throbber
J
`
`
`
`Europaisches Patentamt
`European Patent Office
`Office europeen des brevets
`
`© Publication number:
`
`0 3 7 2 7 7 7
`A 2
`
`EUROPEAN PATENT A P P L I C A T I O N
`
`© Application number: 89312270.5
`270.5
`
`© int. CIA A61K 9/12, A61K 9 / 7 2
`
`© Date of filing: 27.11.89
`
`© Priority: 06.12.88 GB 8828477
`
`@ Date of publication of application:
`13.06.90 Bulletin 90/24
`
`® Designated Contracting States:
`BE CH DE ES FR GB IT LI NL SE
`
`© Applicant: RIKER LABORATORIES, INC.
`19901 Nordhoff Street
`Northridge, CA 91324(US)
`
`© Inventor: Purewal, Tarlochan Singh
`196 Radford Road
`Leamington Spa Warwickshire(GB)
`Inventor: Greenleaf, David John
`47 Outwoods Drive
`Loughborough Leicestershire(GB)
`
`© Representative: Bowman, Paul Alan et al
`LLOYD WISE, TREGEAR & CO. Norman
`House 105-109 Strand
`London WC2R OAE(GB)
`
`© Medicinal aerosol formulations.
`
`© A self-propelling aerosol formulation which may be free from CFC's which comprises a medicament, 1 ,1 ,1 ,2-
`tetrafluoroethane, a surface active agent and at least one compound having a higher polarity than 1,1,1,2-
`tetrafluoroethane.
`
`CM
`<
`r s
`r s
`!*«»
`CM
`IN
`CO
`
`Xerox Copy Centre
`
`WATSON LABORATORIES, INC. , IPR2017-01621, Ex. 1023, p. 1 of 10
`
`

`

`EP 0 372 777 A2
`
`MEDICINAL AEROSOL FORMULATIONS
`
`5
`
`10
`
`75
`
`20
`
`25
`
`This invention relates to medicinal aerosol formulations and in particular to formulations suitable for
`pulmonary, nasal, buccal or topical administration which are at least substantially free of chlorofluorocar-
`bons.
`Since the metered dose pressurised inhaler was introduced in the mid 1950's, inhalation has become
`the most widely used route for delivering bronchodilator drugs and steroids to the airways of asthmatic
`patients. Compared with oral administration of bronchodilators, inhalation offers a rapid onset of action and a
`low instance of systemic side effects. More recently, inhalation from a pressurised inhaler has been a route
`selected for the administration of other drugs, e.g., ergotamine, which are not primarily concerned with
`treatment of a bronchial malady.
`The metered dose inhaler is dependent upon the propulsive force of a propellant system used in its
`manufacture. The propellant generally comprises a mixture of liquified chlorofluorocarbons (CFC's) which
`are selected to provide the desired vapour pressure and stability of the formulation. Propellants 11,12 and
`114 are the most widely used propellants in aerosol formulations for inhalation administration.
`In recent years it has been established that CFC's react with the ozone layer around the earth and
`contribute towards its depletion. There has been considerable pressure around the world to reduce
`substantially the use of CFC's, and various Governments have banned the "non-essential" use of CFC's.
`Such "non-essential" uses include the use of CFC's as refrigerants and blowing agents, but heretofore the
`• use of CFC's in medicines, which contributes to less than 1% of the total use of CFC's, has not been
`restricted. Nevertheless, in view of the adverse effect of CFC's on the ozone layer it is desirable to seek
`alternative propellant systems which are suitable for use in inhalation aerosols.
`U.S. Patent Specification No. 4,174,295 discloses aerosol propellant compositions which consist of a
`mixture of a hydrogen-containing chlorofluorocarbon or fluorocarbon (A), selected from the group consisting
`of CHCIF2 (Freon 22), CH2F2 (Freon 32) and CF3-CH3 (Freon 143a), with a hydrogen-containing fluorocar-
`bon or chlorofluorocarbon (B) selected from the group consisting of: CH2CIF (Freon 31), CCIF2-CHCIF
`(Freon 123a), CF3-CHCIF (Freon 124), CHF2-CCIF2 (Freon 124a), CHCIF-CHF2 (Freon 133), CF3-CH2CI
`(Freon 133a), CHF2-CHF2 (Freon 134), CF3-CH2F (Freon 134a), CCIF2-CH3 (Freon 142b) and CHF2-CH3 -
`(Freon 152a). The compositions may contain a third component (C) consisting of a saturated hydrocarbon
`propellant, e.g., n-butane, isobutane, pentane and isopentanes. The propellant compositions comprise 5 to
`60% of (A), 5 to 95% of (B) and 0 to 50% of (C) and are said to be suitable for application in the fields of:
`30 hair lacquers, anti-perspiration products, perfumes, deodorants for rooms, paints, insecticides, for home
`cleaning products, for waxes, etc. The compositions may contain dispersing agents and solvents, e.g.,
`methylene chloride, ethanol etc.
`It has now been found that 1 ,1 ,1 ,2-tetrafluoroethane has particularly suitable properties for use as a
`propellant for medicinal aerosol formulations when used in combination with a surface active agent and an
`adjuvant having a higher polarity than 1 ,1 ,1 ,2-tetrafluoroethane.
`According to the present invention there is provided an aerosol formulation comprising a medicament, a
`surfactant, 1,1,1 ,2-tetrafluoroethane and at least one compound having a higher polarity than 1,1,1 ,2-
`tetrafluoroethane.
`It has been found that 1 ,1 ,1 ,2-tetrafluoroethane, hereinafter referred to as Propellant 134a, may be
`employed as a propellant for aerosol formulations suitable for inhalation therapy when used in combination
`with a compound (hereinafter an "adjuvant") having a higher polarity than Propellant 134a. The adjuvant
`should be miscible with Propellant 134a in the amounts employed. Suitable adjuvants include alcohols such
`as ethyl alcohol, isopropyl alcohol, propylene glycol, hydrocarbons such as propane, butane, isobutane,
`pentane, isopentane, neopentane, and other propellants such as those commonly referred to as Propellants
`45 11, 12, 114, 113, 142b, 152a 124, and dimethyl ether. The combination of one or more of such adjuvants
`with Propellant 134a provides a propellant system which has comparable properties to those of propellant
`systems based on CFC's, allowing use of known surfactants and additives in the pharmaceutical formula-
`tions and conventional valve components. This is particularly advantageous since the toxicity and use of
`such compounds in metered dose inhalers for drug delivery to the human lung is well established. Preferred
`adjuvants are liquids or gases at room temperature (22* C) at atmospheric pressure.
`Recently it has been established that certain CFC's which have been used as anaesthetics are not
`significantly ozone depleting agents as they are broken down in the lower atmosphere. Such compounds
`have a higher polarity composition of the invention. Examples of such compounds include 2-bromo-2-
`2-chloro-2-
`and
`chloro-1 ,1 ,1 ,-trifluoroethane,
`2-chloro-1 -(difluoromethoxy)-l ,1 ,2-trifluoroethane
`(difluromethoxy)-l ,1 ,1-trifluoroethane.
`
`35
`
`40
`
`50
`
`2
`
`WATSON LABORATORIES, INC. , IPR2017-01621, Ex. 1023, p. 2 of 10
`
`

`

`EP 0 372 777 A2
`
`5
`
`In contrast to the prior art the compositions of the invention do not require the presence of Freon 22,
`Freon 32 or Freon 143a to provide useful properties; these propellants are preferably absent or present in
`minor amounts of less than 5% by weight of the propellant composition. The compositions are preferably
`free from CFC's.
`The particular adjuvant(s) used and the concentration of the adjuvant(s) is selected according to the
`particular medicament used and the desired physical properties of the formulation.
`It has been found that the use of Propellant 134a and drug as a binary mixture or in combination with a
`conventional surfactant such as sorbitan trioleate does not provide formulations having suitable properties
`for use with pressurised inhalers. It has been established that the physical parameters of polarity, vapour
`10 pressure, density, viscosity and interfacial tension are all important in obtaining a stable aerosol formulation,
`and by a suitable selection of a compound having a polarity higher than that of Propellant 134a stable
`aerosol formulations using Propellant 134a may be prepared.
`The addition of a compound of higher polarity than Propellant 134a to Propellant 134a provides a
`mixture in which increased amounts of surfactant may be dissolved compared to their solubility in
`75 Propellant 134a alone. The presence of increased amounts of solubilised surfactant allows the preparation
`of stable, homogenous suspensions of drug particles. The presence of large amounts of solubilised
`surfactant may also assist in obtaining stable solution formulations of certain drugs.
`The polarity of Propellant 134a and of an adjuvant may be quantified, and thus compared, in terms of a
`dielectric constant, or by using Maxwell's equation to relate dielectric constant to the square of the
`refractive index - the refractive index of materials being readily measurable or obtainable from the literature.
`Alternatively, the polarity of adjuvants may be measured using the Kauri-butanol value for estimation of
`solvent power. The protocol is described in ASTM Standard: Designation 1133-86. However, the scope of
`the aforementioned test method is limited to hydrocarbon solvents having a boiling point over 40* C. The
`method has been modified as described below for application to more volatile substances such as is
`required for propellant.
`
`20
`
`25
`
`30
`
`35
`
`40
`
`45
`
`50
`
`Standardisation
`
`In conventional testing the Kauri resin solution is standardised against toluene, which has an assigned
`value of 105, and a mixture of 75% n-heptane and 25% toluene by volume which has an assigned value of
`40. When the sample has a Kauri-butanol value lower than 40, it is more appropriate to use a single
`reference standard of 75% n-heptane : 25% toluene. The concentration of Kauri-butanol solution is adjusted
`until a titre between 35ml and 45mi of the reference standard is obtained using the method of the ASTM
`standard.
`
`Method for Volatile Compounds
`
`The density of the volatile substance under test is calculated to allow a volumetric titration from the
`added weight of the sample after testing.
`Kauri-butanol solution (20g) is weighed into an aerosol bottle. A non-metering value is crimped onto the
`bottle and the weight of bottle and sample measured. Following the procedure detailed in ASTM standards
`as closely as possible, successive amounts of the volatile sample are transferred from an aerosol bottle via
`a transfer button until the end point is reached (as defined in ASTM). The aerosol bottle with titrated Kauri-
`butanol solution is re-weighed.
`The Kauri-butanol value is calculated using the following formula:
`
`V -
`
`(W2
`
`- Wx)
`
`d
`
`^»
`
`4 0
`
`B
`
`in which:
`W2 = weight of aerosol bottle after titration (g)
`W1 = weight of aerosol bottle before titration (g)
`d = density of sample (g/ml)
`
`3
`
`WATSON LABORATORIES, INC. , IPR2017-01621, Ex. 1023, p. 3 of 10
`
`

`

`EP 0 372 777 A2
`
`5
`
`75
`
`B is as defined in the ASTM standard and = ml of heptane-toluene blend required to titrate 20g of
`Kauri-butanol solution.
`If a titre (V) is obtained by precipitation of the Kauri resin out of solution, then a higher Kauri-butanol
`valve represents a sample of higher polarity.
`If the sample and Kauri-butanol solution are immiscible, this is most likely to be due to the immiscibility
`of the sample with butanol resulting from an excessively low polarity. However, it is feasible that excessively
`high polarity could result in immiscibility. This is tested by checking the miscibility of the sample with water.
`If the sample is immiscible with water and immiscible with Kauri-butanol solution, then the Kauri-butanol
`value is deemed too low to be measured, and the polarity is to be regarded as lower than that of any
`w material which would give a proper titre into Kauri-butanol solution.
`The particular selection of adjuvant and concentration preferably provides the resulting mixture with a
`solubility parameter of from 6.0 to 8.5 (cal/cm3)1/2. A propellant system having a solubility parameter below
`6.0 (cal/cm3)1'2 is a poor solvent for surfactants, resulting in unstable suspension formulations of drug. The
`preferred solubility parameter for the propellant system comprising Propellant 134a and adjuvant is in the
`range 6.5 to 7.8 (cal/cm3)1'2.
`The vapour pressure of a propellant system is an important factor as it provides the propulsive force for
`the medicament. The adjuvant is selected to moderate the vapour pressure of Propellant 134a so that it is
`within the desired range. This allows for advantages in the manufacture of the dosage form and gives
`greater flexibility to obtain and vary the target vapour pressure at room temperature. Another factor in the
`20 choice of the adjuvant is that, whilst it should allow moderation of the vapour pressure of Propellant 134a, it
`should not easily demix when the mixture is cooled to lower temperatures for the purposes of manufacture
`of the aerosol formulation and filling the containers.
`The vapour pressure may also be increased if desired depending on the choice of the adjuvant. It has
`been found that some of the propellant mixtures deviate from Raoult's Law. The addition of certain alcohols
`25 makes very little change to the vapour pressure of the mixture with Propellant 134a at room temperature.
`However addition of certain hydrocarbons having a lower vapour pressure than Propellant 134a can result in
`a mixture having a higher vapour pressure.
`The vapour pressure of the formulations at 25 °C is generally in the range 20 to 150 psig (1.4 to 10.3 x
`10s N/m2) preferably in the range 40 to 90 psig (2.8 to 6.2 x 105 N/m2).
`The selection of adjuvant may also be used to modify the density of the formulation. Suitable control of
`the density may reduce the propensity for either sedimentation or "creaming" of the dispersed drug
`powders. The density of the formulations is generally in the range 0.5 to 2.0 g/cm3, preferably in the range
`0.8 to 1 .8 g/cm3, more preferably in the range 1 .0 to 1 .5 g/cm3.
`The selection of adjuvant may also be used to adjust the viscosity of the formulation which is desirably
`less than 10cP.
`The selection of adjuvant may also be used to adjust the interfacial tension of the propellant system. In
`order to optimise dispersion of drug particles and stability the interfacial tension of the formulation is
`desirably below 70 dynes/cm.
`Propellant 134a is generally present in the aerosol formulations in an amount of at least 50% by weight
`40 of the formulation, normally 60 to 95% by weight of the formulation.
`Propellant 134a and the component of higher polarity are generally employed in the weight ratio 50:50
`to 99:1 Propellant 134a : high polarity component, preferably in the weight ratio 70:30 to 98:2 and more
`preferably in the weight ratio 85:15 to 95:5 Propellant 134a : high polarity component. Preferred compounds
`of higher polarity than Propellant 1 34a include ethanol, pentane, isopentane and neopentane.
`The aerosol formulations comprise a surface active agent to stabilise the formulation and lubricate the
`valve components. Suitable surface active agents include both non-fluorinated surfactants and fluorinated
`surfactants known in the art and disclosed, for example, in British Patent Nos. 837465 and 994734 and U.S.
`Patent No. 4,352,789. Examples of suitable surfactants include: oils derived from natural sources, such as,
`corn oil, olive oil, cotton seed oil and sunflower seed oil.
`so Sorbitan trioleate available under the trade name Span 85,
`Sorbitan mono-oleate available under the trade name Span 80,
`Sorbitan monolaurate available under the trade name Span 20,
`Polyoxyethylene (20) sorbitan monolaurate available under the trade name Tween 20,
`Polyoxyethylene (20) sorbitan mono-oleate available under the trade name Tween 80,
`lecithins derived from natural sources such as those available under the trade name Epikuron particularly
`Epikuron 200.
`Oleyl polyoxyethylene (2) ether available under the trade name Brij 92,
`Stearyl polyoxyethylene (2) available under the trade name Brij 72,
`
`55
`
`30
`
`35
`
`45
`
`4
`
`WATSON LABORATORIES, INC. , IPR2017-01621, Ex. 1023, p. 4 of 10
`
`

`

`EP 0 372 777 A2
`
`Lauryl polyoxyethylene (4) ether available under the trade name Brij 30,
`Oleyl polyoxyethylene (2) ether available under the trade name Genapol 0-020,
`Block copolymers of oxyethylene and oxypropylene available under the trade name Synperonic,
`
`s
`
`10
`
`75
`
`25
`
`Oleic acid, Synthetic lecithin, Diethylene glycol dioleate, Tetrahydrofurfuryl oleate, Ethyl oleate,
`Isopropyl myristate, Glyceryl trioleate, Glyceryl monolaurate, Glyceryl mono-oleate, Glyceryl monostearate,
`Glyceryl monoricinoleate, Cetyl alcohol, Stearyl alcohol, Polyethylene glycol 400, Cetyl pyridinium chloride.
`The surface active agents are generally present in amounts not exceeding 5 percent by weight of the
`total formulation. They will usually be present in the weight ratio 1:100 to 10:1 surface active agent : drug-
`(s), but the surface active agent may exceed this weight ratio in cases where the drug concentration in the
`formulation is very low.
`Suitable solid medicaments include antiallergics, analgesics, bronchodilators, antihistamines.therapeutic
`proteins and peptides, antitussives, anginal preparations, antibiotics, anti-inflammatory preparations, hor-
`mones, or sulfonamides, such as, for example, a vasoconstrictive amine, an enzyme, an alkaloid, or a
`steroid, and synergistic combinations of these. Examples of medicaments which may be employed are:
`Isoproterenol [alpha-(isopropylaminomethyl) protocatechuyl alcohol], phenylephrine, phenylpropanolamine,
`glucagon, adrenochrome, trypsin, epinephrine, ephedrine, narcotine, codeine, atropine, heparin, morphine,
`dihydromorphinone, ergotamine, scopolamine, methapyrilene, cyanocobalamin, terbutaline, rimiterol, sal-
`butamol, flunisolide, colchicine, pirbuterol, beclomethasone, orciprenaline, fentanyl, and diamorphine. Others
`such
`antibiotics,
`20 are
`as neomycin,
`streptomycin, penicillin, procaine penicillin,
`tetracycline,
`chlorotetracycline and hydroxytetracycline; adrenocorticotropic hormone and adrenocortical hormones, such
`as cortisone, hydrocortisone, hydrocortisone acetate and prednisolone; insulin, antiallergy compounds such
`as cromolyn sodium, etc.
`The drugs exemplified above may be used as either the free base or as one or more salts known to the
`art. The choice of free base or salt will be influenced by the physical stability of the drug in the formulation.
`For example, it has been shown that the free base of salbutamol exhibits a greater dispersion stability than
`salbutamol sulphate in the formulations of the invention.
`The following salts of the drugs mentioned above may be used;
`acetate, benzenesulphonate, benzoate, bicarbonate, bitartrate, bromide, calcium edetate, camsylate, car-
`30 bonate, chloride, citrate, dihydrochloride, edetate, edisylate, estolate, esylate, fumarate, fluceptate, glu-
`conate, glutamate, glycollylarsanilate, hexylresorcinate, hydrobromide, hydrochloride, hydroxynaphthoate,
`iodide, isethionate, lactate, lactobionate, malate, maleate, mandelate, mesylate, methylbromide, methyl-
`nitrate, methylsulphate, mucate,
`nitrate,
`(embonate),
`pantothenate,
`napsylate,
`pamoate
`phosphate\diphosphate, polygalacturonate, salicylate, stearate, subacetate, succinate, sulphate, tannate,
`tartrate, and triethiodide.
`Cationic salts may also be used. Suitable cationic salts include the alkali metals, e.g. sodium and
`potassium, and ammonium salts and salts of amines known in the art to be pharmaceutical^ acceptable,
`e.g. glycine, ethylene diamine, choline, diethanolamine, triethanolamine, octadecylamine, diethylamine,
`triethylamine, 1-amino-2-propanol-amino-2-(hydroxymethyl)propane-1 ,3-diol and 1-(3,4-dihydroxyphenyl)-2
`isopropylaminoethanol.
`For pharmaceutical purposes the particle size of the powder should desirably be no greater than 100
`microns diameter, since larger particles may clog the valve or orifice of the container. Preferably the particle
`size should be less than 25 microns in diameter. Desirably the particle size of the finely-divided solid
`powder should for physiological reasons be less than 25 microns and preferably less than about 10 microns
`in diameter. The particle size of the powder for inhalation therapy should preferably be in the range 2 to 1 0
`microns.
`There is no lower limit on particle size except that imposed by the use to which the aerosol produced is
`to be put. Where the powder is a solid medicament, the lower limit of particle size is that which will be
`readily absorbed and retained on or in body tissues. When particles of less than about one-half micron in
`so diameter are administered by inhalation they tend to be exhaled by the patient.
`The concentration of medicament depends upon the desired dosage but is generally in the range 0.01
`to 5% by weight.
`The formulation of the invention may be filled into conventional aerosol containers equipped with
`metering valves and dispensed in an identical manner to formulations employing CFC's.
`The invention will now be illustrated by the following Examples.
`The following components were used in the Examples:
`Salbutamol Sulphate B.P., micronised - Salbutamol
`Beclomethasone Dipropionate
`
`35
`
`40
`
`45
`
`55
`
`5
`
`WATSON LABORATORIES, INC. , IPR2017-01621, Ex. 1023, p. 5 of 10
`
`

`

`EP 0 372 777 A2
`
`Isopropylacohol solvate, micronised - BDP
`Sodium Cromogiycate B.P., micronised - DSCG
`Sorbitan trioleate - Span 85
`Lecithin commercially available under the trade name Lipoid S100 - Lipoid S100
`5 Oleic Acid B.P. - oleic acid
`1,1,1 ,2-Tetrafluoroethane - P1 34a
`Ethyl alcohol B.P. - ethanol
`n-Pentane, standard laboratory reagent - n-pentane
`The formulations in the Examples were prepared by the following techniques.
`Each drug and surfactant combination was weighed into a small beaker. The required quantity of the
`higher boiling point component of the propellant system e.g. ethanol was added and the mixture
`homogenised using a Silverson mixer. The required quanity of the mixture was dispensed into a P.E.T.
`bottle and an aerosol valve crimped in place. Propellant 134a was added to the required weight by pressure
`filling.
`
`10
`
`EXAMPLES 1 to 6
`
`20
`
`Formulations containing Salbutamol
`
`The formulations reported in the following Tables were prepared.
`
`Ingredient (g)
`Salbutamol
`Span 85
`Oleic Acid
`Lipoid S100
`n-Pentane
`P134a
`
`1
`0.010
`0.012
`-
`-
`1.240
`3.720
`
`Example No.
`2
`0.010
`
`3
`0.010
`
`0.012
`-
`1.240
`3.720
`
`0.012
`1.240
`3.720
`
`Ingredient (g)
`Salbutamol
`Span 85
`Oleic Acid
`Lipoid S100
`Ethanol
`P134a
`
`4
`0.010
`0.012
`-
`
`1.350
`4.040
`
`Example No.
`5
`0.010
`
`6
`0.010
`
`0.012
`-
`1.350
`4.040
`
`0.012
`1.350
`4.040
`
`so
`
`All formulations comprised a suspension of salbutamol. Examples 4 to 6 containing ethanol appeared to
`be more stable than Examples 1 to 3 containing n-pentane, exhibiting a decreased tendency to settling.
`
`55
`
`EXAMPLES 7 to 12
`
`Formulations containing Beclomethasone Dipropionate
`
`6
`
`WATSON LABORATORIES, INC. , IPR2017-01621, Ex. 1023, p. 6 of 10
`
`

`

`EP 0 372 777 A2
`
`The formulations reported in the following Tables were prepared.
`
`Ingredient (g)
`BDP
`Span 85
`Oleic Acid
`Lipoid S100
`n-Pentane
`P134a
`
`7
`0.005
`0.012
`-
`-
`1.240
`3.720
`
`Example No.
`8
`0.005
`
`9
`0.005
`
`0.012
`-
`1.240
`3.720
`
`0.006
`1.240
`3.720
`
`Ingredient (g)
`BDP
`Span 85
`Oleic Acid
`Lipoid S100
`Ethanol
`P134a
`
`10
`0.005
`0.006
`-
`-
`1.350
`4.040
`
`Example No.
`11
`0.005
`
`12
`0.005
`
`0.006
`-
`1.350
`4.040
`
`0.006
`1.350
`4.040
`
`30
`
`35
`
`40
`
`45
`
`50
`
`55
`
`For those formulations containing n-pentane, Examples 7 and 8 appeared less turbid than Example 9,
`and Example 8 appeared to form a solution after 4 - 5 days.
`Examples 10 to 12 produced solution formulations.
`
`EXAMPLES 13 to 18
`
`Formulations containing Sodium Cromoglycate
`
`The formulations reported in the following Tables were prepared.
`
`Ingredient (g)
`DSCG
`Span 85
`Oleic Acid
`Lipoid S100
`n-Pentane
`P134a
`
`13
`0.100
`0.024
`-
`-
`1.240
`3.720
`
`Example No.
`14
`0.100
`
`15
`0.100
`
`0.024
`-
`1.240
`3.720
`
`0.024
`1.240
`3.720
`
`7
`
`WATSON LABORATORIES, INC. , IPR2017-01621, Ex. 1023, p. 7 of 10
`
`

`

`EP 0 372 777 A2
`
`Ingredient (g)
`DSCG
`Span 85
`Oleic Acid
`Lipoid S100
`Ethanol
`P134a
`
`16
`0.100
`0.006
`-
`-
`1.350
`4.040
`
`Example No.
`17
`0.100
`
`18
`0.100
`
`0.006
`-
`1.350
`4.040
`
`0.006
`1.350
`4.040
`
`Examples 13 to 18 produced suspension formulations, Examples 16 to 18 containing ethanol exhibiting
`better stability properties than Examples 13 to 15 containing n-pentane.
`
`EXAMPLES 19 to 23
`
`The following Examples illustrate the use of different adjuvants with Propellant 134a.
`
`Example No.
`2
`1
`0.012
`
`0.001
`
`
`Ingredient (g)
`
`19
`
`20
`
`Salbutamol
`BDP
`Span 85
`Oleic Acid
`P134a
`neopentane
`Isopropylalcohol
`Isopropylmyristate
`Propellant 11
`Isopentane
`
`0.012
`.
`0.001
`.
`4.98
`0.55
`-
`-
`-
`.
`
`.
`
`.
`
`.
`
`0.012
`.
`0.001
`.
`5.22
`.
`0.58
`-
`-
`
`.
`
`.
`
`.
`
`.
`
`.
`
`5.28
`
`0.59
`-
`
`.
`
`
`
`22
`
`23
`
`0.012
`
`0.001
`
`5.61
`.
`
`o.010
`
`o.001
`5.04
`
`
`0.62
`
`
`q.56
`
`Each Example was 5ml in volume and was in the form of a stable suspension.
`
`EXAMPLE 24
`
`This Example illustrates the use of different surfactants in the following basic formulations:
`
`Salbutamol
`Ethanol
`P134a
`Surfactant
`
`0.01 2g
`0.058g
`5.220g
`A or B
`Volume = 5 ml
`A = 0.005g B = 0.01 2g
`
`The following surfactants were employed to form stable suspensions in the concentrations specified.
`A, B.
`1 . Span 85
`
`8
`
`WATSON LABORATORIES, INC. , IPR2017-01621, Ex. 1023, p. 8 of 10
`
`

`

`EP 0 372 777 A2
`
`B.
`
`A.
`A.
`
`B.
`
`5
`
`10
`
`75
`
`20
`
`25
`
`A.
`A.
`A.
`A.
`A, B.
`B.
`
`2. Span 80
`3. Span 20
`4. Tween 20
`5. Tween 80
`6. Oleic acid
`7. Epikuron 200
`8. Synthetic lecithin
`A.
`9. Brij 92
`10. Brij 72
`A.
`11. Brij 30
`B.
`A.
`12. Genapol 0-020
`13. Diethylene glycol dioleate
`1 4. Tetrahydrofurfuryl oleate
`15. Ethyl oleate
`A.
`16. Isopropyl myristate
`B.
`17. Glyceryl trioleate
`A, B.
`18. Glyceryl monolaurate
`A.
`19. Glyceryl mono-oleate
`A.
`20. Glyceryl monostearate
`A.
`21 . Glyceryl monoricinoleate
`A.
`22. Cetyl alcohol
`A.
`23. Stearyl alcohol
`B.
`24. Polyethylene glycol 400
`25. Synperonic PE L61
`A.
`26. Synperonic PE L64
`A.
`27. Synperonic PE L92
`A.
`28. Synperonic PE P94
`A.
`29. Cetyl pyridinium chloride
`A.
`30. FC 807 free acids (consisting mainly of bis(perfluoro-n-octyl-N-ethyl sulphonamidoethyl) phos-
`A, B.
`30 phate)
`31. Corn Oil
`
`B.
`
`Claims
`
`35
`
`1. An aerosol formulation comprising a medicament, 1,1,1,2-tetrafluoroethane, a surface active agent
`and at least one compound having a higher polarity than 1,1,1,2-tetrafluoroethane.
`2. An aerosol formulation as claimed in Claim 1 suitable for administration to a patient by oral or nasal
`inhalation, the formulation being in the form of a solution or a suspension of medicament particles having a
`40 median particle size of less than 10 microns.
`3. An aerosol formulation as claimed in any preceding claim in which less than 5% by weight of the
`propellant composition comprises CHCIF2, CH2F2, CF3CH3 and mixtures thereof.
`4. An aerosol formulation as claimed in Claim 3 which is substantially free of CHCIF2, CH2F2, and
`CF3CH3.
`5. An aerosol formulation as claimed in any preceding claim in which the compound having a higher
`polarity than 1,1,1,2-tetrafluoroethane is selected from alcohols, saturated hydrocarbons, and mixtures
`thereof.
`6. An aerosol formulation as claimed in Claim 5 in which the compound is selected from ethyl alcohol,
`isopropyl alcohol, n-pentane, isopentane, neopentane, isopropyl myristate and mixtures thereof.
`7. An aerosol formulation as claimed in any preceding claim in which 1,1,1,2-tetrafluoroethane is
`present in an amount of at least 50% by weight of the formulation and the weight ratio of 1,1,1,2-
`tetrafluoroethane : compound of higher polarity is in the range 50:50 to 99:1.
`8. An aerosol formulation as claimed in Claim 7 in which the 1,1,1,2-tetrafluoroethane is present in an
`amount in the range 60 to 95% by weight of the formulation and the weight ratio of 1 ,1 ,1 ,2-tetrafluoroethane
`: compound of high polarity is in the range 70:30 to 98:2.
`9. An aerosol formulation as claimed in Claim 7 or claim 8 in which the weight ratio of 1,1,1,2-
`tetrafluoroethane : compound of higher polarity is in the range 85:15 to 95:5.
`10. An aerosol formulation as claimed in any preceding claim in which the surface active agent is
`
`45
`
`50
`
`55
`
`9
`
`WATSON LABORATORIES, INC. , IPR2017-01621, Ex. 1023, p. 9 of 10
`
`

`

`EP 0 372 777 A2
`
`selected from sorbitan trioleate, sorbitan mono-oleate, sorbitan monolaurate, polyoxyethylene (20) sorbitan
`monolaurate, polyoxyethylene (20) sorbitan mono-oleate, natural lecithin, oleyl polyoxyethylene (2) ether,
`stearyl polyoxyethylene (2) ether, lauryl polyoxyethylene (4) ether, block copolymers of oxyethylene and
`oxypropylene, Oleic acid, Synthetic lecithin, Diethylene glycol dioleate, Tetrahydrofurfuryl oleate, Ethyl
`oleate, Isopropyl myristate, Glyceryl mono-oleate, Glyceryl monostearate,

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket