . . . . . . . . . . . . . . . . . . . . . . . 313
`
`315
`11 Nonclassical Pharmacodynamics
`11.1 Nonlinear Concepts in Pharmacodynamics . . . . . . . . . . . . . 316
`11.1.1 Negative Feedback . . . . . . . . . . . . . . . . . . . . . . 316
`11.1.2 Delayed Negative Feedback . . . . . . . . . . . . . . . . . 322
`11.2 Pharmacodynamic Applications . . . . . . . . . . . . . . . . . . . 334
`11.2.1 Drugs Affecting Endocrine Function . . . . . . . . . . . . 334
`11.2.2 Central Nervous System Drugs . . . . . . . . . . . . . . . 344
`11.2.3 Cardiovascular Drugs
`. . . . . . . . . . . . . . . . . . . . 348
`11.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 350
`
`A Stability Analysis
`
`B Monte Carlo Simulations in Drug Release
`
`C Time-Varying Models
`
`353
`
`355
`
`359
`
`363
`D Probability
`. . . . . . . . . . . . . . . . . . . . . . . . . . . 363
`D.1 Basic Properties
`D.2 Expectation, Variance, and Covariance . . . . . . . . . . . . . . . 364
`D.3 Conditional Expectation and Variance . . . . . . . . . . . . . . . 365
`D.4 Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . 365
`
`E Convolution in Probability Theory
`
`F Laplace Transform
`
`G Estimation
`
`H Theorem on Continuous Functions
`
`I List of Symbols
`
`Bibliography
`
`Index
`
`367
`
`369
`
`371
`
`373
`
`375
`
`383
`
`433
`
`Page 14
`
`

`

`List of Figures
`
`1.1 The Koch curve . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`1.2 The Sierpinski triangle and the Menger sponge . . . . . . . . . .
`1.3 Cover dimension . . . . . . . . . . . . . . . . . . . . . . . . . . .
`1.4 A 6 × 6 square lattice site model
`. . . . . . . . . . . . . . . . . .
`1.5 Percolation cluster derived from computer simulation . . . . . . .
`
`2.1 One-dimensional random walk . . . . . . . . . . . . . . . . . . . .
`2.2 Random walks in two dimensions . . . . . . . . . . . . . . . . . .
`2.3 Solute diffusion across a plane . . . . . . . . . . . . . . . . . . . .
`2.4 Concentration-distance profiles derived from Fick’s law . . . . . .
`2.5 Rate vs. solute concentration in Michaelis—Menten kinetics
`. . .
`
`3.1 Difference between random and chaotic processes . . . . . . . . .
`3.2 Schematic representation of various types of attractors . . . . . .
`3.3 The logistic map, for various values of the parameter θ . . . . . .
`3.4 The bifurcation diagram of the logistic map . . . . . . . . . . . .
`3.5 The Rössler strange attractor . . . . . . . . . . . . . . . . . . . .
`
`4.1 The spatial concentration profile of a drug . . . . . . . . . . . . .
`4.2 Case II drug transport with axial and radial release from
`a cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`4.3 Fractional drug release vs. time . . . . . . . . . . . . . . . . . . .
`4.4 Schematic of a system used to study diffusion . . . . . . . . . . .
`4.5 Monte Carlo simulation of the release data . . . . . . . . . . . . .
`4.6 Number of particles inside a cylinder vs. time . . . . . . . . . . .
`4.7 Simulations with the Weibull and the power-law model . . . . . .
`4.8 Fluoresceine release data from HPMC matrices . . . . . . . . . .
`4.9 Buflomedil pyridoxal release from HPMC matrices . . . . . . . .
`4.10 Chlorpheniramine maleate release from HPMC
`K15M matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`4.11 A percolation fractal embedded on a 2-dimensional
`square lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`4.12 Plot of the release rate vs. time . . . . . . . . . . . . . . . . . . .
`4.13 Number of particles remaining in the percolation fractal
`. . . . .
`
`6
`7
`10
`14
`15
`
`19
`20
`24
`27
`30
`
`40
`42
`44
`46
`48
`
`59
`
`62
`65
`69
`70
`73
`74
`76
`77
`
`77
`
`79
`80
`81
`
`xvii
`
`Page 15
`
`

`

`xviii
`
` List of Figures
`
`4.14 Fitting of the power law to pseudodata . . . . . . . . . . . . . . .
`4.15 Triphasic drug release kinetics . . . . . . . . . . . . . . . . . . . .
`4.16 Conversion of pH oscillations to oscillations in drug flux . . . . .
`4.17 Schematic of pulsating drug delivery device . . . . . . . . . . . .
`
`84
`85
`86
`87
`
`90
`5.1 Basic steps in the drug dissolution mechanism . . . . . . . . . . .
`91
`5.2 Schematic representation of the dissolution mechanisms
`. . . . .
`95
`5.3 Accumulated fraction of drug dissolved vs. time . . . . . . . . . .
`98
`5.4 Cumulative dissolution profile vs. time . . . . . . . . . . . . . . .
`5.5 Plot of M DT vs. θ . . . . . . . . . . . . . . . . . . . . . . . . . .
`99
`5.6 Discrete, reaction-limited dissolution process
`. . . . . . . . . . . 102
`5.7 Dissolved fraction vs. generations (part I) . . . . . . . . . . . . . 103
`5.8 Dissolved fraction vs. generations (part II)
`. . . . . . . . . . . . 105
`5.9 Fraction of dose dissolved for danazol data
`(continuous model) . . . . . . . . . . . . . . . . . . . . . . . . . . 106
`5.10 Fraction of dose dissolved for danazol data
`(discrete model)
`. . . . . . . . . . . . . . . . . . . . . . . . . . . 106
`5.11 Fraction of dose dissolved for nifedipine data
`(discrete model)
`. . . . . . . . . . . . . . . . . . . . . . . . . . . 108
`
`6.1 Fraction of dose absorbed vs. Z . . . . . . . . . . . . . . . . . . . 117
`6.2 The small intestine as a homogeneous cylindrical tube . . . . . . 118
`6.3 Fraction of dose absorbed vs. the permeability . . . . . . . . . . 121
`6.4 Schematic of the ACAT model
`. . . . . . . . . . . . . . . . . . . 124
`6.5 Schematic of the velocity of the fluid inside the tube . . . . . . . 125
`6.6 Snapshots of normalized concentration inside the
`intestinal lumen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
`6.7 A gastrointestinal dispersion model with
`spatial heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . 128
`6.8 Geometric representation of dissolution . . . . . . . . . . . . . . . 132
`6.9 Geometry of the heterogeneous tube . . . . . . . . . . . . . . . . 137
`6.10 Cross sections of the tube at random positions
`. . . . . . . . . . 138
`6.11 Mean transit times vs. the forward probability . . . . . . . . . . 141
`6.12 Frequency of mean transit times vs. time
`. . . . . . . . . . . . . 142
`6.13 Fraction of dose absorbed vs. An . . . . . . . . . . . . . . . . . . 146
`6.14 Three-dimensional graph of fraction dose absorbed . . . . . . . . 147
`6.15 The Biopharmaceutics Classification System (BCS).
`. . . . . . . 149
`6.16 Characterization of the classes of the QBCS . . . . . . . . . . . . 150
`6.17 The classification of 42 drugs in the plane of the QBCS . . . . . 152
`6.18 Dose vs. the dimensionless solubility—dose ratio . . . . . . . . . . 155
`6.19 Mean dissolution time in the intestine vs.
`effective permeability . . . . . . . . . . . . . . . . . . . . . . . . . 156
`6.20 Dose vs. 1/θ for the experimental data of Table 6.1 . . . . . . . . 157
`6.21 Phase plane

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket