throbber
R E V I E W S
`
`Advances in the development of
`nucleoside and nucleotide analogues
`for cancer and viral diseases
`
`Lars Petter Jordheim1,2, David Durantel3, Fabien Zoulim2,3 and Charles Dumontet1,2
`
`(cid:35)(cid:68)(cid:85)(cid:86)(cid:84)(cid:67)(cid:69)(cid:86)(cid:2)(cid:94)(cid:2)(cid:48)(cid:87)(cid:69)(cid:78)(cid:71)(cid:81)(cid:85)(cid:75)(cid:70)(cid:71)(cid:2)(cid:67)(cid:80)(cid:67)(cid:78)(cid:81)(cid:73)(cid:87)(cid:71)(cid:85)(cid:2)(cid:74)(cid:67)(cid:88)(cid:71)(cid:2)(cid:68)(cid:71)(cid:71)(cid:80)(cid:2)(cid:75)(cid:80)(cid:2)(cid:69)(cid:78)(cid:75)(cid:80)(cid:75)(cid:69)(cid:67)(cid:78)(cid:2)(cid:87)(cid:85)(cid:71)(cid:2)(cid:72)(cid:81)(cid:84)(cid:2)(cid:67)(cid:78)(cid:79)(cid:81)(cid:85)(cid:86)(cid:2)(cid:23)(cid:18)(cid:124)(cid:91)(cid:71)(cid:67)(cid:84)(cid:85)(cid:2)(cid:67)(cid:80)(cid:70)(cid:2)(cid:74)(cid:67)(cid:88)(cid:71)(cid:2)
`become cornerstones of treatment for patients with cancer or viral infections. The approval
`(cid:81)(cid:72)(cid:2)(cid:85)(cid:71)(cid:88)(cid:71)(cid:84)(cid:67)(cid:78)(cid:2)(cid:67)(cid:70)(cid:70)(cid:75)(cid:86)(cid:75)(cid:81)(cid:80)(cid:67)(cid:78)(cid:2)(cid:70)(cid:84)(cid:87)(cid:73)(cid:85)(cid:2)(cid:81)(cid:88)(cid:71)(cid:84)(cid:2)(cid:86)(cid:74)(cid:71)(cid:2)(cid:82)(cid:67)(cid:85)(cid:86)(cid:2)(cid:70)(cid:71)(cid:69)(cid:67)(cid:70)(cid:71)(cid:2)(cid:70)(cid:71)(cid:79)(cid:81)(cid:80)(cid:85)(cid:86)(cid:84)(cid:67)(cid:86)(cid:71)(cid:85)(cid:2)(cid:86)(cid:74)(cid:67)(cid:86)(cid:2)(cid:86)(cid:74)(cid:75)(cid:85)(cid:2)(cid:72)(cid:67)(cid:79)(cid:75)(cid:78)(cid:91)(cid:2)(cid:85)(cid:86)(cid:75)(cid:78)(cid:78)(cid:2)(cid:82)(cid:81)(cid:85)(cid:85)(cid:71)(cid:85)(cid:85)(cid:71)(cid:85)(cid:2)
`strong potential. Here, we review new nucleoside analogues and associated compounds
`(cid:86)(cid:74)(cid:67)(cid:86)(cid:2)(cid:67)(cid:84)(cid:71)(cid:2)(cid:69)(cid:87)(cid:84)(cid:84)(cid:71)(cid:80)(cid:86)(cid:78)(cid:91)(cid:2)(cid:75)(cid:80)(cid:2)(cid:82)(cid:84)(cid:71)(cid:69)(cid:78)(cid:75)(cid:80)(cid:75)(cid:69)(cid:67)(cid:78)(cid:2)(cid:81)(cid:84)(cid:2)(cid:69)(cid:78)(cid:75)(cid:80)(cid:75)(cid:69)(cid:67)(cid:78)(cid:2)(cid:70)(cid:71)(cid:88)(cid:71)(cid:78)(cid:81)(cid:82)(cid:79)(cid:71)(cid:80)(cid:86)(cid:2)(cid:72)(cid:81)(cid:84)(cid:2)(cid:86)(cid:74)(cid:71)(cid:2)(cid:86)(cid:84)(cid:71)(cid:67)(cid:86)(cid:79)(cid:71)(cid:80)(cid:86)(cid:2)(cid:81)(cid:72)(cid:2)(cid:69)(cid:67)(cid:80)(cid:69)(cid:71)(cid:84)(cid:2)(cid:67)(cid:80)(cid:70)(cid:2)(cid:88)(cid:75)(cid:84)(cid:67)(cid:78)(cid:2)
`infections, and that aim to provide increased response rates and reduced side effects.
`We also highlight the different approaches used in the development of these drugs and the
`(cid:82)(cid:81)(cid:86)(cid:71)(cid:80)(cid:86)(cid:75)(cid:67)(cid:78)(cid:2)(cid:81)(cid:72)(cid:2)(cid:82)(cid:71)(cid:84)(cid:85)(cid:81)(cid:80)(cid:67)(cid:78)(cid:75)(cid:92)(cid:71)(cid:70)(cid:2)(cid:86)(cid:74)(cid:71)(cid:84)(cid:67)(cid:82)(cid:91)(cid:16)
`
`issues of resistance, poor oral bioavailability, long-term
`toxicity and inter-individual variability requiring dose
`adaptation.
`In this Review, we first highlight approved agents,
`their mechanisms of action and mechanisms of resist-
`ance, and then focus on recent progress in the develop-
`ment of new nucleoside and nucleotide analogues for the
`treatment of cancer and viral disease, which are two of
`the main indications for this drug class.
`
`© 2013 Macmillan Publishers Limited. All rights reserved
`
` VOLUME 12 | JUNE 2013 | 447
`
`Nucleosides and nucleotides are endogenous compounds
`that are involved in several cellular processes such as
`DNA and RNA synthesis, cell signalling, enzyme regula-
`tion and metabolism. Nucleoside and nucleotide ana-
`logues are synthetic, chemically modified compounds
`that have been developed to mimic their physio logical
`counterparts (FIG. 1) in order to exploit cellular metabo-
`lism and subsequently be incorporated into DNA and
`RNA to inhibit cellular division and viral replication.
`This action has potential therapeutic benefits — for
`example, in the inhibition of cancer cell growth, the
`Approved agents
`Since the initial approval of cytarabine in 1969 by the
`inhibition of viral replication as well as other indica-
`tions (BOX 1). In addition to their incorporation into
`US Food and Drug Administration (FDA) for the treat-
`nucleic acids, nucleoside and nucleotide analogues
`ment of acute myeloid leukaemia, numerous nucleo-
`can interact with and inhibit essential enzymes such as
`side analogues have been synthesized and evaluated in
`human and viral polymerases (that is, DNA-dependent
`patients for the treatment of cancers. There are currently
`DNA polymerases, RNA-dependent DNA polymerases
`six FDA- and European Medicines Agency (EMA)-
`or RNA-dependent RNA polymerases), kinases, ribo-
`approved cytotoxic nucleoside analogues, all of which
`nucleotide reductase, DNA methyltransferases, purine
`are nucleosides, that are derivatives of deoxycytidine,
`and pyrimidine nucleoside phosphorylase and thymi-
`deoxyadenosine or deoxyguanosine (Supplementary
`dylate synthase.
`information S1 (table)). Two compounds, azacitidine
`The seminal work of Gertrude B. Elion and George
`(approved in 2004) and decitabine (approved in 2006),
`are used as demethylating agents but have also shown anti-
`H. Hitchings led to the development of agents such
`as the nucleobase 6-mercaptopurine and the antiviral
`proliferative activity against cancer cells.
`nucleoside analogue acyclovir 1,2. Further pioneering
`The first antiviral nucleoside analogue, edoxudine,
`work by Erik De Clercq and Antonín Holý allowed the
`which is not used in the clinic anymore, was also approved
`development of several of the nucleoside and nucleotide
`by the FDA in 1969; there are currently over 25 approved
`analogues that are currently in clinical use3,4. However,
`nucleoside and nucleotide analogues that are used as
`despite the availability of several nucleoside and nucleo-
`antiviral agents for several indications such as hepatitis,
`tide analogues in the clinic, the development of newer
`HIV and herpesvirus infections (Supplementary infor-
`agents with improved properties is needed to overcome
`mation S1 (table)). In addition, antiviral nucleoside
`Gilead 2011 - I-MAK v. Gilead - IPR2018-00125
`NATURE REVIEWS | DRUG DISCOVERY
`
`1Anticancer Antibody Team,
`Institut National de la Santé
`et de la Recherche Médicale
`(INSERM) U1052, Centre
`national de la recherche
`scientifique UMR 5286,
`Cancer Research Center of
`Lyon, Faculté Rockefeller,
`8 Ave Rockefeller, 69008
`Lyon, France.
`2Hematology Laboratory,
`Hospices Civils de Lyon,
`F-69000 Lyon, France.
`3Pathogenesis of hepatitis B
`and C infection team, Institut
`National de la Santé et de la
`Recherche Médicale
`(INSERM) U1052, Centre
`national de la recherche
`scientifique UMR 5286,
`Cancer Research Center of
`Lyon, 151 cours Albert
`Thomas, 69424 Lyon
`Cedex 03, France.
`e-mails: lars-petter.
`jordheim@univ-lyon1.fr;
`david.durantel@inserm.fr;
`fabien.zoulim@inserm.fr;
`charles.dumontet@chu-lyon.fr
`doi:10.1038/nrd4010
`
`

`

`R E V I E W S
`
`Nucleotide
`Nucleoside
`Nucleobase
`
`Azotation
`
`Halogenation
`
`Protection by
`polar groups
`
`Base
`
`N-conjugation
`
`P
`
`Sugar
`
`Halogenation
`
`Replacement of P–O
`bond by P–N bond
`
`Methylation
`
`Saturation
`
`Hydroxylation or
`dehydroxylation
`
`Ring opening
`
`Figure 1 | General structural and chemical modifications of nucleoside and
`nucleotide analogues. Nucleoside and nucleotide analogues consist of a nucleobase
`(cid:10)(cid:67)(cid:2)(cid:82)(cid:87)(cid:84)(cid:75)(cid:80)(cid:71)(cid:2)(cid:81)(cid:84)(cid:2)(cid:82)(cid:91)(cid:84)(cid:75)(cid:79)(cid:75)(cid:70)(cid:75)(cid:80)(cid:71)(cid:2)(cid:70)(cid:71)(cid:84)(cid:75)(cid:88)(cid:67)(cid:86)(cid:75)(cid:88)(cid:71)(cid:11)(cid:2)(cid:78)(cid:75)(cid:80)(cid:77)(cid:71)(cid:70)(cid:2)(cid:86)(cid:81)(cid:2)(cid:67)(cid:2)(cid:85)(cid:87)(cid:73)(cid:67)(cid:84)(cid:2)(cid:79)(cid:81)(cid:75)(cid:71)(cid:86)(cid:91)(cid:14)(cid:2)(cid:67)(cid:80)(cid:70)(cid:2)(cid:80)(cid:87)(cid:69)(cid:78)(cid:71)(cid:81)(cid:86)(cid:75)(cid:70)(cid:71)(cid:2)(cid:67)(cid:80)(cid:67)(cid:78)(cid:81)(cid:73)(cid:87)(cid:71)(cid:85)(cid:2)
`(cid:74)(cid:67)(cid:88)(cid:71)(cid:2)(cid:67)(cid:2)(cid:82)(cid:74)(cid:81)(cid:85)(cid:82)(cid:74)(cid:67)(cid:86)(cid:71)(cid:2)(cid:73)(cid:84)(cid:81)(cid:87)(cid:82)(cid:2)(cid:10)(cid:50)(cid:11)(cid:2)(cid:78)(cid:75)(cid:80)(cid:77)(cid:71)(cid:70)(cid:2)(cid:86)(cid:81)(cid:2)(cid:86)(cid:74)(cid:71)(cid:2)(cid:85)(cid:87)(cid:73)(cid:67)(cid:84)(cid:2)(cid:79)(cid:81)(cid:75)(cid:71)(cid:86)(cid:91)(cid:16)(cid:2)(cid:54)(cid:74)(cid:71)(cid:2)(cid:69)(cid:74)(cid:71)(cid:79)(cid:75)(cid:69)(cid:67)(cid:78)(cid:2)(cid:70)(cid:75)(cid:88)(cid:71)(cid:84)(cid:85)(cid:75)(cid:86)(cid:91)(cid:2)(cid:81)(cid:72)(cid:2)(cid:86)(cid:74)(cid:71)(cid:85)(cid:71)(cid:2)
`(cid:69)(cid:81)(cid:79)(cid:82)(cid:81)(cid:87)(cid:80)(cid:70)(cid:85)(cid:2)(cid:75)(cid:85)(cid:2)(cid:68)(cid:67)(cid:85)(cid:71)(cid:70)(cid:2)(cid:81)(cid:80)(cid:2)(cid:79)(cid:81)(cid:70)(cid:75)(cid:72)(cid:75)(cid:69)(cid:67)(cid:86)(cid:75)(cid:81)(cid:80)(cid:85)(cid:2)(cid:85)(cid:87)(cid:69)(cid:74)(cid:2)(cid:67)(cid:85)(cid:2)(cid:74)(cid:67)(cid:78)(cid:81)(cid:73)(cid:71)(cid:80)(cid:67)(cid:86)(cid:75)(cid:81)(cid:80)(cid:14)(cid:2)(cid:67)(cid:92)(cid:81)(cid:86)(cid:67)(cid:86)(cid:75)(cid:81)(cid:80)(cid:14)(cid:2)(cid:82)(cid:84)(cid:81)(cid:86)(cid:71)(cid:69)(cid:86)(cid:75)(cid:81)(cid:80)(cid:2)(cid:68)(cid:91)(cid:2)
`(cid:82)(cid:81)(cid:78)(cid:67)(cid:84)(cid:2)(cid:73)(cid:84)(cid:81)(cid:87)(cid:82)(cid:85)(cid:2)(cid:67)(cid:80)(cid:70)(cid:2)(cid:81)(cid:86)(cid:74)(cid:71)(cid:84)(cid:2)(cid:79)(cid:81)(cid:70)(cid:75)(cid:72)(cid:75)(cid:69)(cid:67)(cid:86)(cid:75)(cid:81)(cid:80)(cid:85)(cid:2)(cid:85)(cid:74)(cid:81)(cid:89)(cid:80)(cid:2)(cid:75)(cid:80)(cid:2)(cid:86)(cid:74)(cid:75)(cid:85)(cid:2)(cid:72)(cid:75)(cid:73)(cid:87)(cid:84)(cid:71)(cid:16)(cid:2)(cid:48)(cid:14)(cid:2)(cid:80)(cid:75)(cid:86)(cid:84)(cid:81)(cid:73)(cid:71)(cid:80)(cid:29)(cid:2)(cid:49)(cid:14)(cid:2)(cid:81)(cid:90)(cid:91)(cid:73)(cid:71)(cid:80)(cid:16)
`
`and nucleotide analogues are structurally more diverse
`than anticancer nucleoside analogues, as they consist of
`nucleosides, nucleotides and acyclic nucleosides5. A major
`difference between anticancer nucleoside analogues
`and antiviral nucleoside and/or nucleotide analogues is
`that antiviral nucleoside and/or nucleotide analogues
`have low activity on mammalian enzymes, which results
`in a better tolerance profile than anticancer nucleoside
`analogues.
`
`Mechanisms of action of nucleoside analogues
`Currently used therapeutic nucleoside and nucleo-
`tide analogues exploit the same metabolic pathways as
`endogenous nucleosides or nucleotides, and they also
`act as antimetabolites (FIG. 2). Nucleoside and nucleotide
`analogues enter cells through specific nucleoside trans-
`porters6,7 and there is growing evidence that organic
`anion or cation transporters as well as peptide transport-
`ers are involved in the cellular uptake of certain antiviral
`analogues. Inside the cells, the drugs are subsequently
`phosphorylated by a nucleoside kinase and a nucleoside
`monophosphate kinase, and then a nucleoside diphos-
`phate kinase, creatine kinase or 3-phosphoglycerate
`kinase catalyses the last phosphorylation step. This
`leads to the accumulation of di- and triphosphorylated
`nucleoside analogues in cancer or virus-infected cells.
`In cells infected by some DNA viruses (such as
`herpesvirus-infected cells) the first and second phos-
`phorylation steps of thymidine are also performed
`by a virus-encoded thymidine kinase8. Herpesvirus
`thymidine kinases have broader substrate specificity
`than mammalian counterparts; this difference in
`
`Ribonucleotide reductase
`A complex intracellular enzyme
`that converts ribonucleoside
`diphosphates into deoxyribo-
`nucleoside diphosphates, and
`is targeted by anticancer
`agents such as gemcitabine.
`
`Nucleobase
`A nitrogen-containing
`heterocyclic compound that
`can be grouped into purines
`(adenine and guanine) and
`pyrimidines (cytosine, thymine
`and uracil).
`
`Dose adaptation
`Determination of the dose that
`should be administered to a
`patient based on predicted or
`observed toxicity.
`
`Demethylating agents
`Compounds that modify the
`methylation status of
`regulatory sequences in DNA,
`thereby modifying the levels
`of expression of the
`corresponding gene.
`
`Nucleoside transporters
`Membrane pumps that allow
`the uptake and/or the efflux
`of nucleosides by cells.
`
`substrate specificity forms the basis for the selectivity
`of nucleoside and nucleotide analogues as anti-herpes
`molecules9,10. Mono-, di- and triphosphorylated nucleo-
`sides are the active forms of these drugs and they act by
`inhibiting intracellular enzymes, such as viral or human
`polymerases or ribonucleotide reductase, as well as by
`being incorporated into newly synthesized DNA and
`RNA. The incorporation of nucleoside or nucleotide
`analogues into DNA may induce either the termina-
`tion of chain elongation, the accumulation of mutations
`in viral progeny or the induction of apoptosis (BOX 2).
`Supplementary information S2 (table) details the conse-
`quences of inhibiting viral enzymes using nucleoside or
`nucleotide analogues of four different viruses that affect
`human health.
`An in-depth knowledge of the mechanism of action
`of currently used compounds is of great value for the
`development of new compounds. These data have led to
`the development of compounds that act independently of
`membrane transporters or activating kinases and are less
`susceptible to degradation. A better understanding of the
`mechanism of action of these compounds will also con-
`tribute to the rational development of synergistic combi-
`nations of nucleoside or nucleotide analogues with drugs
`that have different and/or complementary mechanisms
`of action.
`
`Mechanisms of resistance
`Understanding the mechanisms that cause resistance to
`currently used nucleoside and nucleotide analogues is
`a prerequisite for the development of novel agents that
`could circumvent these mechanisms and therefore be
`prescribed to patients with relapsing or refractory dis-
`ease. Resistance of cancer cells to the effects of nucleo-
`side analogues is thought to be largely due to somatic
`changes in the tumour cells. Resistance to the inhibitory
`effects of nucleoside and nucleotide analogues on viral
`replication seems to be due to specific mutations in the
`viral genomes but may also be partly due to mutations
`and/or single nucleotide polymorphisms in the host
`genome; however, this needs to be further investigated.
`For example, the interferon λ3 (IFNL3; also known as
`IL28B) polymorphism strongly predicted the response
`to interferon and ribavirin in patients with hepatitis C
`virus (HCV) genotype 1 infection, via a mechanism that
`may involve the responsiveness of the infected host to
`interferon11.
`
`Metabolic resistance profile. Studying the pathways
`involved in the transport, activation or inactivation of
`nucleoside analogues has allowed the identification
`of mechanisms of resistance to these drugs, many of
`which have subsequently been clinically validated12. In
`cancer cells, a deficiency in nucleoside transporters such
`as equilibrative nucleoside transporter 1 (ENT1; also
`known as SLC29A1) or intracellular nucleoside kinases
`such as deoxycytidine kinase (DCK), as well as increased
`activity of ribonucleotide reductase and expression of
`5ʹ-nucleotidases, are all correlated with a reduced cyto-
`toxicity of nucleoside analogues in cell models and in
`clinical samples12–15.
`
`448 | JUNE 2013 | VOLUME 12
`
` www.nature.com/reviews/drugdisc
`
`© 2013 Macmillan Publishers Limited. All rights reserved
`
`

`

`R E V I E W S
`
`Box 1 | Other indications and actions of nucleoside and nucleotide analogues
`
`Besides their classical use in cancer and virology, some nucleoside and nucleotide analogues, and related compounds
`such as xanthine derivatives, have been used in various other indications.
`Hyperuricaemia
`Allopurinol, a structural isomer of hypoxanthine, is an inhibitor of xanthine oxidase and has been used for the treatment
`of chronic hyperuricaemia since 1966.
`Immunosuppression
`Azathioprine, a purine analogue that is a derivative of mercaptopurine, is used as an immunosuppressive drug in organ
`transplantation and autoimmune disease. Bone marrow suppression can be life-threatening in patients with low levels
`of thiopurine S-methyltransferase and so screening of this enzyme is recommended before azathioprine is prescribed.
`Cladribine also possesses specific activity on lymphocytes and has therefore been evaluated in patients with autoimmune
`diseases such as rheumatoid arthritis and multiple sclerosis.
`Phosphodiesterase inhibitors
`Theophylline, a methylxanthine analogue, acts as a nonselective inhibitor of phosphodiesterases, leads to an increase in
`intracellular cyclic AMP and is indicated in several situations including the treatment of chronic obstructive pulmonary
`disease and asthma.
`Epigenetic modulators
`Decitabine and azacitidine are DNA methyltransferase inhibitors and act as demethylating agents. Decitabine and
`azacitidine are currently approved for the treatment of myelodysplastic syndromes.
`Neuroprotection and cardioprotection
`The cellular uptake of adenosine as well as the activity of the intracellular enzyme adenosine kinase have been
`considered as potential targets for the protection of neurons and cardiac cells159,160.
`
`An increase in the activity of cytidine deaminase
`has also been correlated with decreased activity of cyti-
`dine derivatives (cytarabine and gemcitabine) in vitro16.
`Conversely, decreased cytidine deaminase activity in
`clinical blood samples was associated with increased
`exposure to the parental compound (gemcitabine),
`which subsequently resulted in the induction of toxic-
`ity17. Accordingly, an assessment of cytidine deaminase
`activity in the serum can be routinely performed before
`gemcitabine is administered to patients with cancer, and
`this could help clinicians to use a dose of gemcitabine that
`reduces the risk of severe toxicity18.
`
`Genomic resistance profile. The rate of spontaneous
`mutations within viral genomes is far higher than in
`mammalian genomes owing to absent or limited proof-
`reading capabilities of viral polymerases. RNA viruses
`exist as complex quasi-species (that is, a wide population
`of related genomes that differ by less than 5%), which
`evolve over time depending on the selective pressure of
`the environment or exposure to therapy. This property
`is, at least in part, responsible for the high adaptability
`of viruses and represents a major hurdle to overcoming
`resistance because mutants that confer resistance to a
`given drug may appear or pre-exist in the population of
`genomes. Generally, resistance to a given nucleoside or
`nucleotide analogue is caused by a limited number of
`mutations (usually fewer than five) in a viral genome,
`which mainly affect the catalytic site of the polymerase
`to which the normal nucleotides or nucleotide ana-
`logues bind. Supplementary information S3 (table) lists
`the main mutations — within the genes encoding HCV,
`hepatitis B virus (HBV) and HIV polymerases — that
`confer resistance to the nucleoside or nucleotide ana-
`logues that are approved or in late-stage development.
`
`We believe that the determination of resistance and
`toxicity factors before initiating treatment will become
`a major parameter that will, in the near future, enable
`the selection of the most appropriate nucleoside or
`nucleotide analogues for therapy. As selected mutations
`in viral genomes and clinically relevant polymorphisms
`in genes encoding proteins that are involved in nucleo-
`tide metabolism are increasingly being validated, these
`analyses — performed before initiating treatment — will
`contribute to better efficacy and tolerance.
`
`Predicting response
`The ability to choose a treatment that has the highest
`probability of invoking a positive response would be
`beneficial to patients, their environment (in the case of
`contagious diseases) and the health-care system overall
`as it would reduce costs. As illustrated below, our current
`ability to predict patient response is essentially based on
`our knowledge of drug metabolism and targeting as well
`as mechanisms of resistance.
`
`Genetic polymorphisms and somatic phenotypes. The
`response to currently used regimens based on nucleoside
`or nucleotide analogues can be partially predicted by the
`genetic make-up of patients. Many studies that aimed
`to identify biological markers of treatment outcome
`have collectively highlighted the link between genetic
`polymorphisms and patient response to a nucleoside or
`nucleotide analogue; the main results of these studies
`are presented in Supplementary information S4 (table).
`
`Target cell phenotype. Studies performed directly on
`tumour cells to identify markers that predict the activity
`of nucleoside and nucleotide analogue-based treatments
`have shown that clinically relevant markers include
`
`Chain elongation
`The increase in length of DNA
`or RNA strands during
`replication or transcription.
`
`NATURE REVIEWS | DRUG DISCOVERY
`
` VOLUME 12 | JUNE 2013 | 449
`
`© 2013 Macmillan Publishers Limited. All rights reserved
`
`

`

`R E V I E W S
`
`Nucleoside analogue
`
`Nucleoside transporter
`
`Nucleoside analogue
`
`5′-nucleotidase
`
`Nucleoside
`kinase
`
`Deaminase
`
`Nucleoside analogue
`
`Deamination
`
`P
`
`Nucleoside
`monophosphate
`kinase
`
`Nucleoside analogue
`
`P P
`
`RRM1
`
`Nucleoside
`diphosphate
`kinase
`
`DNA incorporation
`
`RNA incorporation
`
`Nucleoside analogue
`
`P P P
`
`DNA synthesis
`
`Figure 2 | Mechanism of action of nucleoside analogues. (cid:37)(cid:71)(cid:78)(cid:78)(cid:87)(cid:78)(cid:67)(cid:84)(cid:2)(cid:87)(cid:82)(cid:86)(cid:67)(cid:77)(cid:71)(cid:2)(cid:81)(cid:72)(cid:2)
`nucleoside analogues is an active process involving concentrative nucleoside
`(cid:86)(cid:84)(cid:67)(cid:80)(cid:85)(cid:82)(cid:81)(cid:84)(cid:86)(cid:71)(cid:84)(cid:85)(cid:2)(cid:10)(cid:37)(cid:48)(cid:54)(cid:85)(cid:11)(cid:2)(cid:67)(cid:80)(cid:70)(cid:2)(cid:71)(cid:83)(cid:87)(cid:75)(cid:78)(cid:75)(cid:68)(cid:84)(cid:67)(cid:86)(cid:75)(cid:88)(cid:71)(cid:2)(cid:80)(cid:87)(cid:69)(cid:78)(cid:71)(cid:81)(cid:85)(cid:75)(cid:70)(cid:71)(cid:2)(cid:86)(cid:84)(cid:67)(cid:80)(cid:85)(cid:82)(cid:81)(cid:84)(cid:86)(cid:71)(cid:84)(cid:85)(cid:2)(cid:10)(cid:39)(cid:48)(cid:54)(cid:85)(cid:11)(cid:16)(cid:2)(cid:54)(cid:74)(cid:71)(cid:84)(cid:71)(cid:2)(cid:67)(cid:84)(cid:71)(cid:2)
`(cid:86)(cid:74)(cid:84)(cid:71)(cid:71)(cid:2)(cid:37)(cid:48)(cid:54)(cid:85)(cid:2)(cid:67)(cid:80)(cid:70)(cid:2)(cid:72)(cid:81)(cid:87)(cid:84)(cid:2)(cid:39)(cid:48)(cid:54)(cid:85)(cid:2)(cid:70)(cid:71)(cid:85)(cid:69)(cid:84)(cid:75)(cid:68)(cid:71)(cid:70)(cid:2)(cid:75)(cid:80)(cid:2)(cid:74)(cid:87)(cid:79)(cid:67)(cid:80)(cid:85)(cid:16)(cid:2)(cid:49)(cid:80)(cid:69)(cid:71)(cid:2)(cid:75)(cid:80)(cid:85)(cid:75)(cid:70)(cid:71)(cid:2)(cid:86)(cid:74)(cid:71)(cid:2)(cid:69)(cid:71)(cid:78)(cid:78)(cid:14)(cid:2)(cid:86)(cid:74)(cid:71)(cid:2)(cid:80)(cid:87)(cid:69)(cid:78)(cid:71)(cid:81)(cid:85)(cid:75)(cid:70)(cid:71)(cid:2)
`(cid:67)(cid:80)(cid:67)(cid:78)(cid:81)(cid:73)(cid:87)(cid:71)(cid:2)(cid:87)(cid:80)(cid:70)(cid:71)(cid:84)(cid:73)(cid:81)(cid:71)(cid:85)(cid:2)(cid:67)(cid:80)(cid:2)(cid:75)(cid:80)(cid:75)(cid:86)(cid:75)(cid:67)(cid:78)(cid:2)(cid:84)(cid:67)(cid:86)(cid:71)(cid:15)(cid:78)(cid:75)(cid:79)(cid:75)(cid:86)(cid:75)(cid:80)(cid:73)(cid:2)(cid:82)(cid:74)(cid:81)(cid:85)(cid:82)(cid:74)(cid:81)(cid:84)(cid:91)(cid:78)(cid:67)(cid:86)(cid:75)(cid:81)(cid:80)(cid:2)(cid:85)(cid:86)(cid:71)(cid:82)(cid:2)(cid:68)(cid:91)(cid:2)(cid:67)(cid:2)(cid:80)(cid:87)(cid:69)(cid:78)(cid:71)(cid:81)(cid:85)(cid:75)(cid:70)(cid:71)(cid:2)
`(cid:77)(cid:75)(cid:80)(cid:67)(cid:85)(cid:71)(cid:14)(cid:2)(cid:89)(cid:74)(cid:75)(cid:69)(cid:74)(cid:2)(cid:78)(cid:71)(cid:67)(cid:70)(cid:85)(cid:2)(cid:86)(cid:81)(cid:2)(cid:86)(cid:74)(cid:71)(cid:2)(cid:82)(cid:84)(cid:81)(cid:70)(cid:87)(cid:69)(cid:86)(cid:75)(cid:81)(cid:80)(cid:2)(cid:81)(cid:72)(cid:2)(cid:67)(cid:2)(cid:79)(cid:81)(cid:80)(cid:81)(cid:82)(cid:74)(cid:81)(cid:85)(cid:82)(cid:74)(cid:67)(cid:86)(cid:71)(cid:2)(cid:79)(cid:71)(cid:86)(cid:67)(cid:68)(cid:81)(cid:78)(cid:75)(cid:86)(cid:71)(cid:16)(cid:2)(cid:35)(cid:2)(cid:85)(cid:71)(cid:69)(cid:81)(cid:80)(cid:70)(cid:2)
`(cid:82)(cid:74)(cid:81)(cid:85)(cid:82)(cid:74)(cid:81)(cid:84)(cid:91)(cid:78)(cid:67)(cid:86)(cid:75)(cid:81)(cid:80)(cid:2)(cid:85)(cid:86)(cid:71)(cid:82)(cid:2)(cid:75)(cid:85)(cid:2)(cid:86)(cid:74)(cid:71)(cid:80)(cid:2)(cid:82)(cid:71)(cid:84)(cid:72)(cid:81)(cid:84)(cid:79)(cid:71)(cid:70)(cid:2)(cid:68)(cid:91)(cid:2)(cid:80)(cid:87)(cid:69)(cid:78)(cid:71)(cid:81)(cid:85)(cid:75)(cid:70)(cid:71)(cid:2)(cid:79)(cid:81)(cid:80)(cid:81)(cid:82)(cid:74)(cid:81)(cid:85)(cid:82)(cid:74)(cid:67)(cid:86)(cid:71)(cid:2)(cid:77)(cid:75)(cid:80)(cid:67)(cid:85)(cid:71)(cid:14)(cid:2)
`(cid:67)(cid:80)(cid:70)(cid:2)(cid:86)(cid:74)(cid:71)(cid:2)(cid:86)(cid:74)(cid:75)(cid:84)(cid:70)(cid:2)(cid:82)(cid:74)(cid:81)(cid:85)(cid:82)(cid:74)(cid:81)(cid:84)(cid:91)(cid:78)(cid:67)(cid:86)(cid:75)(cid:81)(cid:80)(cid:2)(cid:85)(cid:86)(cid:71)(cid:82)(cid:2)(cid:75)(cid:85)(cid:2)(cid:82)(cid:71)(cid:84)(cid:72)(cid:81)(cid:84)(cid:79)(cid:71)(cid:70)(cid:2)(cid:68)(cid:91)(cid:2)(cid:80)(cid:87)(cid:69)(cid:78)(cid:71)(cid:81)(cid:85)(cid:75)(cid:70)(cid:71)(cid:2)(cid:70)(cid:75)(cid:82)(cid:74)(cid:81)(cid:85)(cid:82)(cid:74)(cid:67)(cid:86)(cid:71)(cid:2)(cid:77)(cid:75)(cid:80)(cid:67)(cid:85)(cid:71)(cid:16)(cid:2)
`Triphosphates can be incorporated in nucleic acids, in competition with their normal
`(cid:69)(cid:81)(cid:87)(cid:80)(cid:86)(cid:71)(cid:84)(cid:82)(cid:67)(cid:84)(cid:86)(cid:85)(cid:14)(cid:2)(cid:81)(cid:84)(cid:2)(cid:86)(cid:74)(cid:71)(cid:91)(cid:2)(cid:69)(cid:67)(cid:80)(cid:2)(cid:75)(cid:80)(cid:74)(cid:75)(cid:68)(cid:75)(cid:86)(cid:2)(cid:80)(cid:87)(cid:69)(cid:78)(cid:71)(cid:75)(cid:69)(cid:2)(cid:67)(cid:69)(cid:75)(cid:70)(cid:2)(cid:85)(cid:91)(cid:80)(cid:86)(cid:74)(cid:71)(cid:85)(cid:75)(cid:85)(cid:2)(cid:68)(cid:91)(cid:2)(cid:75)(cid:80)(cid:74)(cid:75)(cid:68)(cid:75)(cid:86)(cid:75)(cid:80)(cid:73)(cid:2)(cid:71)(cid:85)(cid:85)(cid:71)(cid:80)(cid:86)(cid:75)(cid:67)(cid:78)(cid:2)(cid:71)(cid:80)(cid:92)(cid:91)(cid:79)(cid:71)(cid:85)(cid:2)
`(cid:85)(cid:87)(cid:69)(cid:74)(cid:2)(cid:67)(cid:85)(cid:2)(cid:82)(cid:81)(cid:78)(cid:91)(cid:79)(cid:71)(cid:84)(cid:67)(cid:85)(cid:71)(cid:85)(cid:16)(cid:2)(cid:52)(cid:75)(cid:68)(cid:81)(cid:80)(cid:87)(cid:69)(cid:78)(cid:71)(cid:81)(cid:86)(cid:75)(cid:70)(cid:71)(cid:2)(cid:84)(cid:71)(cid:70)(cid:87)(cid:69)(cid:86)(cid:67)(cid:85)(cid:71)(cid:2)(cid:47)(cid:19)(cid:2)(cid:10)(cid:52)(cid:52)(cid:47)(cid:19)(cid:11)(cid:14)(cid:2)(cid:67)(cid:2)(cid:77)(cid:71)(cid:91)(cid:2)(cid:71)(cid:80)(cid:92)(cid:91)(cid:79)(cid:71)(cid:2)(cid:75)(cid:80)(cid:88)(cid:81)(cid:78)(cid:88)(cid:71)(cid:70)(cid:2)
`(cid:75)(cid:80)(cid:2)(cid:80)(cid:87)(cid:69)(cid:78)(cid:71)(cid:81)(cid:86)(cid:75)(cid:70)(cid:71)(cid:2)(cid:79)(cid:71)(cid:86)(cid:67)(cid:68)(cid:81)(cid:78)(cid:75)(cid:85)(cid:79)(cid:14)(cid:2)(cid:69)(cid:67)(cid:80)(cid:2)(cid:68)(cid:71)(cid:2)(cid:75)(cid:80)(cid:74)(cid:75)(cid:68)(cid:75)(cid:86)(cid:71)(cid:70)(cid:2)(cid:68)(cid:81)(cid:86)(cid:74)(cid:2)(cid:68)(cid:91)(cid:2)(cid:70)(cid:75)(cid:82)(cid:74)(cid:81)(cid:85)(cid:82)(cid:74)(cid:81)(cid:84)(cid:91)(cid:78)(cid:67)(cid:86)(cid:71)(cid:70)(cid:2)(cid:67)(cid:80)(cid:70)(cid:2)
`(cid:86)(cid:84)(cid:75)(cid:82)(cid:74)(cid:81)(cid:85)(cid:82)(cid:74)(cid:81)(cid:84)(cid:91)(cid:78)(cid:67)(cid:86)(cid:71)(cid:70)(cid:2)(cid:67)(cid:80)(cid:67)(cid:78)(cid:81)(cid:73)(cid:87)(cid:71)(cid:85)(cid:16)(cid:2)(cid:37)(cid:67)(cid:86)(cid:67)(cid:68)(cid:81)(cid:78)(cid:75)(cid:69)(cid:2)(cid:71)(cid:80)(cid:92)(cid:91)(cid:79)(cid:71)(cid:85)(cid:2)(cid:79)(cid:67)(cid:91)(cid:2)(cid:84)(cid:71)(cid:70)(cid:87)(cid:69)(cid:71)(cid:2)(cid:86)(cid:74)(cid:71)(cid:2)(cid:67)(cid:79)(cid:81)(cid:87)(cid:80)(cid:86)(cid:2)(cid:81)(cid:72)(cid:2)(cid:67)(cid:69)(cid:86)(cid:75)(cid:88)(cid:71)(cid:2)
`metabolites, including deaminases and 5ʹ-nucleotidases. The cellular effects induced
`(cid:68)(cid:91)(cid:2)(cid:80)(cid:87)(cid:69)(cid:78)(cid:71)(cid:81)(cid:85)(cid:75)(cid:70)(cid:71)(cid:2)(cid:67)(cid:80)(cid:70)(cid:2)(cid:80)(cid:87)(cid:69)(cid:78)(cid:71)(cid:81)(cid:86)(cid:75)(cid:70)(cid:71)(cid:2)(cid:67)(cid:80)(cid:67)(cid:78)(cid:81)(cid:73)(cid:87)(cid:71)(cid:85)(cid:2)(cid:67)(cid:84)(cid:71)(cid:2)(cid:70)(cid:71)(cid:85)(cid:69)(cid:84)(cid:75)(cid:68)(cid:71)(cid:70)(cid:2)(cid:75)(cid:80)(cid:2)BOX 2.
`
`ribonucleotide reductase subunit M1 (RRM1)13,19, the
`membrane transporter ENT115,20, the activating kinase
`DCK21,22, the cytosolic 5ʹ nucleotidase II23,24 as well as
`uridine phosphorylase and dihydropyrimidine dehydro-
`genase. A routinely applicable functional assay of mem-
`brane transport or enzymatic activity would therefore
`certainly be of great interest for predicting the activity of
`these drugs. A clinical trial evaluating ENT1 transport
`activity with a fluorescent nucleoside probe is currently
`being carried out in patients receiving gemcitabine
`for pancreatic cancer (ClinicalTrials.gov identifier:
`NCT00414570)25.
`
`Search for known mutations or resistant profile in
`circulating or intracellular viral strains. In viral diseases,
`mutations that are associated with resistance to nucleo-
`side analogues are systematically identified during the
`preclinical development of a drug using sequencing-
`based technologies or in vitro phenotypic assays26–28.
`
`Phenotypic assays
`Assays in which biological
`function or cell response is
`measured as an index of
`drug action.
`
`Pronucleotides
`Phosphorylated nucleosides
`in which the phosphate is
`linked to a protective group
`to increase diffusion of the
`nucleoside across the cell
`membrane.
`
`Indeed, the identification of drug-resistant viral strains
`is a prerequisite for obtaining investigational new drug
`(IND) status from the FDA or the EMA29–31. In addition,
`genotypic and phenotypic assays, such as sequencing-
`based or hybridization-based technologies, or assays
`based on the replication of isolated circulating viruses
`or molecular clones, are important for the management
`of patient treatment, particularly for patients with HIV.
`Moreover, as a result of the establishment of comprehen-
`sive databases on drug resistance, such as the Stanford
`University HIV Drug Resistance Database, virtual
`pheno typing can also be used by clinicians to make deci-
`sions on the treatment to be prescribed26.
`In current medical practice, physicians routinely
`take into account specific mutations associated with
`resistance to certain antiviral nucleoside and nucleo-
`tide analogues. However, the patient’s genotype seldom
`influences the choice of anticancer nucleoside analogues
`prescribed in the clinic. A sobering example is that of
`thio purine methyltransferase genotyping in patients
`receiving the nucleobase drug 6-mercaptopurine32.
`Although specific genotypes are associated with severe
`drug toxicity, genotyping (which has been routinely avail-
`able for over a decade) has yet to gain widespread accept-
`ance33. Several factors, such as the absence of a clear-cut
`impact on response rates or the toxicity observed in most
`cases, may explain why there is a relative lack of interest
`in genotyping patients with cancer34.
`
`Novel agents
`The development of new nucleoside and nucleotide
`analogues is based on the need to identify new agents
`that have different mechanisms of action compared to
`existing agents, the need to provide drugs with improved
`bioavailability and solubility as well as the need to over-
`come resistance mechanisms and to improve the balance
`between efficacy and long-term toxicity for drugs that are
`administered over a long period of time (for example,
`patients with HIV or HBV require lifelong treatment).
`In this article, we have chosen to divide these novel
`drug candidates into the following categories: new
`nucleosides that have important modifications in their
`base and sugar moieties; pronucleotides; conjugates com-
`posed of nucleoside or nucleotide analogues and other
`chemical entities; liposomal formulations; and orally
`administered formulations of approved drugs. As there
`is a vast amount of inform

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket