`
`1111111111111111111111111111111111111111111111111111111111111111111111111111
`US 20090105556Al
`
`(19) United States
`(12) Patent Application Publication
`Fricke et aJ.
`
`{10) P ub. No.: US 2009/0105556 Al
`Apr. 23, 2009
`(43) Pub. Date:
`
`(54) MEASUREMENT OF PHYSIOLOGlCAL
`SIGNALS
`
`(75)
`
`Inventors:
`
`.John Rober t F ricke, Lexington.
`MA (US): Matthew C or b in
`W iggins, Concord, MA (US)
`
`Correspondence Address:
`OCCHlUTl ROHLICEK & TSAO, LLP
`10 FAWCETT STREET
`CAMBRIDGE, MA 02138 (US)
`
`(73) Assignee:
`
`T iax LLC. Cambridge, MA (US)
`
`(21) Appl. No.:
`
`12/240,651
`
`(22) Filed:
`
`Sep.29,2008
`
`Related U.S. Application Data
`
`(60) Provisional application No. 60/995,723, filed on Sep.
`28, 2007.
`
`Publication C lassification
`
`(51)
`
`Int. CJ.
`A61B 5/00
`(2006.01)
`A6IB 5/1455
`(2006.01)
`(52) U.S. C l . ........... ... ........................... 600/301; 600/310
`(57)
`ABSTRACT
`
`A system inc.ludes an optical sensor and a signal processing
`module. The optical sensor is configured to be positioned on
`an area of skin of a patient. The optical sensor includes a light
`source for illuminating a capillary bed in the area of skin and
`a photodetcctor. n1e photodetector is configured to receive an
`opticaJ signal from the capillary bed resulting from the illu(cid:173)
`mination and to convert the optical signal into an electrical
`signal, the optical signal characterizing a fluctuation in a level
`of blood in the capillary bed. The signal processing module is
`configured to process the e lectric signal using a nonstationary
`frequency estimation method to obtain a processed signal
`related to at least one of a heart rate and a respiration rate of
`the patient. Another aspect relates to obtaining a quantity
`related to the blood pressure of the patient in addition to or
`instead of o btaining a processed signal related to at least one
`of the heart rate and the respiration rate of the patient.
`
`100
`
`I
`c 12s
`
`r-®
`
`116r 0
`
`118r©
`120
`
`102
`
`104
`
`Speaker
`
`110
`
`108
`
`130
`
`112
`
`AUX
`
`132
`
`Processing
`
`114
`
`122
`
`~
`
`126
`
`- ~ -
`~ Monitor
`
`124
`
`~
`
`Apple Inc.
`APL1035
`U.S. Patent No. 8,942,776
`
`001
`
`
`
`> -
`0 -0
`
`~
`0
`0
`N
`IJJ
`d
`
`0\
`Ul
`Ul
`Ul
`
`tD
`tD
`Cl"'
`IJJ
`1.0
`0
`0
`N
`N ,.w
`:"I
`~
`=
`~ ...... o·
`""Q = r:::' = f")
`=
`~ ...... o·
`"0 -t;•
`> "0
`~ -tD = ......
`
`~
`
`...... -Q ...,
`
`0
`N
`
`124
`
`~
`
`Monitor
`
`~
`
`126
`
`_A.-,...A...
`
`t--
`
`~ ~
`
`122
`
`Fig. 1
`
`120
`118r®
`
`116r®
`r®
`
`c12a
`
`114
`
`Processing
`
`132
`
`AUX
`
`112
`
`130
`
`108
`
`110
`
`106
`
`I
`
`Speaker
`
`1
`
`102
`
`100
`
`002
`
`
`
`Patent Application Publication Apr. 23, 2009 Sheet 2 of 20
`
`US 2009/0105556 Al
`
`N
`
`01 ·-LL
`
`003
`
`
`
`0\
`Ul
`Ul
`Ul
`0
`0 ......
`~
`0
`0
`N
`00
`d
`
`> ......
`
`0
`N
`
`Q ...,
`w
`.....
`tD
`tD
`Cl'
`IJJ
`
`1.0
`0
`0
`N
`N ,.w
`:"I
`~
`=
`~ ..... o·
`~ = r:::' = f")
`=
`~ ..... o·
`'0 -t;•
`>
`~ -tD = .....
`
`~
`
`'0
`
`Fig. 3
`
`Output to File 1 ... .,..
`
`Calc Slats on
`
`Segments
`
`lbri
`
`320
`
`Instantaneous 1---------1~
`
`Frequency
`
`318
`
`0.17-0.5 Hz
`
`Band-Pass Filter
`
`304
`
`Respiration Parameters
`
`~ ~ IBI LF/HF ratio )+I C~lc Statst on 1-+1 Output to File( . .,..
`
`egmen s
`
`328
`
`316
`
`Heart Rate Parameters
`
`Segments
`Calc Slats on 1-+1 Output to File ( ... .,..
`
`326
`
`I
`
`310
`
`BandPass~
`
`Segments
`Calc Stats on 1-+1 Output to File I· . .,..
`
`322
`
`IBI
`308
`
`306
`
`Frequency
`
`Instantaneous
`
`302
`0.5-5.5 Hz
`
`Band-Pass Filter
`
`300
`
`Plethysmograph
`
`IR
`
`004
`
`
`
`Patent Application Publication Apr. 23, 2009 Sheet 4 of 20
`
`US 2009/0105556 Al
`
`r---,T----T~---!r---~---,--~~
`I
`I
`-S=-
`~
`(")
`...0:::::::::::
`•
`··~
`:
`: ~
`
`I
`
`I
`
`I
`
`•
`
`I
`
`t
`
`-r--._ I
`lr(')
`1- -- . -- - ~ • ~- - ~
`_ .._.~
`.:~
`~EB:.
`: ~
`: ~
`-F=o
`:-:: ~
`- - - ., - - - q- -::..;-- - - r - -..o;=- - g
`j >
`
`I
`
`•
`
`I
`
`I
`
`I
`
`-1::::>..
`
`.....
`
`Q
`
`I
`
`-...,__
`
`I
`I
`
`I
`I
`
`I
`
`I
`I
`
`:
`
`I
`
`"--(,_
`
`........__ 1
`--: ~
`1 ~~
`r
`•
`~ --i--~- ~
`i ~
`~~===;==~~==~
`"""L>-
`.:.1: ~ ~~ ......
`:-=f-::0:.. ~
`I+ I
`-1
`I ~ '
`I
`I
`~--~---L--~--~L---~--~ ~
`(")
`v
`~
`~ ~~
`0
`
`' ___.
`I
`.
`
`I
`I
`
`I
`I
`r-~
`
`0> ·-LL.
`
`005
`
`
`
`Patent Application Publication Apr. 23, 2009 Sheet 5 of 20
`
`US 2009/0105556 Al
`
`I
`
`r-
`I ~ (")
`~
`
`I(')
`
`I ( I
`I
`I
`I
`I
`
`I
`
`:/ :
`/f
`~I I
`:~--
`
`I
`
`I
`
`--.............
`I
`-~
`t .,.
`---1 ----1~~---
`
`I
`I
`
`I
`I
`
`I
`
`I
`
`I
`I
`
`.
`
`t
`
`I
`
`I
`
`~
`(')
`
`e--•
`
`I
`
`I
`
`~ I I
`I -----~
`I
`I
`-
`
`I
`I
`
`cr I
`·--......_ .
`j~
`t,"' I
`: .J
`d~: • I
`-+---... :
`
`I()
`
`0
`<0
`(")
`
`:s
`
`(')
`
`I
`
`I
`I
`
`)
`:
`t
`_..~ I
`.J.~ I
`I
`~_.......... 1
`I
`-- -~-~ -· - ---~-- -- ~~-- ~
`
`c:
`.~
`.t:!
`6r
`~
`iO
`:1
`~
`~
`
`•
`
`-~ I
`I ~:
`
`I
`
`I
`I
`
`I
`
`,.....,
`~
`~
`·;;
`
`---T- _ _ \..; ----~---- ... ---.
`
`I
`I
`
`I
`I
`I
`
`I
`I
`
`/ ., /
`
`I
`-~
`I
`I
`I
`I
`- - - 'j' - - - - i- - -- i-- - 4 -- --
`I
`I
`"""'- I
`I
`i.>
`
`I
`I
`
`I
`I
`
`I
`I
`
`_
`
`..... ,
`
`...,.,..- -
`I
`I
`I ~- 1
`
`I
`
`ce_: : '
`
`I
`I
`I
`I
`I
`
`I
`I
`I
`I
`
`:--+-.._
`
`I
`I
`I
`
`I
`I
`
`I
`
`N
`
`0
`
`S~l.n .lE.Jlq!E
`
`0
`I(')
`C?M
`
`~
`
`0) ·-IJ._
`
`006
`
`
`
`Patent Application Publication Apr. 23, 2009 Sheet 6 of 20
`
`US 2009/0105556 Al
`
`I
`I
`~I
`~I
`
`I
`
`(
`
`~ :~
`:: tl
`_s;
`·--T ---
`: ~-
`)f
`I <I
`
`I
`
`I
`I
`
`I
`
`I
`I
`
`---~----~---
`
`I
`
`I
`
`:~
`
`i----~---- ?----~---
`
`0 e
`
`0
`8
`
`1
`I
`I
`
`I
`
`I
`I
`I
`
`I
`I
`I
`
`I
`I
`
`I .J
`~~
`
`I
`
`I
`I
`I
`
`I
`
`l
`i
`---1----,---~---T-··
`.5:
`--:\ :
`:
`:
`:
`:?
`:
`:
`___ j ____ ~----1>---~---
`~.
`,-t
`I Ll_
`~ ... :
`
`I
`
`I~
`
`I
`I __,./,_
`~I
`~:
`---~~----~---
`:
`.-=?
`I~
`o:.,_,
`I
`
`r;::
`·~·
`I.....? t
`~--.!. <::-=
`
`:e
`
`c:i
`
`(s) 181
`
`C)
`
`·-LL
`
`007
`
`
`
`> .....
`
`0\
`Ul
`Ul
`Ul
`0
`
`\0 -0 .....
`
`0
`0
`N
`rJ)
`
`c
`
`('D --...J
`
`rJ) =(cid:173)
`
`('D
`
`0 ....
`
`0
`N
`
`\0
`0
`0
`N
`
`Vol
`N
`:'I
`'C
`>
`
`~
`
`a' -;:;· = :::-.
`(') = -... 0 ::s
`"'=' -.....
`'"0 = -('D ::s -~
`
`'"0 c
`
`0 ::s
`
`A,
`
`.4
`
`I
`I
`
`'
`
`1
`
`~
`I f-\·1~
`
`, ~
`'
`
`214
`
`!
`
`l
`
`I
`
` ~
` n 1 v \
`Nl ~1\ ~!\ !';\
`
`:·
`
`,1
`
`I
`
`I
`l
`
`I
`!
`1
`
`.
`:
`
`0.5
`
`0.45
`
`0.4
`
`0.35
`
`0.3
`
`1
`
`0.25
`
`'
`1
`
`-----:----t-\t-'r-----;----V-\"\-::1~:;·11N Yt-
`
`:
`
`, , Jl
`(t;' '\ ~·.;~'·; I
`" /'v
`
`I'
`
`I
`
`·f{'V
`
`I \ All I I
`
`. , ,
`
`-.; " IIi .
`\f\!)
`
`
`
`1/
`
`;
`
`0.2 I
`I t '1
`~
`\f\:\
`
`602
`
`Fig. 7
`
`freq (Hz)
`
`f f
`~vv \f
`-,t'}-.,1-'-=-
`• v-"~ '.
`--'-------~--~'II''' -• )~:: -\--t\-r ..... ----~-------~--.----J--------------~-----. ~
`0.3energyu~its ---:------_1_-LF/HFratio. __ _
`HF (0.15-0.4 Hz} -
`
`lrter-beat interval spectral variability
`
`/
`
`600
`
`I
`I
`I
`
`I
`
`I
`I
`I
`
`T
`
`I
`I
`I
`
`'
`
`1"
`
`(
`
`I
`
`..
`~
`
`-20~---~ 1-:~-f-lf-~\::,.t-----~ ------;---
`
`0.15
`
`0.1
`
`0.05
`
`l
`
`I
`
`I
`I
`
`59.6 energy units
`LF(0.04-0.15Hz}
`
`I
`I
`
`V, v·
`
`I •
`
`I
`
`1
`
`~
`
`I
`
`I
`1
`
`I
`I
`
`~'
`
`'
`
`I
`~
`I
`
`0
`1
`
`-SO
`
`-ao~ ---
`
`m
`E
`0.
`:!:!. -40
`iii'
`
`~ 1\j\i ~v~ f\ r/'1 i'1
`
`If 11
`·
`0~~ ll: •.
`
`008
`
`
`
`> .....
`
`0\
`Ul
`Ul
`Ul
`0
`
`\0 -0 .....
`
`0
`0
`N
`rJ)
`
`c
`
`('D -00
`
`rJ) =(cid:173)
`
`('D
`
`0 ....
`
`0
`N
`
`\0
`0
`0
`N
`
`Vol
`N
`:'I
`"'~:)
`>
`
`~
`
`a' -;:;· = :::-.
`(') = -... 0 ::s
`::s -~ "'~:) -.....
`"'0 = -('D
`
`"'0 c
`
`0 ::s
`
`1000
`
`900
`
`SOD
`
`700
`
`I
`I
`
`I
`
`~ I
`I
`I
`r,.
`I
`I
`
`I
`I
`
`I
`I
`
`I
`I
`
`I
`'a
`
`I
`I
`
`I
`
`I
`I
`I
`I
`
`I
`I
`
`...
`
`•
`
`f'
`
`X
`..
`
`I
`I
`
`I
`
`I
`I
`I
`I
`
`I
`I
`
`I
`I
`
`I
`
`J
`I
`I
`I
`
`I
`I
`
`\
`:<
`)( 1
`
`IY.
`I
`
`I.
`
`I
`I
`
`1\
`
`..
`l
`
`XI
`
`)(
`
`t'"
`
`'\ I
`I
`I
`
`X,
`
`Y.
`})':
`
`I
`I
`
`t
`t
`
`I
`
`t
`I
`I
`I
`
`\.
`
`I
`
`~I)(
`
`¥
`I
`I
`
`-~.t-"'-;-;-------~J.:~::--"~:.--;~----; ,;._-)( ;-------t~--10~---:--------~--------~--------:------""1c~-J
`--------'-----..... -.!.--------·--... ------·--------,· t:~ ... -_,:--'-..... --.. --.!-.. ------!..-~-:s.'---·-----~--1-
`-------~--.. -----f --------~ -.. -----~--------t ------; -: .. .:t~i---~~.;:r·------~~ ----:.x~:----~ ---{ -
`I ='
`--------4--------+--------~-------.. --------+--------·--------1----.~--...... -------...... 't >!-----.. --
`
`------~~~~;(_x __ ~--------~ ~-"'j.'----.,~-----r ... ; -------... : ... -------~--------~ --------:--------~-
`
`I
`
`(
`
`~
`
`...:
`
`I
`
`-:,.:..c
`
`I
`
`X
`
`.J
`1
`J.
`
`'t
`)(
`\
`I
`
`I
`t'l
`\
`
`J
`
`I
`I
`~ I
`
`•
`
`I
`I
`
`I
`
`I
`t
`
`I
`I
`
`I
`I
`I
`I
`
`I
`I
`
`I
`
`I
`I
`
`I
`I
`
`)(X .f.
`I
`I
`I
`
`I
`t
`
`I
`
`I
`I
`
`I
`I
`
`I
`I
`I
`I
`
`I
`I
`
`I
`
`I
`I
`
`I
`I
`
`I
`I
`I
`I
`
`I
`I
`
`I
`
`I
`I
`
`I
`I
`
`.X
`
`nr-----~-------.------.------.-------r------.------.-------r------.------.~
`
`P6pir.tion r.tte V<J instcntaneous tequerx:y
`
`600
`
`time~)
`500
`
`400
`
`300
`
`200
`
`100
`
`t ~«l!C t
`I X
`I
`
`I
`
`X
`
`I
`I
`
`'
`l
`
`I
`I
`
`I
`
`'
`
`Fig. 8
`
`10
`
`12
`
`.0 14
`
`~
`~ 16
`c 18
`
`::ill
`
`009
`
`
`
`0 .....
`~
`0
`0
`N
`IJJ
`d
`
`> .....
`
`0\
`Ul
`Ul
`Ul
`0
`
`0
`N
`
`~ ...,
`\0
`......
`tD
`tD
`Cl"
`IJJ
`1.0
`0
`0
`N
`N ,.w
`:"I
`~
`=
`~ ...... o·
`""Q = r:::' = f")
`=
`~ ...... o·
`"0 -t;•
`> "0
`~ -tD = ......
`
`~
`
`time
`
`918
`"'\
`
`\.._ 910
`
`----=-----
`
`~ [916
`908 "'\
`
`(906
`
`c912
`
`__.I
`
`_
`
`as the Valsalva maneuver
`/Increase in pressure such
`
`~
`
`900
`
`Fig. 9
`
`PR
`
`PH
`
`BL
`
`Q
`VH
`
`P,T
`
`Pulse Rate (PR)
`Pulse Height (PH)
`
`-
`
`Baseline (BL)
`
`PPG Measurements (zk).
`
`Intrathoracic Pressure (P1r)
`
`Cardiac Output ( Q)
`Heart Volume (VH)
`
`States (x k).
`
`010
`
`
`
`Patent Application Publication Apr. 23, 2009 Sheet 10 of 20
`
`US 2009/0105556 A1
`
`I
`
`~·
`
`~ ~ 1~1
`~ -~ • ~~~..::::;aT • • .:. •
`: ~: :-:;;:
`·~·
`:~1:
`: ...--:___r; :
`--.- ---1~---·--
`I I
`
`1~1
`
`I
`
`I
`
`I
`I
`I
`
`I
`I
`
`·~- ·.
`
`1
`I
`I
`
`I
`
`I
`I
`I
`
`I
`
`I
`
`--L
`~~ ==~(l::::t:_
`•
`
`--- -.,- --~ ...... ~--~·"'~=-=-'"'-=-=--=f--t.:-:_-.. ~
`~:: ~
`
`I
`I
`~ I
`--....1
`I
`I
`I
`1.
`'
`I
`'
`N
`--- -~--- -~----~---- ~~- ~
`
`I
`
`I
`I
`
`~
`L-----~----~------L-----~----.J.-
`N'D
`0
`•M
`
`-0
`
`0> ·-LL
`
`011
`
`
`
`Patent Application Publication Apr. 23, 2009 Sheet 11 of 20
`
`...... c:
`.......
`N
`
`US 2009/0105556 Al
`
`...... c::
`.......
`Cb
`
`o/
`
`;
`
`-
`,--
`',
`c: + ,"
`.----------.
`....
`...... ___ "'*' ~ 1
`r ...... 1
`'
`'
`l-c
`\
`,'
`'
`..
`"
`'
`~+ I
`
`I
`I
`____ 1. ______ 1
`
`-----.-----1
`
`1
`
`I
`I
`I
`I _ -
`
`-
`
`- - - -
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`-
`
`.
`C') ·-u.
`
`012
`
`
`
`Patent Application Publication Apr. 23, 2009 Sheet 12 of 20
`
`US 2009/0105556 A1
`
`.c
`:!::::0)
`
`?: .s o o.. E
`en E CJ)
`c
`ro ·(cid:173)
`ID o C:
`en w ro
`'-' ·- (.)
`'" > ..c
`n
`.....
`(])
`O:~E
`
`•
`C)
`
`·-u...
`
`013
`
`
`
`0 ....
`~
`0
`0
`N
`IJJ
`d
`
`> ....
`
`0\
`Ul
`Ul
`Ul
`0
`
`0
`N
`0 ....,
`w
`......
`.....
`tD
`(D
`CI"
`IJJ
`1.0
`0
`0
`N
`N ,.w
`:"I
`~
`=
`~ ..... o·
`~ = r:::' = f")
`=
`~ ..... o·
`"0 -t;•
`> "0
`~ -tD = .....
`
`~
`
`1310)
`
`1302)
`
`Fig. 13
`
`e-(ro·lo,,+Ea·l2.;) ·e-cr.,(t)·/1,,)
`
`1318 1 R(t) = I
`
`r.l. r.,
`
`Subcutis
`
`··· ... .. •• ..
`
`PPG
`
`.. . . •• ·· . .. . . ..
`
`Reflectance Model
`
`Exponential Decay, Skin
`
`. . . . . . . . . . . . . . .
`
`••
`~
`•
`~
`
`.
`· ...
`.
`
`~
`
`Blood Flow (q)
`Capillary Bed
`
`I~ rwn
`
`(1300
`
`·· ...
`·.
`· ..
`..
`
`13i.f
`c1~ !q-Q
`
`q-q
`......
`L1
`
`~
`
`ij
`
`1304
`
`p
`
`~
`•
`~
`~
`
`••
`
`.. ·
`.
`.. ·
`...
`.·
`.•L--------------4
`
`~
`
`......
`
`Model
`
`Windkessef
`
`Pressure (p)
`Arterial Blood
`
`014
`
`
`
`0 .....
`~
`0
`0
`N
`IJJ
`d
`
`> .....
`
`0\
`Ul
`Ul
`Ul
`0
`
`0
`N
`0 ....,
`.....
`......
`tD
`tD
`Cl"'
`IJJ
`1.0
`0
`0
`N
`N ,.w
`:"I
`~
`=
`~ ...... o·
`""Q = r:::' = f")
`=
`~ ...... o·
`"0 -t;•
`> "0
`~ -tD = ......
`
`~
`
`~
`
`4~==~======~====~======~----~
`Inter-beat Interval, and Blood Pressure Trend con.>artson
`
`Photoplethysmograph Pulse Width, Height,
`
`Ill':; 1
`u ....
`CLI CLI 5 E
`'Oia
`CLI ... :J
`E
`"' -5 3
`
`Fig. 14
`
`\
`\
`
`1402 ~IJI~el~\ /
`I
`1400 .... ,;,., J I \
`
`~~lNh
`
`Interval
`Inter-beat
`
`015
`
`
`
`> ....
`
`Q'l
`Ul
`Ul
`Ul
`0
`
`0 ....
`...._
`\0
`0
`0
`N
`
`c r.n
`
`n>
`::r
`r.n
`\0
`0
`0
`N
`
`n> -....
`
`0
`"""' N
`0
`Ul
`
`~
`
`(.H
`N
`:-t
`"'r:S
`>
`=
`0
`~ :;
`C' =:
`c
`
`t')
`
`t;'
`~
`
`~ -s· = ..,
`~ -n> = -> "C
`
`..,
`
`1512
`
`1510
`
`1502
`
`1500
`
`Battery and Power Management
`
`Power Subsystem
`
`Log file
`
`Data Storage
`
`front-end
`Analog
`
`Fig. 15
`
`To Sensors
`
`PDA
`
`To laptop,
`
`Ill
`
`I
`
`e.g. data download
`Communication· I
`
`1506
`
`I
`
`Sensor Interface
`
`I Control
`
`Portable Electronics Unit
`
`1505
`
`016
`
`
`
`> ....
`
`0\
`til
`til
`til
`0
`
`0 ....
`
`1.0
`0
`0
`N
`
`c rJ)
`
`0
`N
`0 -.
`0\
`
`~
`::r
`rJ)
`
`~ -....
`
`1.0
`0
`0
`N
`,.w
`N
`:"'
`> "0
`
`~ --· 0 =
`:! ;:;·
`~
`=
`~ -o·
`~ ;:;·
`~ -~ = -> "0
`
`"'C
`
`Respiration Rate
`
`~
`
`Estimate #3
`
`1636
`
`Frequency (RR)
`Instantaneous
`
`1626
`
`Estimate #2
`
`Respiration Rate
`
`__..,
`
`Frequency (RR)
`Instantaneous
`
`~ 21
`
`Height)
`
`Signal Envelope (Pulse
`
`~ .. ~
`
`1616
`
`Estimate #1
`
`Respiration Rate
`
`r--
`
`Frequency (RR)
`Instantaneous
`
`Estimate
`Heart Rate
`
`1606
`
`-
`
`Frequency (HR)
`Instantaneous
`
`1634
`
`Transform
`Analytic
`
`1624
`
`Transform
`Analytic
`
`1614
`
`Transform
`Analytic
`
`1604
`
`Transform
`Analytic
`
`Fig. 16
`
`1632
`
`(fRR)
`
`Band-pass Filter
`
`1622
`
`(fRR)
`
`Band-pass Filter
`
`L
`
`1612
`
`(fRR)
`
`Band-pass Filter
`
`L
`
`1602
`
`(fHR)
`
`Band-pass Filter
`
`~ .. ~
`
`1600
`PPG
`
`017
`
`
`
`> .....
`
`0\
`Ul
`Ul
`Ul
`0
`
`\0 -0 .....
`
`0
`0
`N
`rJ)
`
`c
`
`0
`N
`
`rJ) =(cid:173)
`
`('D
`
`\0
`0
`0
`N
`
`Vol
`N
`:'I
`"'~:)
`>
`
`~
`
`a' -;:;· = :::-.
`(') = -... 0 ::s
`"'0 = -('D ::s -~ "'~:) -.....
`
`'"0 c
`
`0 ::s
`
`('D -.....
`
`0 ....
`
`-...J
`
`PPG Out
`CQ
`Line Out
`Delay
`c=)
`
`Rate
`Heart
`
`Estimated
`IJJII.Q::)
`
`I
`lnst. Freq
`Filtered
`
`-0-0.2 Hz
`
`LPF
`
`Fig. 17
`
`1610
`
`Approximation
`Hilbert Transform
`
`Line In
`Delay
`
`1604
`
`018
`
`
`
`~ > ....
`
`til
`til
`til
`
`0 .... 0
`
`1.0
`0
`0
`N
`
`c rJ)
`
`0
`N
`0 -.
`00
`
`~
`
`::r
`rJ)
`
`~ -....
`
`1.0
`0
`0
`N
`,.w
`N
`:"'
`> "0
`
`~ --· 0 =
`~ = ::::
`=
`~ -o·
`~ ;:;·
`~ -~ = -> "0
`
`;:;·
`
`"'C
`
`Heart Rate Out
`lllloc=)
`Delay Line Out
`
`IIIIo(!)
`
`I
`
`I
`
`Respiration Rate
`
`-0-0.03 Hz
`
`LPF
`
`IFDATool
`1618
`
`E~im.ated
`r---....iiJIIo ... (Q
` ~ LU ~ K(z-1) L..~
`I
`
`J .,..-
`
`Tsz
`
`-
`
`t
`
`A~g~: 0 Unwrap Discrete Derivative
`
`\
`_/ \_...__
`
`A
`1616
`
`(
`
`'
`
`-40
`
`(
`
`Fig. 18
`
`1620
`
`r
`lnt~y1 t.~ ""&I M: l•l
`.. ~
`______..A
`1614
`
`Complex
`eal-lmagtocam I
`
`~o
`
`Hilbert Transform
`
`___.....I
`
`'
`
`Delay Line In
`
`-0.08-0.6 Hz
`
`BPF
`
`019
`
`
`
`rJ) =(cid:173)
`
`('D
`
`> -e
`
`\0
`0
`0
`N
`Vol
`N
`:'I
`
`~
`
`a' -;:;· = :::-.
`(') = -... 0 ::s
`"'0 = -('D ::s -~ -e -.....
`
`'"0 c
`
`0 ::s
`
`PPGQut
`
`Rate
`
`Respiration
`Estimated
`
`.._---..,
`A
`1626
`
`' (
`
`A
`1624
`
`(.-------'
`
`('D -......
`
`> ......
`
`0\
`Ul
`Ul
`Ul
`0
`
`\0 -0 ......
`
`0
`0
`N
`rJ)
`c
`
`0
`N
`
`\0
`
`0 ....
`
`"'mog ••
`omplex Complex to ~
`
`~lui
`1621
`
`Fig. 19
`
`1630
`
`Approximation
`Hilbert Transform
`
`Siiege~~elayt
`
`... 5·2.3"'
`
`In
`Line
`Delay
`
`In
`PPG
`
`-0.08-0.6 Hz
`
`BPF
`1...___
`
`8
`Magnitud
`
`1622 a~ :_&Eo
`
`020
`
`
`
`rJ) =(cid:173)
`
`('D
`
`\0
`0
`0
`N
`
`V.l
`N
`:'I
`"'~:)
`>
`
`~
`
`a' -;:;· = :::-.
`(') = -... 0 ::s
`"'0 = -('D ::s -~ "'~:) -.....
`
`"'0 c
`
`0 ::s
`
`('D -N
`
`0
`
`> .....
`
`0\
`Ul
`Ul
`Ul
`0
`
`\0 -0 .....
`
`0
`0
`N
`rJ)
`
`c
`
`0
`N
`
`0 ....
`
`PPG Out
`~
`
`1640
`
`Hilbert Transform
`
`Resp1rat1on
`
`Rate
`
`-0-0.03 Hz
`
`LPF
`
`FDA Tool
`1638
`
`j:J=I ~ITit-Y;-H K~p ~~ Eg.d
`' (
`
`Complex
`eal-lmag to Complex to unwrap Discrete Denvat1ve
`
`Angle
`
`----,
`
`A.
`1636
`
`A
`1634
`
`(....---
`
`Fig. 20
`
`In
`
`'A Tool
`1632
`
`021
`
`
`
`US 2009/0105556 Al
`
`Apr. 23, 2009
`
`1
`
`MEASUREMENT OF PHYSIOLOGICAL
`SIGNALS
`
`CROSS-REFERENCE TO RELATED
`APPL!CATlONS
`
`10001] Tl1ls application claims priority to U.S. provisional
`application No. 60/995,723, filed Sep. 28, 2007, entitled
`"Method and Devices for Measurement of Multi-modal
`Physiological Signals," wluch is incorporated herein by ref(cid:173)
`erence.
`
`STATEMENT REGARDING FEDER.t\LLY
`SPONSORED RESEARCH
`
`10002] The subject matter described in trus application was
`partially fu nded by the Government of the United States
`under Contract No. W91 ZLK-04-P-0239 awarded by the
`U.S. Department of the Army. The government has certaln
`rights in the invention.
`
`FIELD OF THE INVENTION
`I 0003] The invention relates to measurement of physiologi(cid:173)
`cal signals.
`
`BACKGROUND
`
`1 0004) Physiologjcal signals are important for morutoring a
`subject's physical and cognitive state. Often, heart rate
`parameters are measured directly via electrocardiogram
`(ECG) measurements of a heart beat. Respiration rate data
`can be obtained from a respiration chest strap. Physiologica l
`signals can also be extrac ted from infrared (IR) photoplethys(cid:173)
`mographs (PPG). The signals of interest include heart rate,
`respiration rate, continuous blood pressure, and intrathoracic
`pressure. With respect to blood pressure, there is technology
`related to collecting data at two locations on the body and
`using pulse transit time and other parameters as the basis of
`the pressure estimate.
`
`SUMMARY
`
`10005]
`In a general aspect. a system includes an optical
`sensor and a signal processing module. The optical sensor is
`configured to be positioned on an area of skin of a patient. The
`optical sensor includes a light source for ilJumiuating a cap(cid:173)
`illary bed in the area of skin and a photodetector. The photo(cid:173)
`detector is configured to receive an optical signal from the
`capillary bed resulting from the illumination and to convert
`the optical signal into an electrical signal, the optical signal
`characterizing a fluctuation in a level of blood in the capillary
`bed. The signal processing module is configured to process
`the electric signalusinga nonstationary frequency estimation
`method to obtain a processed signal related to at least one of
`a heart rate and a respiration rate of the patient.
`10006] Embodiments may include one or more of the fol (cid:173)
`lowing. The system includes an output for providing infor(cid:173)
`mation detennined from the processed signal. l b e nonsta(cid:173)
`tionary frequency estimation method includes a Hilbert
`transform method or an instantaneous frequency estimation
`method. The processed signal includes at least one of instan(cid:173)
`taneous heart rate. inter-beat interval, heart rate variability,
`wgh-low heart rate ratios, respiration rate, inter-breath inter(cid:173)
`val, and respiration rate variability.1ne fluctuation in tlte level
`of blood in tlte capillaty bed relates to a change in a t least one
`
`of volume and pressure of the tl1oracic cavity or to a change in
`at least one of volume and pressure of an organ in the thoracic
`cavity.
`[0007] The system includes an auxiliary sensor configured
`to detect an ambient signal. The auxiliary sensor includes at
`least one o f accelerometer, a pressure sensor. an optical detec(cid:173)
`tor, a temperan1re sensor, and a piezoelectric device. The
`signal processing module is configured to remove an effect of
`tbe ambient signal from tl1e e lectrical signal. 11Je optical
`signal is a reflectance or a transmittance oft he capillary bed.
`[0008]
`ln another general aspect. a method includes illtuni(cid:173)
`nating a capillary bed in an area of skli1 of a patlent, receiving
`an optical signal from the capillary bed resulting from the
`illumlnation, converting the optical signal into an electrical
`signal, and processing the electrical signal using a nonstation(cid:173)
`ary frequency estimation method to obtain a processed signal
`related to at least one of a heart rate and a respiration rate of
`the patient.11te optical signal c haracterizes a nuctltation in a
`level of blood in the capillary bed.
`(0009] Embodiments may include one or more of the fol(cid:173)
`lowing. The method includes outputting information deter(cid:173)
`mined from the processed signaL Processing the electrical
`signal using the nonstationary frequency estimation method
`includes perfonning a Hilbert transfonu or proc(.'Ssing the
`electrical signal using an instantaneous frequency estimation
`method. Processing the electrical signal using the instanta(cid:173)
`neous frequency method includes band pass filtering the elec(cid:173)
`trical signal, determining an instantaneous frequency of the
`electrical signal, and using the instantaneous freq11ency to
`obtain the processed signaL
`[0010] 1l1e method further includes processing the electri(cid:173)
`cal s ignal using a model to obtain a blood pressure signal
`related to a blood pressure of the patient. The optlcal signal
`characterizes a capillary refill time in the capillary bed. Pro(cid:173)
`cessing the electrical signal includes processing the electrical
`signal in real time.
`[0011]
`ln another aspect, a method for moru toring blood
`pressure includes illuminating a capillary bed in an area of
`skin of a patient, receiving au optical signal from the capillary
`bed resulting from the illumination, converting the optical
`signal into an electrical signal. and processing the electrical
`signal using a model characterizing a relationslup of the fluc(cid:173)
`tuation in the level of blood and the blood pressure of the
`patient to obtain a quantity related to the blood pressure of the
`patient. ·n1e optical signal characterizes a fluctuation in a
`level of blood in the capillary bed o f the patient
`[0012] Embodiments may include one or more of the Jot(cid:173)
`lowing. The method includes outputting informatlon deter(cid:173)
`milled based on the quantity related to the blood pressure of
`the patient. The optical signal characterizes a capillary refill
`time. The method further includes engaging a device to
`restrict circulation in the capillary bed of the patient and
`disengaging the device prior to receiving the optical signal
`from the capillary bed. 111e disengaging of the device occurs
`gradually. The device is an active clan1ping device.
`10013] H1e quantity related to the blood pressure of the
`patient is a quantity related to the continuous blood pressure
`of the patient. Applying the model includes applying a model
`including circuit elements or properties of the capillary bed.
`The method further includes calibrating the model on the
`basis of a blood pressure of the patient determined by using a
`blood pressure cuff.
`
`022
`
`
`
`US 2009/0105556 Al
`
`Apr. 23, 2009
`
`2
`
`10014] Embodiments may include one or more of the fol(cid:173)
`lowing advantages.
`I 00151 A system or method as described above can be used
`for both military and civilian applications. Combat casualty
`care requires close monitoring of vital signs from the moment
`that a medic first attends to a wounded soldier in the battle(cid:173)
`field and thence through the many transfer stages to the point
`of f11ll hospital care. generally removed from the combat
`scene. Simi lar needs are evident in the civilian community
`where critical care is administered by first responders at the
`scene of accidents, by emergency room sta·tT, and by imensive
`care unit stafT. lt is often desirable to obtain maximum infor(cid:173)
`mation using as little equipment as possible. The system and
`method described herein support tbis need. They reduce the
`burden of equipment logistics. the burden of extra wires and
`sensors on and around d1e patient, and the complexity and
`cost of using multiple devices.
`10016] For both military and civilian applications, a dispos(cid:173)
`able, wearable device in keeping with the system and metl1od
`described herein can be adapted to stay with a patient a nd to
`report vital signs throughout the care and transport processes.
`Further, the system ca11 be configured to provide medical
`personnel with real-time visibility of vital signs as well as
`recording of this information for playback by attending medi(cid:173)
`cal staff at a later time. 111e disposability of the device allows
`it to be fabricated with low cost parts and eliminates the need
`for sanitization and asset tracking logistics in large scale
`clinical or military uses.
`10017] Such system and methods additionally support
`applications in fitness monitoring. where their ease of use and
`robustness make them a compelling alternative to chest strap
`monitors for the monitoring of cardiac and respiratory param(cid:173)
`eters during exercise. An ear-wom device can also integrate a
`speaker llllit for mobile electronic devices such as mobile
`phones or music players.
`10018] An advantage of applying a nonstationary fre(cid:173)
`quency estimation method (e.g., analysis involving monitor(cid:173)
`ing the frequency changes of tbe signal over time, such as
`monitoring changes in the instantaneous principal frequency
`over time) is that it is possible to avoid a tradeoff inherent in
`many stationary estimation methods between frequency reso(cid:173)
`lution and duration of data signals being analyzed. For
`example, if the signal is ass umed to be stationary withhl each
`of a series of data windows, the frequency resolution is gen(cid:173)
`erally inversely proportional to the duration of the window.
`As the window duration increases, tl1e assumption of a sta(cid:173)
`tionary signal is increasingly violated and/or nonstationary
`events (e.g .. transients) are more difficult to detect. At least
`some nonstationary frequency analysis methods, which may
`be based, without limitation, on a Hilbert transform approach,
`tracking of a oonstationary model, nonstatiooary principal
`frequency analysis. or other time-frequency methods. miti(cid:173)
`gate the effects of such a time-frequency tradeoff. Further(cid:173)
`more, useofsucb nonstationary techniques, as opposed to use
`of time domain peak picking and/or threshold based tech(cid:173)
`niques, can provide robustness of algorithm against artifacts,
`and provide sensitivity to periodicity without being burdened
`by a window tl1at can reduce U1e time resolution.
`I 00191 Other feat11res and adva ntages are apparenr from the
`following description and from the appended claims.
`
`BRI EF DESCRIPTION OF DRAWINGS
`
`10020) FIG. l is a schematic diagram of a photopletl1ysmo(cid:173)
`graph (PPG) sensor system.
`
`[0021] FIG. 2 is a graph of a PPG detector signal taken over
`a 25 second period by ~Ul earlobe PPG device.
`10022] FIG. 3 is a flow diagram of signal processing of a
`detector sig nal from a PPG device to obtain heart rate and
`respiration rate parameters.
`[0023) FIG. 4 is a graph of a result ofba11d-pass filtering the
`data shown in FIG. 2 between 0.5 Hz and 5.5 l-Iz to extract a
`cardiac signal.
`[0024) FIG. 5 is a graph of a result of band-pass filtering the
`data shown in FIG. 2 between 0.17 Hz and 0.5 1-lz to extract a
`respiration signal.
`10025] FIG. 6 is a graph of an inter-beat interval obtained by
`applying an instantaneous frequency method to the cardiac
`signal shown in FIG. 4.
`[0026] FIG. 7 is a graph of a spectral analysis of the inter(cid:173)
`beat interval data shown in FIG. 6.
`10027] FIG. 8 is a graph of the respiration rate obtained by
`applying a n instantaneous frequency method to the respira(cid:173)
`tion signal shown in FIG. 5.
`[0028] FIG. 9 is a diagram ofPPG measurements related to
`physiological states used to determine intrathoracic pressure.
`[0029] FIG. 10 is a graph of the output of a matched filter(cid:173)
`ingprocess using the PPGdetectorsignal shown in FIG. 2 and
`a pulse pilot signal.
`[0030] FIG. 11 is a block diagram of a least mean squares
`(LMS) adaptive filter.
`[0031] FIG. 12 is a schematic diagram of an active clamp(cid:173)
`ing mechanism used to stimulate capillary refill.
`[0032] FIG. 13 is a diagram of a system model relating a
`PPG signal to blood pressure.
`[0033] FIG. 14 is a graph of trends in various physiological
`parameters before and during a stress event.
`10034] FIG. 15 is a block diagram of a portable electronics
`unit.
`[0035] FlG. 16 is a flow diagram of methods to estimate a
`heart rate and a respiration rate.
`[0036] FlG. 17 is a flow diagram of a processing delay in
`the estimation of a heart rate.
`[0037) FJG. 18 is a flow diagram of a processing delay in a
`first method for the estimation of a respiration rate.
`[0038) FlG. 19 is a flow diagram of a processing delay in a
`second method for the estimation of a respiration ra te.
`10039] FIG. 20 is a flow diagram of a processing delay in a
`third method for the estimation of a respiration rate.
`
`DE1AILED DESCRIPTION
`
`10040] Referring to FIG. 1, examples of an infrared pho(cid:173)
`toplethysmograph (PPG) device 100 are used to obtain physi(cid:173)
`ological signals related to o ne or more of heart rate, respira(cid:173)
`tion rate, blood pressure, and intrad1oracic pressure. Such
`signals may be releva11t for monitoring a person's s tate,
`including one or more of the person's physical state, long(cid:173)
`term health, psychological state. and/or cognitive state. More
`generally, the physiological signals may provide information
`about the activity of the person's sympathetic and parasym(cid:173)
`pathetic nervous system. The PPG device 100 illustrated in
`FIG. 1 is attached to an earlobe 102 of a person, for example.
`using a clamping or adhesive approach. However. in other
`embodiments, PPG device l 00 is used on other areas of the
`skin of a person, including but not limited to a portion of a
`forehead, a neck, an arm, a forearm, a finger, a leg, a back. an
`abdomen, or a stomach. In general. a requirement for the
`positioning of PPG device 100 is that the PPG sensor be
`located such tl1at it can obtain a measurement via tl1e skin that
`
`023
`
`
`
`US 2009/0 I 05556 A 1
`
`Apr. 23, 2009
`
`3
`
`is related to blood flow or pressure. for example to measure a
`level of blood in a capillary bed 104. for example. a blood
`volume. a rate of blood flow, or a rate of change of blood
`volume. Note also that the approach is not limited to use of a
`single PPG device on an individual. ln some embodimems.
`multiple PPG devices are used, for exan1ple, on the torso
`ancVor at different extremities. and signals obtained at the
`different PPG devices are processed independently or in com(cid:173)
`bination to determine underlying characteristics of the indi(cid:173)
`vidual's state.
`10041]
`In some embodiments, such as thatshowninFlG.l,
`an infrared light source 106 illuminates the earlobe 102. The
`blood leve l in capillary bed 104 aflects the amount of light
`108 that is baekscaucred or reflected by earlobe 102. Light
`108 backscaucrcd by earlobe 102 is received by an optical
`transducer such as a photodetector 110 and converted into a
`detector signal J 12. Since the blood flow iu capillary bed 104
`is controlled by the hean beat oft he person and tlms the blood
`level in the capillary b(.'(! varies with time, the backscauered
`light 108 and hence the detector signal 112 are also tinle(cid:173)
`varying. In another embodiment. the PPG sensor operates in
`transmission mode and the light transmincd through the cap(cid:173)
`illary bed is received by tbe photodetector.
`100421 The detector signal 112 is sentto a signal processing
`unit 114 '' bich processes the detector signaL which contains
`information about the person's pulse, to extract desired physi(cid:173)
`ological data. in various embodiments including one or more
`ofin~tantanoou~ hean mte, inter-beat interval, heart rate vari(cid:173)
`ability, high-low heart rate ratio. respiration rate. inter-breath
`interval, respiration rate variability, blood pressure. and
`intrathoracic pressure. A single PPG device 100, referred to
`below as an Integrated Multi-Modal Physiological Sensor
`(IMMPS). is capable of produci ng multiple (or all) of such
`ty pes of physiological data.
`10043]
`In some embodiments, the PPGdevice 100 provides
`real-time visibility of rhysiological parameters and vital
`signs, which can be transmitted to other equipment for real(cid:173)
`time processing or for playback or off-line processing at a
`later time. In some embodiments, the PPG device includes
`user output devices, such as a set of light emitting diodes
`(Lims) (e.g., a red LED 11.6, a yellow LED 118. and a green
`LED 120) or an audio device for producing alert sounds.
`which provide on-device stants on PPG device 100. As an
`example for usc of such output devices, wheu a selected
`pliysiological parameter is in a normal range. green LED 120
`is turned on; when the physiological parameter is in a slightly
`abnormal range. yellow LED 118 is turned on: when the
`physiological parameter is in a dangerous range. red LED 116
`is turned on. In some embodiments, the audio output device is
`used to provide other audio output. such as the output for an
`electronic device such as a mobile phone or a music player. ln
`some embodiments, a wireless link 122 to an external moni(cid:173)
`toring system 124, such as a bedside system or a wearable
`system, provides sensor data to the external system enabling
`a numeric readout 126 of various physiological parameters.
`In some embodiments. the PPG device, or at least some
`wearable ponion of the