throbber
Interactions of Transition Metals with Silicon (100): The Ni-Si, Co-Si
`
`and Au/Si(100) Systems
`
`by
`
`Steven Naflel
`
`Graduate Program
`
`in
`
`Chemistry
`
`Submitted in partial fulfilment
`
`of the requirements for the degree of
`
`Doctor of Philosophy
`
`Faculty of Graduate Studies
`
`The University ofWestern Ontario
`
`London, Ontario
`
`July, 1999
`
`© Steven J. Nafiel 1999
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`TSMC 1223
`
`TSMC 1223
`
`

`

`I * I
`
`National Library
`of Canada
`
`Bibliothéque naiionale
`du Canada
`
`Acquisitions and
`Bibliographic Services
`395 Wellington Street
`Ottawa ON K1A 0N4
`Canada
`
`'
`Acquisitions et
`servrces bibliographiques
`395. rue Wellington
`Ottawa ON K1A 0N4
`Canada
`
`.
`
`Yaurfile Volre re'la'wnce
`
`cams Not/9 reference
`
`The author has granted a non—
`exclusive licence allowing the
`National Library of Canada to
`reproduce, loan, distribute or sell
`copies of this thesis in microform,
`paper or electronic formats.
`
`L’auteur a accordé une licence non
`exclusive permettant a la
`Bibliothéque nationale du Canada de
`reproduire, préter, distribuer ou
`vendre des copies de cette these sous
`la forme de microfiche/film, de
`reproduction sur papier ou sur format
`électronique.
`
`L’auteur conserve la propriété du
`The author retains oWnership of the
`droit d’auteur qui protege cette these.
`copyright in this thesis. Neither the
`thesis nor Stibstantial extracts from it Ni la these ni des extraits substantiels
`
`may be printed or otherwise
`reproduced without the author’s
`permission.
`
`de celle—ci ne doivent étre imprimés
`ou aunement reproduits sans son
`autorisation.
`
`04612425464)
`
`Canad'éi
`
`Reproduced with permission of the COpyright owner. Further reproduction prohibited without permission.
`
`

`

`ABSTRACT
`
`This thesis encompasses studies of the electronic and physical structure of three transition
`
`metal interfaces with Si(lOO) substrates.
`
`The first case concerns a high resolution photoemission (PES) study of the initial stages (0
`
`to ~25 ML) of the formation of the Au/Si(100) interface at room temperature. The interface was
`
`V studied using Si 2p and Au 4f core-level PES, using synchrotron radiation. It was found that the Au
`
`and Si react immediately upon deposition to form a Au-Si phase. This initial Au-Si phase is seen to
`
`. change to a second Au~Si phase by 3.6 ML (1 ML = 6.78><1014 atoms/cmz) of Au mverage. As the
`
`coverage is increased a layer of the second Au-Si phase remains on the surface while pure Au layers
`
`form underneath it
`
`Second we report a Si 1:33;, Si K-, Co L3; and Co K—edge X.ray absorption near-edge
`
`structures (XANES) study of a series of cobalt and cobalt silicide thin films prepared by thermally
`
`annealing deposited Co layers on Si(lOO) substrates. By collecting both Total Electron Yield>(TEY)
`
`and Fluorescence Yield (FLY) XANES at the above edges we monitored the electronic and physical
`
`structural differences between films annealed under different conditions. It was found that the as
`
`deposited Co film exhibits noticeable intermixing at the Co-Si interface. The annealed films
`
`consisted of CoSiZ; however, both SiO2 and metallic Co were found in the near surface region of
`
`these films. The origin of the metallic Co remains undetermined.
`
`I
`
`Thirdly, we report a Si L323 Si K-, Ni L32; and Ni K-edge, TEY and FLY XANES study of a
`
`series of nickel and nickel silicide thin fih‘ns prepared by thermally annealing deposited Ni layers on
`
`Si( 100) substrates. The unannealed films again showed noticeable intermixing at the Ni-Si interface.
`
`The annealed Ni films produced primarily NiSi and NiSi2 films depending on the final annealing
`
`temperature. Using the XANES spectra from the Ni-Si blanket films as a reference we determined
`that Ni-Si sub-micron lines formed on Si(100) were predominantly NiSi; however, the corwersion of
`
`the Ni/Si system to a pure NiSi phase appeared to be affected by the line thickness, with the
`
`conversion becoming less complete as the lines become narrower.
`
`» Keywords: X—ray Absorption Near-Edge Structure, XANES, Photoemission Spectroscopy, PES,
`
`Silicide Thin Films, Electronic Structure, Physical Structure, Au/Si( 100), Nickel Silicide, Cobalt
`Silicide, Total Electron Yield, Flucrescence Yield.
`
`iii
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`

`

`CO-AUTHORSHIP
`
`The following thesis contains material based on previously published manuscripts co-
`
`authored by Steven Nafiel, T. K. Sham, Ian Coulthard, YongFeng Hu, Martin Zinke-Allmang,
`
`D.-X. Xu, Suhit Das and L. Erickson. The eXperimental work and WIEN calculations
`
`presented in this thesis were preformed by Steven Nafiel, except as follows:
`
`Some of the photoemission data on clean silicon (100) and the fitting of the clean
`silicon spectra presented in the introduction of Chapter 3 were preformed by Dr. Detong
`
`' Jiang and were part ofunpublished work done in collaboration with Dr. Peter Norton.
`
`M. Zinke-Allmang provided one of the cobalt thin film samples examined in Chapter
`
`4. Jim Garret from the Materials Preparation Group at McMaster University provided the
`
`bulk CoSi2 saniple analysed in Chapter 4. The remaining cobalt silicide samples were
`provided by M. Saran ofNorthern Telecom. Some of the Si K-edge data of Chapter 4 was
`
`taken by YongFeng Hu, while, some ofthe Co K—edge data were taken by Ian Coulthard and
`
`T. K. Sham
`
`Dr. Suhit Das, D.-X. Xu and L Erickson provided the nickel silicide thin film and line
`
`samples analysed in Chapter 5. Some of the Ni K—edge data in Chapter 5 were taken by Ian
`
`Coulthard and T. K. Sham.
`
`For copyright releases see the Appendix.
`
`iv
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`

`

`To Connie
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`

`

`ACKNOWLEDGEMENTS
`
`First I would like to thank my supervisors Professor T. K. Sham and Professor P.
`
`K Norton without whose patience, encouragement and direction this work would not
`
`have been possible. Their optimism and vision have helped me through some difficult
`
`times. My gratitude for the commitment of their time and resources to this project can not
`
`be overstated.
`
`I want to acknowledge the people that helped me with some of the technical and
`
`experimental aspects of this work: Dr. Detong Jiang, Dr. Ian Coulthard, Dr. Kim Tan, Dr.
`
`YongFeng Hu, Dr. D.-X. Xu, Dr. S. R. Das, Dr. J. Garret, Dr. Keith Griffiths, Dr. John
`Tse, Dr. Dennis Krug, Dr. Martin Zinke-Allmang and
`Saran.
`
`I would also like to thank my lab mates: Dr. Mark Kuhn, Dr. Arthur Bzowski, Dr.
`
`Jian-Zhang Xiong, Dr. Ramaswami Sammynaiken. Thanks also to my friends who made
`
`student life bearable: Len Luyt, Jonathan Rochleau, Greg Canning, Marina Suominen—
`Fuller, Mike Scaini, Glenn Munro, Joy Munro, Claire Brown, Al Brown, Christine Brown,
`
`Nicki Curtis, Robin Martin, Alison Paprica and Paul Wiseman.
`
`Special thanks to my parents and brother for their patience, support and
`
`understanding in dealing with the eternal student.
`
`A very special thanks to Connie whose entrance into my life has encouraged and
`
`inspired me to do my best.
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`

`

`TABLE OF CONTENTS
`
`CERTIFICATE OF EXAMINATION .
`.
`ABSTRACT
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.1 .
`
`CO—AUTHORSHIP .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`ii
`iii
`
`iv
`
`DEDICATION .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. v
`
`. vi
`
`ACKNOWLEDGEMENTS .
`
`.
`
`.
`
`TABLEOFCONTENTS .
`LIST OF TABLES .
`.
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`
`.-.
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.'
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`. vii
`. x
`
`. xi
`
`LISTOFFIGURES .
`
`.
`
`.
`
`.
`
`CHAPTER 1: Introduction .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.‘
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`l
`
`. 7
`
`1.1
`
`References .
`
`.
`
`.
`
`.
`
`ECHAPTER 2: Theory and Experimental Techniques .
`2.1.
`Introduction
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`2.2
`
`X-ray absorption .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.K
`
`.
`.
`
`.
`
`.
`.
`
`.l .
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.. .
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`. 9
`. 9
`
`. ..
`
`.
`.
`
`.
`.
`
`.
`.
`
`11
`
`11
`15
`
`2.2.1 X—ray absorption .
`.
`.
`.
`.
`2.2.2
`Sampling depth ofXAS .
`
`2.3
`
`2.4
`
`Photoemission Spectroscopy .
`
`Synchrotron Radiation .
`
`‘1.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 22
`
`, 24
`
`. 24
`
`2.4.1
`
`Introduction . .
`
`.
`
`.
`
`.
`
`2.4.2 Synchrotron sources
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`,.
`
`.
`
`. 25
`
`. 27
`
`2.4.3 Properties
`
`.
`
`.
`
`.
`
`.
`
`2.4.4 Monochromators .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`2.4.4.1 Grating monochromators
`
`2.4.4.2 Crystal monochromators
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`l
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 30
`
`. 32
`
`. 33
`
`vii
`
`Reproduced with permission of the copyright owner, Further reproduction prohibited Without permission.
`
`

`

`2.5
`
`2.6
`
`Calculation of Density of States
`
`Summary .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 35
`
`. 37
`
`. 39
`
`2.7
`
`References .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`CHAPTER3: The Gold on Silicon (100) Interface .
`
`3.1
`
`Introduction .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.‘
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`.8.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`. 42
`
`. 42
`
`. 42
`. 43
`
`3.1.1
`Introduction .
`.
`.
`3.1.2 The Au/Si system .
`
`3.1.3 -Si(100) .
`
`3.2
`
`Experiment .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`. _
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`..
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`, 47
`
`. 56
`
`3.2.1 Experimental equipment
`
`3.2.2 Sample preparation .
`
`.
`
`Results and Discussion .
`.
`.
`.
`331 Si 2p core—leveldata .
`3.3.2 Difference spectra
`.
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`
`.
`
`.. .
`
`.
`.
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`.
`
`.
`
`_
`
`.
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`.
`
`.
`.
`
`. 56
`
`. 59
`
`. 60
`. 60
`. 65
`
`. 68
`. 72
`
`3.3
`
`3.4
`
`3.3.3 Au 4f core—level data .
`Conclusions
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`3.5
`
`References.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`CHAPTER 4: Cobalt Silicide Thin Films .
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`_
`
`.
`
`.
`
`.
`
`. 74
`
`. 77
`
`. 77
`
`4.1 '
`
`Introduction .
`
`4.2
`
`Samples
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`_
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`_
`
`.
`
`.
`
`.
`
`.
`
`.
`
`81
`
`83
`
`4.3
`
`4.4
`
`Experiment.
`
`.
`
`.,
`
`.
`
`.
`
`.
`
`.
`
`Results and Dichssion .
`
`.
`
`.
`
`.
`
`.
`
`4.4.1 SiLm-edge spectra .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`._ .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`,
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 88
`
`.
`
`88
`
`4.4.2 Co Liz-edge spectra
`
`4.4.3
`
`Si K~edge spectra .
`
`.
`
`4.4.4 CoK-edge spectra .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 94
`
`.
`
`101
`
`. ..
`
`106
`
`viii
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`

`

`4.5 Conclusions.................. .
`4.6
`Calculations of Cobalt Silicides .
`.
`.
`.
`.
`.'
`.
`.
`.
`.
`
`4.7
`
`References .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`i .
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`. ..109
`.
`.
`. 110
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`114
`
`117
`
`CHAPTER 5: Nickel Silicide Thin Films
`
`5.1
`5.2
`
`Introduction .
`Samples
`.
`.'
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`117
`121
`
`122
`
`5.3
`
`5.4
`
`Experiment .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Results and Discussion for Nickel Silicide Films
`
`5.4.1
`
`Si Liz-edge spectra.
`
`.
`
`.' .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`124
`
`124
`
`128
`
`5.4.2 Ni Liz—edge spectra .
`
`SiK-edge spectra” .
`5.4.3
`5.4.4 Ni K-edge spectra
`
`5.4.5 Conclusions
`Nickel Silicide Lines
`
`.
`.
`
`.
`.
`
`.
`.
`
`5.5
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`.
`
`.
`
`.y .
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`.1 .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`132
`136
`
`140
`141 '
`
`5.5.1
`
`Introduction .
`
`5.5.2 Experiment .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`141
`
`.. 141
`
`.
`
`142
`
`5.5.3 Results and Discussion .
`
`5.5.4 Conclusions
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`' .
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.5
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`.
`
`.
`.
`
`147
`
`147
`152
`
`5.6
`5.7
`
`Calculations of Nickel Silicides .
`References .
`.
`.
`.5 .
`.
`.
`.
`.
`.
`.
`
`CHAPTERG: Summary .
`
`.
`
`.
`
`.
`
`.
`
`e.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`;
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`_
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`155
`
`160
`
`APPENDIX .
`
`VITA .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`165
`
`ix
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`

`

`LIST OF TABLES
`
`Table 2.1.
`
`Photon penetration depth and X—ray absorption sampling depth
`
`estimates .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Table 2.2.
`
`Synchrotron radiation sources used for studies presented in this
`
`.
`
`.
`
`.
`
`.
`
`18
`
`. 29
`
`. 33
`
`Table 2.3.
`
`Table 3.1.
`
`Table 4.1.
`
`thesis .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.’ .
`
`.
`
`Beamlines used for work presented in this thesis .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`,
`
`.
`
`Core-level binding energy shifis of the components seen in the Si
`
`2p photoemission spectra of clean silicon .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`53
`
`. 81
`
`Important properties of the cobalt silicides .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Table 4.2.
`
`Description and preparation conditions of the cobalt silicide
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 82
`
`.
`
`.
`
`.
`
`120
`
`121
`
`139
`
`Table 5.1
`
`Table 5.2.
`
`samples
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Important properties of the nickel silicides .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Description and preparation conditions of the nickel silicide thin
`
`film samples
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Table 5.3.
`
`Measured X—ray absorption threshold shifts ofNiSi and NiSi2 .
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`

`

`LIST OF FIGURES
`
`Figure 1.1.
`
`Periodic table showing the elements that form compounds
`
`with silicon .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 1.2.
`
`Schematic diagram of a CMOS logic device showing the use
`
`of silicides .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 1.3.
`
`Schematic diagram illustrating heat induced synthesis of thin
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`3
`
`. 4
`
`.
`
`5
`
`film transition metal silicides .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 2.1.
`
`Part of the electromagnetic spectrum covered by synchrotron
`
`radiation and a few of the research interests in this range .
`
`.
`
`.
`
`.
`
`.
`
`10
`
`Figure 2.2.
`
`Schematic diagram of the X-ray absorption process in transmission
`
`mode .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 2.3.
`
`Diagram illustrating X-ray absorption and photoemission spectra
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`10
`
`12
`
`'
`
`in metals .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 2.4. Ni K—edge X—ray absorption spectrum taken in total electron
`
`yield mode showing the pre—edge, whiteline, XANES and
`
`EXAFS regions
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 2.5. Mechanisms for the decay of a core-hole after the absorption
`
`of an X—ray photon .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 2.6.
`
`Schematic diagram of the geometry of Total Electron Yield and
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`13
`
`l6 ‘
`
`16
`
`Fluorescent yield X-ray absorption detection modes
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 2.7.
`
`Plot of the universal curve for the mean free path of electrons in
`
`solids as a fimction of the kinetic energy of the electrons (Ex)
`
`2.
`
`.
`
`19
`
`Figure 2.8.
`
`Schematic diagram of electron production in a solid after the
`
`absorption of a photon .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`_
`
`.
`
`.
`
`Figure 2.9.
`
`Schematic diagram illustrating the photoemission process
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 20
`
`. 22
`
`Figure 2.10. Representation of a synchrotron storage ring showing the major
`
`components
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 26
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission,
`
`

`

`Figure 2.11. Bending magnet flux of the SRC storage ring under two typical
`
`operating conditions .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`,
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 29
`
`Figure 2.12. Schematic ofthe CSRF Grasshopper beamline located at SRC .
`
`. 31
`
`Figure 2.13. Schematic of a typical Double Crystal Monochromator beamline . 34
`
`Figure 2.14. Partitioning of the unit cell into atomic spheres and an interstitial
`
`region _
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 36
`
`. 44
`
`Figure 3.1.
`
`The Au-Si phase diagram .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 3.2.
`
`General picture of the Au/Si interfacial structure .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 46
`
`Figure 3.3.
`
`The Miller indices of three common crystal planes. The diamond
`
`structure of crystalline silicon. The atomic arrangement of atoms
`
`for the ideal Si(111) and Si(100) crystal planes .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 48
`
`Figure 3.4.
`
`Simplified views of the unreconstructed Si(100) surface and the
`
`reconstructed Si(lOO)-2><1 surface .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 3.5.
`
`Si 2p core-level spectra of a clean Si(100)~2><1 surface and
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 49
`
`. 52
`
`representative fitting components .
`
`.
`
`.
`
`.
`
`Figure 3.6.
`
`Si 2p core-level spectra of the clean Si(lOO)—2><l surface .
`
`Figure 3.7.
`
`Comparison of two Si 2p core-level spectra taken from the
`
`front side and the back side of the same sample .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 54
`
`. 55
`
`Figure 3.8.
`
`Schematic diagram of the PES experimental chamber, the important
`
`analytical devices and the sample mount used to study the
`
`Au/Si(100) system .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`_
`
`. 57
`
`Figure 3.9.
`
`1 MeV He+ Rutherford Backscattering Spectrum of the 3.6 ML Au
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 58
`
`covered Si(100) wafer
`
`.
`
`.
`
`.
`
`.
`
`Figure 3.10.
`
`Si 2p core-level spectra of clean Si(100) and Au covered Si(100)
`
`taken at a photon energy of 130 eV .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 61
`
`Figure 3.11.
`
`Si 2p core-level spectra of clean Si(lOO) and Au covered Si( 100)
`
`taken at a photon energy of 160 eV .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 3.12. Difference between 3.6 ML and 0.36 ML Au covered and clean
`
`Si(100) spectra .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 64
`
`. 66
`
`xii
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`

`

`Figure 3.13. Au 4f core~level spectra of clean and Au covered Si(lOO) taken at
`
`a photon energy of 160 eV and 130 eV .
`
`.
`
`Figure 3.14. Representative fits to the core—level data .
`
`Figure 4.1.
`
`The Co-Si phase diagram .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 69
`
`. 70
`
`. 79
`
`Figure 4.2.
`
`Schematic of the basic Co-Si thin film structure‘before and after
`
`Figure 4.3.
`
`' annealing .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Schematic diagram of the eitperimental XANES setup on
`
`beamline X1 l—A and the He amplified TEY detector .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 4.4.
`
`Schematic. diagram ofthe experimental XANES setup on the
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 82
`
`. 84
`
`. 86
`
`. Canadian DCM and the channel plate fluorescence detector
`
`Figure 4.5.
`
`Schematic diagram of the experimental XANES setup on the
`Canadian Grasshopper beamline and the Au mesh Io detector .
`
`Figure 4.6.
`
`Si L3_2~edge spectra of a Si(lOO) wafer in both TEY and FLY
`
`detection modes
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 87
`
`. 90
`
`Figure 4.7.
`
`Si Lag-edge spectra of the Co-Si thin films, CoSi2 and Si(lOO) taken
`
`in TEY‘mode .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 92
`
`Figure 4.8.
`
`Si Liz-edge spectra of the Co—Si thin films, CoSiZ and Si(lOO) taken
`
`.
`
`.
`
`,
`
`.
`
`.
`
`.
`
`. 93
`
`inFLYmode.
`
`.
`
`.v
`
`,
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 4.9.
`
`Co Lifedge spectra of the Co-Si films and CoSi2 taken in FLY
`
`mode .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 4.10. Co Liz—edge spectra of the Co-Si films and CoSiz taken in TEY
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 95
`
`. 98
`
`mode .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 4.11. Subtraction of scaled bulk CoSi2 spectra fi'om the TEY spectra
`
`of the annealed Co—Si films, compared to the TEY spectrum of
`
`the unannealed film ;
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`._ .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. 99
`
`Figure 4.12.
`
`Si K—edge spectra of the Co-Si films, Si(lOO) and CoSi2 taken in
`
`FLYmode .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`. ..
`
`102
`
`Figure 4.13.
`
`Si K-edge spectra of the Co—Si films, Si( 100) and CoSi2 taken in
`TEY mode .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`,
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.V
`.
`.
`
`.
`
`104
`
`xiii
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`

`

`Figure 4.14.
`
`Comparison of Si K—edge spectra of CoSi2 taken in different
`
`detection modes and sample preparation conditions
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 4.15.
`
`C0 K—edge spectra of the Co-Si films and CoSi2 taken in TEY
`
`mode
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`,
`
`.
`
`.
`
`.
`
`.
`
`Figure 4.16.
`
`Comparison of TEY and FLY Co K-edge spectra for Co-Si (4)
`
`Figure 4.17.
`
`Schematic of the structure of the studied Co—Si films .
`
`.
`
`.
`
`.
`
`Figure 4.18.
`
`Calculated total and partial densities of states for COZSi, CoSi
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`_
`
`.
`
`.
`
`.
`
`.
`
`105
`
`107
`
`108
`
`110
`
`111
`
`and 03312 .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 4.19.
`
`Comparisons of CoSi2 data and calculations
`
`_
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`113
`
`Figure 5.1.
`
`Figure 5.2.
`
`The Ni-Si phase diagram .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Schematic ofthe basic nickel silicide thin film structure before and
`
`118
`
`afier annealing .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`122
`
`Figure 5.3.
`
`Si Liz—edge XANES spectra of the Ni-Si films and Si(100) taken in
`TEY mode .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.2
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`125
`
`Figure 5.4.
`
`Si Liz-edge spectra of the Ni-Si films and Si(100) taken in FLY
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`_
`
`.
`
`127
`
`mode .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 5.5.
`
`Ni Liz-edge spectra of the Ni-Si films and Ni foil taken in TEY
`
`mode .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 5.6.
`
`Ni L—edge whiteline difference curves between Ni foil and the
`
`nickel silicides
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 5.7.
`
`Ni L3_2—edge spectra of the Ni~Si films and Ni foil taken in FLY
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`,
`
`.
`
`129
`
`131
`
`133
`
`mode .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Si K—edge spectra of the Ni-Si films, Ni foil, and both clean and v
`ambient Si(100) taken in TEY mode .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`Si K-edge spectra for nickel silicide film Ni—Si (3) and Ni—Siv(4)
`and comparison with NiSi and NiSi2 spectra .
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`_
`
`134
`
`137
`
`138
`
`_ 140
`
`.
`
`.
`
`.
`
`Figure 5.8.
`
`Figure 5.9.
`
`Figure 5.10.
`
`Ni K-edge spectra of the Ni-Si films and Ni foil taken in TEY
`
`mode .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 5.11.
`
`Schematic of the structure ofthe studied Ni-Si films
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Xiv'
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`'
`
`

`

`. Figure 5.12.
`
`Figure 5.13.
`
`Schematic diagram of the silicide lines on Si(100)
`.
`.
`.
`.
`.
`.
`.
`.
`Ni Liz-edge spectra of the Ni—Si films, Ni lines and Ni foil taken in
`
`142
`
`TEY mode .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`143
`
`Figure 5.14.
`
`N1 Liz-edge spectra of the Ni-Si films, Ni lines and Ni foil taken in
`
`FLY mode .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`- .
`
`.
`
`.
`
`.
`
`.
`
`Figure 5.15.
`
`Ni Ls-edge XANES spectra of the Ni—Si lines compared to the
`
`spectra for NiSi in both TEY and FLY .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Figure 5.16.-
`
`Calculated tetal and partial densities of states for NiZSi, NiSi and
`
`Figure 5.17.
`
`Figure 5.18.
`
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`NiSi2 .
`Comparisons ofNiSiz data and calculations .
`Comparisons ofNiSi data and calculations .
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.I
`
`.
`.
`.
`
`.
`.
`.
`
`.
`.
`.
`
`.
`
`.
`
`.
`.
`.
`
`145
`
`146
`
`148
`150
`151
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited withOut permission.
`
`

`

`CHAPTER 1: INTRODUCTION
`
`Metal silicides were studied formany years before the advent of silicon based solid
`
`state electronics. The growing dependence of our society on silicon based electronic
`
`devices has made the properties of silicon compounds of prominent importance to our
`
`present and fiJture.
`
`i
`
`Metal silicides first attracted attention at the turn of the century after the
`
`development of the electric fumace by H. Moissan [1]. The development of the fiJmace
`
`allowed various silicides to be systematically prepared at about this time. The early
`
`studies of silicides generally focused on understanding the physical properties of silicides
`in terms of their electronic and crystal structures. Other studies were stimulated by the
`
`high temperature stability of many refractory silicides [2].
`
`In the 1960's, M. P. Lepselter
`
`-
`
`[3] at Bell Laboratories pioneered the use of silicides as Schottky barriers. Silicide studies
`
`since have focused on the use of metal silicides in integrated circuit technology. See
`
`[2][4][5][6][7][8][9] for reviews. Such a focused effort has produced large volumes of
`
`information on the thermodynamic, kinetic, physical, and electrical properties of most of
`
`the silicides. Although the majority of studies have been centered on the device
`characteristics and usefulness of metal silicides, silicides have also been studied as model
`
`systems for binary alloy formation in thin films [10] and interfacial reactions [11].
`
`Perhaps no other industry drives itself to improve its products as fast as the
`
`semiconductor industry. Since Gordon Moore’s famous talk at the International Electron
`
`Devices Meeting (IEDM) in 1975, the industry has met or bettered his predicted growth
`
`rate in chip complexity (and decreased minimum feature size)[12]. Moore predicted a
`
`growth in chip complexity by a factor of two every year, now called Moore’s law.
`
`In
`
`Reproduced with permission of'the copyright owner. Further reproduction prohibited without permission.
`
`

`

`order to better define the trends in increasing complexity and identify the technological
`
`advances necessary to continue the trends, the Semiconductor Industry Association
`
`introduced the National Technology Roadmap for Semiconductors [13] in 1992 (with
`
`revised editions in 1995 and 1997). The roadmap has succeeded in driving innovations in
`
`the industry even faster, as companies compete to be the first to meet the projected
`
`guidelines for new architectures. As a result, more recent studies [l4][15][l6][17] of
`
`metal silicides have focused on meeting the challenges posed by the ever decreasing
`
`dimensions and complexity of ultra large scale integration (ULSI).
`
`More than half the elements in the periodic table form compounds with silicon (see
`
`Figure 1.1). The transition metals form a large number of silicides of various
`
`compositions, with most metals forming more than three stable compounds However,
`
`not all of the compounds seen in the bulk phase diagrams form in the thin film regime.
`
`The technically useful silicides fall into three main groups: the metal rich silicides MXSi, the
`
`monosilicides MSi, and the disilicides MSiz. The most important'of these have been the
`disilicides.
`_
`i
`'
`'
`Silicides have found applications in integrated circuit technology as: interconnects,
`
`ohmic contacts to source, drain and gate in CMOS (Complementary Metal Oxide
`
`Semiconductor) devices, see Figure 1.2, Schottky barrier devices, and more recently, as
`
`difliision barriers along Al metal interconnects. In order to be useful in these applications
`
`a compound must, in general: have good conductivity, be compatible with current
`
`manufacturing techniques and be reliable [2][15][l8]. These three conditions can entail:
`
`low resistivity, high temperature stability, ease of formation, ability and ease of patterning,
`
`minimal junction penetration, no reaction with other metals or silicon oxide layers, good
`
`adhesion to other layers and resistance to electromigration [2][18]. Certainly no silicide
`
`can meet all these conditions.
`
`The wide variety of compounds, complex phase transitions and the needto satisfy
`
`such a large set of conditions to obtain good‘device performance, has driven the
`
`fundamental investigations into metal silicides. This has generated a large body of
`
`knowledge about the properties of metal silicides. Research has especially focused on
`
`Reproduced with permission of the copyright'owner. Further reproduction prohibited without permission.
`
`

`

`
`HHHHEHHHHHIHHH:
`IIIIIIIIIHEHIH
`
`
`
`.2023"EBmgscsacn.5:885385299.35%9239:55;._J3:3”.
`
`
`
`
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`

`

`— Metal Silicides
`
`A1 interconnects
`
`-WW studs
`
`
`
`
`
`
`
`
`Metal
`
`SSS
`VII/A
`
`SiO2 layers
`
`
`
`
`
` ‘\
`
`
`
`
`
`
`
`
`
`
`s
`
`Figu rc 1.2.V Schematic diagram ot‘a CMOS logic device showing the use ot‘silicides.
`
`those metals which were found to have good compatibility with the conditions of
`
`integrated circuit (IC) manufacture, namely Pt, Pd, W, Mo, Ti, Co, Ni and Ta [18].
`In general, a CMOS device, such as the one schematically represented above, has
`
`between 3 and 5 interconnect layers above the transistors. Currently such devices are
`produced with a minimum feature size (approximately the width of the gate) of 0.25 pm.
`
`i
`
`In 0.25 pm technology the source and drain are about 60 nm deep and the gate oxide is
`
`about 4—5 nm thick [19]. The semiconductor industry plans to reach a minimum feature
`size of 0.18 pm by the end of 1999 and a minimum feature size of 0.07 pm by the year
`
`'
`2009[19].
`Research on the metal silicides used in industrial processes has mainly focused on
`
`the overall device performance. However, as the minimum feature size of solid state
`
`transistors moves toward 0.1 pm, problems associated with the properties of the
`
`interconnects and contacts, such as parasitic resistance and capacitance [5][18], as well as
`
`problems associated with the control of reactions in thin films, such as junction penetration
`
`Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
`
`

`

`5
`
`[5][9][20], have become the most prominent challe

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket