throbber
Fundamentals, Practice and Modeling
`
`SILICON VLSI
`TECHNOLOGY
`
`Prentice Hall Electronics and VLSI Series—Charles Sodini, Series Editor
`
`aee
`
`James D. Plummer ° Michael D. Deal » Peter B. Griffin
`
`TSMC 1008
`
`

`

`Silicon VLSI Technology
`
`Fundamentals, Practice and Modeling
`
`James D. Plummer
`Michael Deal
`Peter B. Griffin
`Departmentof Electrical Engineering
`Stanford University
`
` eee
`
`Hall
`
`Prentice Hall
`Upper Saddle River, NJ 07458
`
`

`

`Library of Congress Cataloging-in-Publication Data
`Silicon VLSI technology
`p.
`cm.
`ISBN 0~13-085037-3
`1. Integrated circuits—Very large scale integration—Design and
`construction.
`2.Silicon.
`3. Silicon oxide films.
`4. Metal oxide
`semiconductors.
`5. Silicon technology.
`TK7874.75.854
`2000
`621.39'S—de21
`
`99-42745
`CIP
`
`*,
`
`Me
`
`Publisher: Tom Robbins
`Associate Editor: Alice Dworkin
`Editorial/Production Supervision: Rose Kernan
`Vice President and Editorial Director, ECS: Marcia Horton
`Vice President ofProduction and Manufacturing: David W.Riccardi
`Executive Managing Editor: Vince O’Brien
`Marketing Manager: Danny Hoyt
`Managing Editor: David A. George
`Manufacturing Buyer: Pat Brown
`Manufacturing Manager: Trudy Pisciotti
`Art Director: Jayne Conte
`Cover Design: Bruce Kenselaar
`Editorial Assistant: Jesse Power
`Copy Editor: Martha Williams
`Composition: D&G Limited, LLC
`
`cK §—©2000 by Prentice Hall, Inc.
`pone=Upper Saddle River, New Jersey 07458
`
`All rights reserved. No part of this book may be
`reproduced, in any form or by any means,
`without permission in writing from the publisher.
`
`The author and publisher of this book haveused their best efforts in preparing this book. These efforts include the
`development, research, andtesting of the theories and programs to determine their effectiveness. The author and
`publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation
`contained in this book. The author and publishershall notbe liable in any event for incidental or consequential damages
`in connection with, or arising out of, the furnishing, performance,or use of these programs.
`
`Printed in the United States of America
`
`10
`
`9
`
`8
`
`7 65 43 2
`
`ISBN 0-13-085037-3
`
`Prentice Hall International (UK) Limited, London
`Prentice Hall of Australia Pty. Limited, Sydney
`Prentice Hall Canada Inc., Toronto
`Prentice Hall Hispanoamericana, S.A., Mexico
`Prentice Hall of India Private Limited, New Delhi
`Prentice Hall of Japan, Inc., Tokyo
`Pearson Education Pte., Ltd. , Singapore
`Editora Prentice? Hali do Brasil, Ltda., Rio de Janeiro
`
`

`

`
`
`
`
`
`
`
`
`Preface... cc cece een cena e nee e ben teneeeneunennenees
`
`. Xi
`
`Chapter 1
`
`1.3.
`1.4
`
`Introduction and Historical Perspective
`1.1
`Introduction. 0.0.0... 00... ccc e cnet een nnenen
`1.2
`Integrated Circuits and the Planar Process—Key Inventions That Made
`It All Possible. 2... nee ete n nee n nee enes
` Semiconductors...... 0... eee cence nee teen eben eeaes
`Semiconductor Devices»... 0...6.e eee n nen es
`33
`1.4.1
`PN Diodes..... 0... cnn tenet nen eneees
`33
`1.4.2©MOS Transistors ..... 2... cence tenn ene nees
`36
`1.4.3
`Bipolar Junction Transistors ..... 2... cette eee ees
`39
`Semiconductor Technology Families. ...........0.0.0.0.00 000. cece cece eee eae
`1.5
`41
`1.6 Modern Scientific Discovery—Experiments, Theory, and
`Computer Simulation. 2.0.0.0... cece cece e eee eens
`43
`
`if6-Tine Plan. Por Tits Bo@k ..asaaememeamwasd $$644445 $4? kesaamwamaammawmnmnawne 45
`1.8
`Summary of Key Ideas... 1.0... ccc cette eee eeees
`46
`1.9 References....... ccc eee e eee n en bette ene eenes
`46
`1.10
`Problems ....... ccc cece cent tte t nent ene e beens
`47
`
`1
`
`el
`
`.7
`
`13
`
`Chapter 2 Modern CMOSTechnology
`Zui,
`TWGROOWOHOM,
`. 2: 22i:2:nemmmanmumememsa ttt bb 15+ tec am amnawnammenmnnmonnn
`2.2
`CMOSProcess Flow........... 000s 2+: epee rePueesesasseuseee
`2.2.1
`The Beginning—Choosing a Substrate ...........0.. 0.0 eee
`2.2.2
`Active Region Formation ........ 0... cece eee eee eee eens
`2.2.3
`Process Option for Device Isolation—Shallow Trench Isolation.........
`2.2.4 Nand P Well Formation. .......... 0.0... ee
`2.2.5
`Process Options for Active Region and Well Formation................
`2o20
`‘GEIS FOMNGNOMs sunanwacaasecad tei ets tere mnanemewmmnmewmnnewwean
`2.2.7.
`‘Tip or Extension (LDD) Formation. ............ 0... cece eee eee
`226
` ‘Source/Drait POA cee csee ces 5 455258 ReRRe Seed denen semswwan
`2.2.9
`Contact and Local Interconnect Formation .....................00005
`2.2.10 Multilevel Metal Formation ...........0. 0.00. cece eens
`Summary of Key Ideas... 0... eee eee e eens
`Probems... 1.2... eee n cnet tenn eee e eee eens
`
`2.3
`2.4
`
`49
`
`49
`50
`51
`52
`57
`60
`63
`71
`76
`80
`82
`84
`90
`91
`
`

`

`Contents
`
`Chapter 3
`
`Crystal Growth, Wafer Fabrication and Basic Properties
`of Silicon Wafers
`
`93
`
`3.4.2
`
`3.1
`3.2
`
`Introduction. 2.0.0... ccc ccc eee cence eens enn eetnneeuannns 93
`Historical Development and Basic Concepts ...........0.0000 0c cece eee eee eee 93
`3.2.1
`Crystal Structure... ccc cee cece ence ee nanes 94
`222
`Detects in Crystals .: asassadsannnnun ce sescessceseeesssupppunnpanen oF
`3.2.3
`Raw Materials and Purification .......0..0.0 00.00 cc cece ee ccc eeeees 101
`3.2.4
`Czochralski and Float-Zone Crystal Growth Methods................ 102
`3.2.5 Wafer Preparation and Specification............0.0.0 00000 cece eee eee 105
`3.3. Manufacturing Methods and Equipment.............0000 00. c cece cece cues 109
`3.4 Measurement Methods..........0.0. 0.00. cece eee cece e ee eeunneeeecueneas 111
`3.4.1
`Electrical Measurements.........0.00. 00000. c cece eee ecceeeeeneues lil
`3.4.1.1 Hot Point Probe....... 0. ccc cece eeeees 112
`“3.4.1.2
`Sheet Resistance ........0 00000 cece cece eee ne eees 113
`3.4.1.3 Hall Effect Measurements ...........000 0. ccc cc cece ce uees 115
`Physical Measurements ..........0..0. 000000 c cece cece e ee euaeeeues 117
`3.4.2.1 Defect Etches.......00 00.0. c ce cece ees nee eeeunees 117
`3.4.2.2
`Fourier Transform Infrared Spectroscopy (FTIR)............ 118
`3.4.2.3
`Electron Microscopy...........0.. 0c ccc cece cece eee eeuas 119
`3.5 Models and Simulation.......0..0.0000 0000 ccc cece cece neces cern eeeteeeuua 121
`3.5.1
`Czochralski Crystal Growth .......0.00. 000000 ccc ccc cece e eee eeees 122
`3.5.2
`Dopant Incorporation during CZ Crystal Growth. ................... 125
`3.5.3
`Zone Refining and FZ Growth.........0.0 00.00. e cece cece e ee aes 128
`3.5.4
`Point Defects........ 0000. ec eee eee cena eneeveeeeues 131
`3.5.5
` Oxygenin Silicon... ccc cece nee ence eeeeenaes 138
`3.5.6
`Carbon in Silicon 2.0... 0.0 ccc ccc cece cece eees 142
`3.5.7
`Simulation.........0.000 0000 ccc cc cece eee eee ennneenes 143
`Limits and Future Trends in Technologies and Models .................00000% 144
`3.6
`Summary of Key Ideas... ccc ccc eee eee aeeennnaes 146
`3.7.
`3.8 References... cece cece ence eect eeeeebbbeeeenes 147
`3.9
`PYODICMS «ccs sees eS Smmmunme veseserss+ nny appanasannenuseseenennes 148
`
`Chapter 4
`
`Semiconductor Manufacturing—Clean Rooms, Wafer Cleaning,
`and Gettering
`
`151
`
`4 Introduction. 0... ccc ccc cece cee cece ee ee been eeees 151
`4.2
`Historical Development and Basic Concepts ...........0. 0.0 ccc eee eeeeeeees 154
`4.2.1
`Level 1 Contamination Reduction: Clean Factories................... 157
`4.2.2
`Level 2 Contamination Reduction: Wafer Cleaning................... 159
`4.2.3
`Level 3 Contamination Reduction: Gettering..........0.0........004. 161
`4.3 Manufacturing Methods and Equipment.............000. 00. cccceceeecuseeae 165
`4.3.1
`Level 1 Contamination Reduction: Clean Factories..............00004 165
`4.3.2
`Level 2 Contamination Reduction: Wafer Cleaning................... 166
`43.3
`Level 3 Contamination Reduction: Gettering....................000. 167
`4.4 Measurement Methods.........0.0.0.00 00. ccc cece ccc cece nese eeeeeenennns 169
`44.1
`Level 1 Contamination Reduction: Clean Factories...............008. 169
`
`

`

`Contents
`
`
`
`
`Level 2 Contamination Reduction: Wafer Cleaning................... 173
`442
`Level 3 Contamination Reduction: Gettering....................00.. 176
`443
`4.5 Models and Simulation.......... 0.00...ocee ce cena 180
`4.5.1
`Level 1 Contamination Reduction: Clean Factories................... 181
`4.5.2
`Level 2 Contamination Reduction: Wafer Cleaning................... 184
`45.3.
`Level 3 Contamination Reduction: Gettering.....................05. 186
`4.5.3.1
`Step 1: Making the Metal Atoms Mobile ................... 186
`4.5.3.2
`Step 2: Metal Diffusion to the Gettering Site................ 187
`4.5.3.3.
`Step 3: Trapping the Metal Atomsat the Gettering Site....... 190
`Limits and Future Trends in Technologies and Models ....................... 193
`Summary of Key Ideas...:.2..00cesqnssenennemsseeseusneeeansaeaeasanags 196
`References... 00... eee tne e eee ee eee nee 196
`Problems ...... 0... ce eee teeter eee e bene ens 198
`
`4.6
`472
`4.7
`4.9
`
`Chapter5
`
`5.2.3
`
`201
`Lithography
`5.1
`Introduction. ...... 0... cece cence renee ence ee eee 201
`5.2
`Historical Development and Basic Concepts ............ 0.0.0. c cece eee 203
`S21
`Light SOUTSES...........2525.85485 SERRE OR ERE ERR O EERE REESE ER EAS 206
`5.2.2. Wafer Exposure Systems... 00... cece tenes 208
`5.2.2.1
`Optics Basics—RayTracing and Diffraction ................ 209
`5.2.2.2
`Projection Systems (Fraunhofer Diffraction)................ 242
`5.2.2.3
`Contact and Proximity Systems (Fresnel Diffraction) ........ 219
`Photoresists........... 00 ccc c eee cece eee eee e eee ete ene ees 221
`5.2.3.1
`g-line and i-line Resists... 0.0... eee eee 223
`5.2.3.2 Deep Ultraviolet (DUV) Resists..................000 000 225
`5.2.3.3.
`Basic Properties and Characterization of Resists ............ 22/7
`5.2.4 Mask Engineering—Optical Proximity Correction and Phase Shifting. .
`. 230
`5.3. Manufacturing Methods and Equipment............ 0... cece eee eee 234
`5.3.1 Water BROSUPS SYSICHIS...cccaceeesuseeeussateesszeseresssssseit 234
`5.3.2
`PhotoresistS.. 0.0... ec eee teen teen ees 238
`Ba. Measurement Methods, .<.cccscicssetceessiteastsesteeaiseeensceeeesaess 241
`5.4.1 Measurement of Mask Features and Defects .....................00, 242
`5.4.2 Measurement of Resist Patterns.......... 2.0... ccc cee eee 244
`54.3
`Meéedasitrement of Etched Features... 2. wcsssscunnas wusmaasceeseezase 244
`5.5 Models and Simulation............ 00. cece ccc eee eee eee e eens 246
`55.. Water EXposite SYSICHIS. .2:3:55csn,cenemaenonenaauasaerrrrrere es 247
`5.5.2
`Optical Intensity Pattern in the Photoresist .................000000-- 253
`5.55
`PHOLOPESISE EXPOSUTC anucsanuusssneneeesauneusseuaueussanuarseess 259
`5.5.3.1
`g-line and i-line DNQ Resists........0....0 0.0 cee eee ee eee 259
`§.5.3.2 DUV Resists..... 0.00.0 eee 263
`Postexposure Bake (PEB)...........00cnnnnnnnnd du dGeES SETS EDS ESS 264
`5.5.4.1
`g-line and i-line DNQ Resists. ............. 000 c cece eee ees 264
`5542
`DUYV RGSS. 2... nn cane mewoueda eid dS ces REET OEAe EE 266
`Photoresist Developing .... 0... eee ees 267
`Phoetorésist POSthake on. wnwewnw ve die ibs ESSE SATO EEE RES 270
`
`5.5.4
`
`5.5.5
`5.5.6
`
`

`

`Contents
`
`Advanced Mask ERGMEEHS ..5....0cunesenssosysumananmanaaeere ss 271
`5.5,/
`Limits and Future Trends in Technologies and Models .............0....0000 DVL
`5.61
`BEléctron Beam Lithography o«anssascsceswsnsseemsenanennemeesere se 273
`5.6.2
`X-ray Lithography ........ 0... cece eee eee 213
`5.6.3.
`Advanced Mask Engineering .........000 0.00 ee eee 277
`564
`MNew RESIS........c0rencumns > souundduddIdIISAIOEE SORTS SEO RBRS 278
`Summary of Key Ideas... 1... eee eens 281
`RGTSPEHCES 0. oon oad SAMBUB SSSR 222555257558 22EE LER EEE REE EN HEE Tess < 281
`Problems ......0.. 0.0. c cc eee ee ene eee e ete e eee 283
`
`5.6
`
`5.7
`SS
`5.9
`
`Chapter6
`
`Thermal Oxidation and the Si/SiO2 Interface
`
`287
`
`Introduction. ....... 0... ce een ene e eens 287
`6.1
`Historical Development and Basic Concepts ... 0.0... 290
`6.2
`6.3. Manufacturing Methods and Equipment...........6... 296
`6.4 Measurement Methods.......... 0... ccc cee eee eens 298
`64.1
`‘Pliysical Measurements ; isi sasassaasassaensseetesttieseseeeseeers 299
`6.4.2
`Optical Measurements... 0.0.0.6 cee eee eee 299
`6.4.3.
`Electrical Measurements—The MOS Capacitor ........... 0.0... eee 301
`6.5 Models and Simulation. .......0.0.0 000. ee net eens 312
`6.5.1.
`First-Order Planar Growth Kinetic —The Linear Parabolic Model ..... 313
`6.5.2
`Other Models for Planar Oxidation Kinetics ...........0......00055. 322
`6.5.3.
`Thin Oxide SiOz Growth Kinetics ........ 0.00... cece eee 326
`65.4
`Dependence of Growth Kinetics on Pressure... ...sessneeaneeseeesrs 328
`6.5.5
`Dependence of Growth Kinetics on Crystal Orientation .............. 329
`6.5.6 Mixed Ambient Growth Kinetics.........00. 0... c eee eee eee 332
`6.5.7
`2D.-$10> Growih KinehGs...........0.0085688008 9 EERE DESO SEeEEER EOE 333
`6.5.8
`Advanced Point Defect Based Models for Oxidation................. 339
`659
` Suistate Doping Prete, 12sscccceseeneeeucwecenouasuccnasueeanes 343
`6.5.10 Polysilicon Oxidation. . 00.0... eee eee 345
`6.5.11
`SisNs Growth and Oxidation Kinetics ....... 0.00222. 347
`65.12
`Silicide OxidatiOl...... wwe cee FEE EEE ESddSSIES LARS R CARRE ES 350
`6.5.13
`Si/SiOs Interface Charges ..... 0... nee eens 352
`6.5.14 Complete Oxidation Module Simulation .............. 0... 357
`Limits and Future Trends in Technologies and Models ....................05. 259
`Summary of Key Ideas... 0...ee eee eens 361
`PRELPENCES0. mm eee neon eens FESEEISESETEFEESERERERAEEEEEESE 361
`Problems ....... 0... ee eee eee eee e eens 364
`
`6.6
`6.7
`GS
`6.9
`
`371
`DopantDiffusion
`TA
`Introduction... 0.0 een eens 371
`7.2
`Historical Development and Basic Concepts .......... 6.0 eee eee eee eee 374
`7.2.1
`Dopant Solid Solubility...00... 375
`7.2.2
`Diffusion from a Macroscopic Viewpoint ..........000 2. eee ee eee eee 377
`7.2.3
`Analytic Solutions of the Diffusion Equation. ................--0005- 379
`7.2.4
`Gaussian Solution in an Infinite Medium .................. 020220085 380
`
`Chapter 7
`
`

`

`Contents
`
`Gaussian Solution Near a Surface ....... 0.0... ccc ccc e cece eee 381
`7.2.5
`Error-Function Solution in an Infinite Medium....................., 382
`7.2.6
`Error-Function Solution Near a Surface .................000005 re 384
`7.2.7
`Intrinsic Diffusion Coefficients of Dopants in Silicon................. 386
`7.2.8
`Effect of Successive Diffusion Steps 0.0.2.0... 0.0.00 388
`7.2.9
`7.210 Design and Evaluation of Diffused Layers................0000000005 389
`7.2.11
`Summary of Basic Diffusion Concepts ............ 000000 392
`7.3. Manufacturing Methods and Equipment.................0 00 cece eee eee eee 302,
`7.4 Measurement Methods......... 00... cece eet eee beeen eens B95
`fet
`SUNS casesssasanesmanencenscernaddddad $452.45 5ecenmnnnuconnnnnn 396
`7.4.2
`Spreading Resistance... 0... eee eee aes 397
`7.4.3
`Sheet Resistance....... 0... cece cence eees 398
`7.4.4
`Capacitance Voltage.... 00... ccc eee ees 399
`7.4.55
`TEM Cross Section. ...... 000.e een n en nns 399
`7.4.6
`2D Electrical Measurements Using Scanning Probe Microscopy ....... 400
`7.4.7.
`Inverse Electrical Measurements............ 000 c cece eee eee 402
`7.5 Models and Simulation. ....... 0.0...n eee e eee eees 403
`7.5.1.
`Numerical Solutions of the Diffusion Equation...................05. 403
`7.5.2|Modifications to Fick’s Laws to Accountfor Electric Field Effects...... 406
`7.5.3. Modifications to Fick’s Laws to Account for
`Concentration-Dependent Diffusion............ 0.0... cee eee 409
`Segregation .... 0... eee eee eee e ene ees 413
`TS54
`Interfacial Dopant Pileup ........ 2... cece eee 415
`7.5.5
`Summary of the Macroscopic Diffusion Approach ................60. 417
`7.5.6
`The Physical Basis for Diffusion at an Atomic Scale...............05. 417
`7.5.7.
`Oxidation-Enhanced or -Retarded Diffusion.....................0.. 419
`7.5.8
`Dopant Diffusion Occurs by BothIandV....................00 00 ee 422
`7.5.9
`7.5.10 Activation Energy for Self-Diffusion and Dopant Diffusion........... 426
`7.5.11 Dopant-Defect Interactions .......00 0... ccc cece es 426
`7.5.12 Chemical Equilibrium Formulation for Dopant-Defect Interactions ... . 432
`7.5.13
`Simplified Expression for Modeling........ ccc eee eee e eee e eens 434
`Tai@ Charge Siate Etec’. -..asaacuaeusaessereanOhdusacammnannmemomune 436
`Limits and Future Trends in Technologies and Models ....................00. 439
`7.6.1
`Doping Methods......... 0.0.0... cece cece eee nes 44()
`7.6.2
`Advanced Dopant Profile Modeling—Fully Kinetic Description
`of Dopant-Defect Interactions .............. 00. e eee eee eee 4AQ)
`Summary of Key Ideas... 0... cet tne enes 442
`References. ... 0.0... cece t etn e tne e tees 443
`Problems 1.0.0.0... eee nen c eee n tenn nnn eees 44S
`
`7.7
`7.8
`7.9
`
`7.6
`
`Chapter 8
`
`Ion Implantation
`
`451
`
`C4
`8.2
`
`SLPOGUCNON seen 5: aanasneanamEnORnsRDaTRG GEER SSG duabwoennennomannane 451
`Historical Development and Basic Concepts ............-..00 0000 cece eee eees 451
`8.2.1
`Implants in Real Silicon—TheRole of the Crystal Structure........... 461
`8.3. Manufacturing Methods and Equipment.............. 0... cece eee eee es 463
`
`

`

` Contents
`
`Chapter9
`
`High-Energy Implants .........0. 0.0. c cece eee cc ccc cece een ees 466
`8.3.1
`Ultralow Energy Implants........ 00.0.0... ccc cece cee eee cece eee 468
`8.3.2
`Jon Beam Heating ....... 00.0.e eee eees 469
`8.3.3
`8.4 Measurement Methods. ...........0. 0.0.00. ccc cece cc eect cee ee eenneeaaas 469
`8.5 Models and Simulations. ......... 0.00 c ccc cece ence cece eee een aes 470
`8.5.1
`Nuclear Stopping ..... 0.60.0.c ccc eee eeeenes 471
`8.5.2
`Nonlocal Electronic Stopping.............000 000 cece cece cence ees 473
`8.5.3
`Local Electronic Stopping. .......0. 0... ccc cee cece cece eee ees 474
`8.5.4
`Total Stopping Powers .... 0.0... cece cece ee eee eeee 475
`8.5.5
`Damage Production. ......0.0 0... ccc cece cence eee e ees 476
`8.5.6
`Damage Annealing........0.... 0.0 c ccc eee ccc eee e cece ene cece 479
`8.5.7
`Solid-Phase Epitaxy .... 0.00... c cece cece cence eee n ene eees 482
`8.5.8
`Dopant Activation 0.0.0... 6 cece cece cee eee e ene eenes 484
`8.5.9
`| Transient-Enhanced Diffusion .......... 0.0.0.0... ccc cece cece eeee 486
`8.5.10 Atomic-Level Understanding of TED...............0 0.0... c eee eee 488
`8.5.11 Effects on Devices .... 0... cee cece eee eee enneeeens 497
`Limits and Future Trends in Technologies and Models ................00.000: 499
`Summary of Key Ideas... 6... cece cece cece nee eeneennee 500
`References... 0... ccc eee cece ence eeneennneennas 500
`Problems ©... 2... ccc cece eee e beeen eee eennneeeennas 502
`
`8.6
`8.7
`8.8
`8.9
`
`9.2.2
`
`509
`Thin Film Deposition
`9.1
`Introduction. 00... ccc ec n ccc cece nee eeeeeeenueenas 509
`9.2
`Historical Development and Basic Concepts ............ 0.00 ccc ccc e eee ees 511
`9.2.1
`Chemical Vapor Deposition (CVD)..........0000 0.0. cece cece eee eee 512
`9.2.1.1 Atmospheric Pressure Chemical Vapor Deposition (APCVD). 513
`9.2.1.2
`Low-Pressure Chemical Vapor Deposition (LPCVD) ........ 525
`9.2.1.3
`Plasma-Enhanced Chemical Vapor Deposition (PECVD)....527
`9.2.1.4 High-Density Plasma Chemical Vapor Deposition
`(HDPCVD) .... 10 cece nce eee e ene ennes 530
`Physical Vapor Deposition (PVD) ........... 000. c ccc cece eee e eens 530
`9.2.2.1
`Evaporation ...... 0.0. ec ccc eee e ence ees 531
`9.2.2.2
`Sputter Deposition ........... 0000. c eee e eee en eees 539
`9.3. Manufacturing Methods.......... 00... cece cece cece eee eeeeeeeeeanes 554
`9.3.1
`Epitaxial Silicon Deposition .............0. 000 ccc ccc eee eee eens 556
`9.3.2
`Polycrystalline Silicon Deposition ............ 0.00. cc eevee eee eeees 558
`9.3.3.
`Silicon Nitride Deposition. .........00.0.0 0000 c cece cece ene eeeeeeees 561
`9.3.4
`Silicon Dioxide Deposition. .......0.0.0. 0000. c cece e cece eeneeuas 563
`9.3.5
`Al Deposition ...... 0... 0c ccc cence cence eneeenaeees 565
`9.3.6
` Tiand Ti-W Deposition.......0.00. 00.00. c ccc cece ccc ee cee eseaes 566
`9.3.7 W Deposition ....... 0... cece cece cece ee esnseeeneunees 567
`9.3.8 TiS and WSin Deposition....... 0.0.e cece en aes 567
`9.3.9
`TiN Deposition .........0 0.0.00 ccc cece cece eens eeeeseenueeees 568
`9.3.10 Cu Deposition... 0.00...e ences eeeeunanes 570
`9.4 Measurement Methods....... 00000. .cccccccc ee cence eee cence eeneeuees 572
`
`

`

`Contents
`
`9.5.2
`
`9.5 Models and Simulation........... 00.00 cee eee teen ents 573
`9.5.1 Models for Deposition Simulations ........... 0.00 eee eee eee eee eee 573
`9.5.1.1 Models in Physically Based Simulators Such as SPEEDIE ....574
`9.5.1.2 Models for Different Types of Deposition Systems........... 582
`9.5.1.3
`Comparing CVD and PVD and Typical Parameter Values ... . 587
`Simulations of Deposition Using a Physically Based
`Simulator, SPEEDIE............scccceceeasscassteeseteteeeeen 590
`Other Deposition Simulations ............ 6... eee eee eee eee 598
`9.5.3
`Limits and Future Trends in Technologies and Models ...............-----55- 601
`Summary of Key Ideas... 2...ee eee eens 602
`References. .... 0c. ccc ee eee ene ene eee nett eet eens 603
`Problems . 2.2.46. ¢ gece ce cece ee cee FRESE SEES ESTEE TES HEE EERE REE ee 605
`
`9.6
`9.7
`9.8
`OG
`
`Chapter 10
`
`609
`Etching
`101 Uetroduction..............asa5sn:eumsseeonndeneemner rE eee ee mae 609
`10.2 Historical Development and Basic Concepts .........0... 612
`1021 “WerHtchiig. ......sssasscsusanmsmegr ne eee ea ww mmmmnmn SEE BS ME 612
`10.2.2 Plasma Etching ........... 0. cece cee ee eee eee ene nee eeenees 619
`10.2.2.1 Plasma Etching Mechanisms ...........6 0.6: e cece eee eee 621
`10.2.2.2 Types of Plasma Etch Systems ..........- 2.0. e eee seen eee 628
`10.2.2.3. Summary of Plasma Systems and Mechanisms ............-. 636
`10.3. Manufacturing Methods......... 0... cece eee ccc teenies 637
`10.3.1 Plasma Etching Conditions and Issues .........- 2... e eee eee eee 638
`10.3.2 Plasma Etch Methods for Various Films ..........--- 0c sees eee eee ee 643
`10.3.2.1 Plasma Etching Silicon Dioxide........... 25... cece eee eee 644
`10.3.2.2 Plasma Etching Polysilicon......... 6... eee eee renee eens 647
`10.3.2.3 Plasma Etching Aluminum. ............. 6. eee eee eee 649
`10.4 Measurement Methods. ........... 0.0 c cece ee eee enn ene ees 650
`105: Models and SilatiOl. .......ancaaoasnsusmar ere penne ma manmnnm makes 653
`10.5.1 Models for Etching Simulation. ........... 5. 6c cece ee eee eee ees 653
`10.5.2 Etching Models—Linear Etch Model ...........-. 6c eee eee eee eens 656
`10.5.3 Etching Models—Saturation/Adsorption Modelfor
`Ton-Enhanced Etching....... 0.0.0.0 c cece eens 663
`10.5.4 Etching Models—More Advanced Models..........-- 00.0 eee seers 669
`10.5.5 Other Etching Simulations ..... 66... 6 cece eee eee 671
`Limits and Future Trends in Technologies and Models ..........-.--.00--0055 675
`10.6
`Summary of Key Ideas... 6... ene nee es 676
`10.7.
`10.8 References... 0... ttn tert nen eens 677
`1O9
`Problems ... cc cc cece ccc ens mwa w nnn beebahkbas HRP RENE ERE PPO ee 679
`
`Chapter 11
`
`681
`Back-End Technology
`ALA JardtichOta. nners spam e enn enew none dd R ROTOR SAERREORR AES Hw ema mmm 681
`11.2 Historical Development and Basic Concepts ........- 606s eee eee eee es 687
`LUDA COVERS oop p cnn ewmmnnn remem DEER RETR ET NE DCE ww wm mH 688
`11.2.2
`Interconnects and ViaS... 0... cece ee een eee enee 695
`
`

`

`Contents
`
`11.2.3 Dielectrics 2.00... ccc cece cece cee bebeebbeeeeeeees 707
`11.3. Manufacturing Methods and Equipment.............00.0 00 0c c cee eee eueeee 715
`11.3.1
`Silicided Gates and Source/Drain Regions..........0.00.0.cc cee euee 716
`11.3.2 First-level Dielectric Processing .......0000 00. 0c cece cece ceeeeeees 718
`11.3.3 Contact Formation.....0.00 0000 ccc cece cece cc ceeeevececees 719
`11.3.4 Global Interconnects .....0 000 ccc cece eee eeccceeee 721
`11.3.5
`IMD Deposition and Planarization ..........0.00 000. c cece cece cece eee dae
`11.3.6 Via Formation........0.00.0 0000 c cece eee cece eee eee ebeebbnnens 724
`11.3.7
`Final Steps... cece ere cece ee eeneeenees 725
`11.4 Measurement Methods. .....00000 000 ccc cece ccc eee cece ccc eccbeeeeceee. 725
`11.4.1 Morphological Measurements .........0.0.00 00 cece cece ee ceceeeas 726
`11.4.2 Electrical Measurements.......00 000 c cece cccceeeeecceee 726
`11.4.3 Chemical and Structural Measurements .............0. 00-00 cceeeucee. 732
`11.4.4 Mechanical Measurements .........0.0.0 0000s ccc ccc cece cece eeees 734
`11.5 Models and Simulation. .....0.0.0.000 000000 cc cece ene ceeeences 737
`11.5.1
`Silicide Formation......0000 00000 cee cc cece cee cbeeeecee 738
`11.5.2 Chemical-Mechanical Polishing .........0.00 000000 c ccc eeceecceucees 744
`F153 ReOW casnmicaconnusunnsnmnuwr ne eaaQEeaeEUNOMEEEEEEenannmunnae 746
`11.5.4 Grain Growth 2.0.0.0... 0c ccc cece cece cee bebeeeee. 753
`11.5.5 Diffusion in Polycrystalline Materials ........00000 00. c cece eee ceee 762
`11.5.6 Electromigration.. 0.0.0... cc ccc cece neuen eeeeneas 765
`Limits and Future Trends in Technologies and Models ...................005. 776
`11.6
`Summary of Key Ideas... 0... ccc cece cece ence eeeeeecnenes 780
`11.7
`11.8 References...... 0.0... cece eee e ee be bbb eeebbbbecccee. 781
`11.9
`Problems ...... 0.0.00.e nett e tebe bbe ebeebbecccee. 784
`
`787
`Appendices
`Al
`Standard Prefixes ......0 0.0.0 cece ebbe ee becebecc ec, 787
`A.2. Useful Conversions. .......0.0000.0 00 ccc ccc eeeeceeeenee 787
`A.3
`Physical Constants .....0.0.0.0 000 ccc cece cence cece ene eee eceeec cele, 788
`A.4
`Physical Properties of Silicon ....0 000. c cece cccececcecee. 788
`A.5
`Properties of Insulators Usedin Silicon Technology .........0. 0... cece eee eee 789
`A.6
`Color Chart for Deposited SisN, Films Observed Perpendicularly under
`Daylight Fluorescent Lighting.......000 00000000 ccc ccc cece ccccceceeeee 789
`A.7—Color Chart for Thermally Grown SiO, Films Observed Perpendicularly
`under Daylight Fluorescent Lighting...........00. 000. c cece cccceuseeuee 790
`Irwin Curves 2.200...e eee been ebb ebb cece eee, 791
`A.8
`AQ Error Function. .....00.00.000 0000 ccc ccc cece cence eee bee cbecbeecbe ee ecee. 793
`A.10 List of Important Symbols......0 00000 ccc ccc ccc cece ce cbccecccce. 797
`A.11 List of Common PCPODYMS 506556 menesenowunnnnononggamennneneusmutbate 798
`A.12 Tables in Text... 0.00.0 c cece eee bebe ecb ee bce cbce ees ce. 801
`A.13 Answers to Selected Problems ...... 00.00.0000 cc cece ccc cccccccccccececceee. 802
`
`Index
`
`805
`
`

`

`
`
`
`
`Modern CMOS
`Technology
`
`2.1
`
`Introduction
`
`In most of the remaining chapters in this book, we will discuss the process technolo-
`gies usedin silicon IC manufacturing individually. Individual technologies are clearly
`most useful when they are combined in a complete process flow sequence to produce
`chips. It is often the case that unit process steps are designed the waythat they are be-
`cause of the context in which those steps are used. For example, while a dopant may
`be diffused into a semiconductorto a desired final junction depth using many combi-
`nations of times and temperatures, the fact that the junction being formed might be
`diffused in the middle of a complex process flow may greatly restrict the possible
`choices of times and temperatures. In other words, the wafer’s past history and the fu-
`ture process steps it may see can greatly influence how one chooses to perform a par-
`ticular unit process step.
`For this reason, and because we believe that understanding how complete process
`flows are put together aids understanding of individual process steps, we will describe in
`this chapter a complete modern Very Large Scale Integrated (VLSI)circuit processflow.
`The example we have chosenis typical of today’s state of the art. CMOStechnology has
`dominatedsilicon integrated circuits for the past 15 years and most people in the indus-
`try today believe that its dominance will continue for the foreseeable future for the rea-
`sons discussed in Chapter 1 (high performance, low power, supplyvoltagescalability, and
`circuit flexibility). In fact the SIA industry roadmap (NTRS)that we discussed in Chap-
`ter 1 assumes the continuation of CMOStechnology throughatleast 2012.
`For readers who are newto silicon technology, some of the ideas introducedin this
`chapter may not be fully appreciated until after later chapters on individual process
`steps have been read. However, we recommendthat such people read this chapter be-
`fore proceeding further because doing so will make the later material more under-
`standable. A second reading of this chapter after the remainder of the book has been
`studied may also prove useful. In manycases, typical process conditions that might be
`used in a given step are presented in this chapter without full explanation. This is sim-
`ply because we have not yet discussed the quantitative models and other tools at our
`disposal to calculate such parameters. As we dosoin later chapters, we will revisit the
`CMOSprocess flow described here and discuss in more detail the reasons for particu-
`lar process conditions used in this chapter.
`
`49
`
`

`

`
`
`Chapter 2 Modern CMOS Technology
`
`2.2 CMOS Process Flow
`Two typical CMOScircuits are shown in Figure 2-1. The simple inverter circuit on the
`left was described in Chapter 1. The NORgate onthe rightillustrates how additional
`NMOSand PMOSdevices can be added to the invertercircuit to realize more complex
`logic functions. In the NORcircuit,if either input 1 or input 2 or both of them are high,
`the output will be pulled to ground through one or both of the NMOSdevices which
`will be turned on. Only if both inputs are low will the output be pulled high through the
`two series PMOSdevicesthat are both turned on under this condition. Thecircuit thus
`implements the NORfunction. To build these types of circuits, we need a technology
`that can integrate NMOS and PMOSdevices on the samechip. In fact, many CMOS
`technologies also implement varioustypesof resistors, capacitors, thin film transistors,
`and perhaps other typesof devices as well. We will limit our discussion here to the two
`basic devices and describe a technology to build them. Extensionsof this technology to
`include other components are reasonably straightforward and we will see some exam-
`ples of such extensionsin later chapters.
`The endresult of the process flow we will discuss is shown in Figure 2-2. To fabricate
`a structurelike this, we will find that 16 photolithography steps and well over 100 indi-
`vidual processsteps are required. The final integrated circuit may contain millions of
`componentslike those shownin the figure, each of which must work correctly.
`There are two active device types shown in the figure, corresponding to those re-
`quired to implementthecircuits in Figure 2-1. The individualsource,drain, and gate re-
`gions of the NMOSand PMOSdevices are identifiable in the cross section. In addition
`to the active devices, there are many otherparts to the overall structure. Some ofthis
`“overhead”is required to electrically isolate the active devices from each other. Other
`
`+V
`
`+V
`
`ny
`
`PMOS
`
`
`
`Ing
`
`Input
`
`PMOS
`
`Output
`
`ane
`
`Gnd
`
`Output
`
`Figure 2-1 Simple CMOScircuits. An inverter is shown ontheleft and a NORcir-
`cuit on the right. The NORcircuit implements the function Output = IN; + IN2.
`
`

`

`
`
`CMOSProcess Flow
`
`D
`
`D
`
`G
`
`|
`im sub
`|
`
`s
`
`G
`
`_
`i<<— Sub
`|
`
`S
`
`y)
`
`ma
`// / pl
`
`Figure 2-2 Coss section of the final CMOSintegrated circit. A PMOStransistoris shown
`on the left, an NMOSdevice on the right.
`
`parts of the structure provide multiple wiring levels above the active devicesto inter-
`connect them to perform particular circuit functions. Finally, some regions are included
`simply to improve the performanceof the individual devices by decreasing parasitic re-
`sistances or improving voltage ratings. As we proceed through the steps required to
`build this chip, we will discuss each of these points in greater detail.
`
`2.2.1 The Beginning—Choosing a Substrate
`Before we begin actual wafer fabrication, we must of course choosethe starting wafers.
`In general this meansspecifying type (N or P), resistivity (doping level), crystal orienta-
`tion, wafer size, and a numberof other parameters having to do with waferflatness, trace
`impurity levels, and so on. The major choices are the type, resistivity, and orientation.
`
`

`

`
`
`
`
`Chapter 2 Modern CMOSTechnology
`
`Figure 2-2 indicates that the final structure hasia P-type substrate. In most CMOSin-
`tegrated circuits, the substrate has a moderately high resistivity (25-50 Qcm) which cor-
`respondsto a doping level on the order of 10° cm~* (Figure 1-18). As is apparent from
`Figure 2-2, the active devices are actually built in wells diffused into the surface of the
`wafer. The doping levels in these wells are chosen to optimize the electrical properties
`of the active devices, as we will see later in this chapter. Typically the well doping levels
`are on the order of 10° — 10°’ em~? near the wafer surface. In order to reproducibly
`manufacture such wells, the background doping (the substrate doping in this case)
`needsto besignificantly less than the well doping. Thus the substrate dopin

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket