throbber
Volume 289, Nbs. 1-2,
`
`31 JANUARY 2005
`
`ISSN 0378-5173
`

`Is ernati

`:
`onal Journal of h
`~q, uP -General C
`. P armaceutics.
`:,<' v1 INnn
`ollect•on
`I • 2
`, 89, no. 1-2
`~:'an. 31 2005
`
`!
`
`/
`
`·.
`
`.
`:~~~~ r----;:;:::-:-====~-=-_j
`/1
`l(Jmjg_Mf~JfliONihlL
`. · .. · J<O~J&JL OIF
`.,
`. . :;
`~W~lACJBU1LITC§
`
`.
`
`}.
`'l'
`
`•
`
`.
`
`.
`
`•
`
`'
`
`CSL EXHIBIT 1066
`CSL v. Shire
`
`Page 1 of 35
`
`

`

`INTERNATIONAL JOURNAL OF PHARMACEUTICS
`\V\V\v.elsevieJ:com!/ocate!ijphann
`
`AIMS AND SCOPE
`.
`.
`'d
`Jmunic·Itions ami notes dealing


`. 1ini revtews rapt con
`·r
`.
`•
`he lntemational Journal of Pharmaceutics publishes innovative papers, revtews, n
`.
`d, .. <>n production, charactensa-

`·' .
`. 1 h
`.
`.
`·I· 1 ·d to the conceptiOn, cost, '
`. 1 d'
`.
`.
`.
`.
`.
`.
`.

`d'
`.
`Will p ystcal, chemtcal, btologtcal, mtcrobtologtcal and cngmcenng stu tes rc •1 c
`. ,
`di'lnnostic enllly, me u mg
`, . 1 ,1.
`.
`.
`.
`.
`,
`·d .. any therapeutic or
`•"
`•15
`!ton and evaluation of drug delivery systems in vitro and 111 VIVO. Drug
`ts t c tnc
`oligonucleotides, gene constructs and radiophannaceuticals.
`.
`. ·t·y ·md physical chemistry as
`I
`1 .· .. 1 h·
`.
`. cy· polymer c 1emts t
`•
`.
`.
`.
`.
`.
`.
`A
`reas o! particular mterest mclude: phannaceuttcal nanotechnology; P 1ystc.1 P arni.J
`. .
`.. membrane !unction and
`'
`, , , t' , ... 1bsorption mechantsms,
`. 1 ,
`.
`. .
`.
`.
`.
`.
`. 1.
`.
`app ted to pharmaceutics; exctptent functton and charactensatton; btop mnnaceu tcs, • ·
`·I,
`'stllS includin<> b10sensors;
`1
`1.
`.
`.
`lb· k . nd contro mec 1ant.

`"'
`transport; novel routes and modes of delivery; responstvc delivery systems, eet dC
`· Jns)· ·md biotechnology
`d
`.
`...
`.
`.
`.
`11 , .·
`.
`.
`(C'Irricr-h<>and mtct.IC t(
`· • •
`1
`applicatiOns of cell and molecular biology to drug delivery; prodrug destgn; btoa( lest on
`"'
`•
`(protein and peptide formulation and delivery).
`
`EDITORIAL POLICY
`.
`.
`.
`.. ,
`. .
`. d . t, , "t to a multidisciplinary audience. Papers
`. .
`.
`.
`.
`.
`.
`. .
`•
`111 crcs
`b, . ,1., T •d lnck to the author,
`1he over-ruling cntena lor publicatiOn arc ongmahty, !ugh sctcntthc quahty •111
`.
`.
`1
`.
`.
`1 .. 1 1 A
`.
`.
`.
`, ·I JiC'll tJucncs wtl
`c tc ct c
`•
`not suffictently substantmtcd by expcrnncntal dctml w11l not he pub IS tc( · ny tee 11
`J'vl·
`... 1·pts submitted under
`•
`.
`.
`.
`.
`,
`, ·1
`1 ,
`.
`.

`1cal content.
`.1nusct
`· ·
`although the Editors reserve the nght to make alterations 111 the text wllhout <~ltenng t 1" tee 111
`, d 1 , t .1 copy of the final
`•
`•
`. •
`•
`· 1 tl • submtsswn .m





`t hi
`•
`1 1, b
`multiple authorship are revtewed on the assumption that all hsted authors concur Will
`le · . .
`. tories where the work
`.
`·'b]' 'lUthortllCS Ill llC
`.I or.!

`J
`·• ·
`'

`· ·
`b
`manuscnpt has been approved by all authors and tacllly or explicitly Y t1e l~;sponst " •
`. Jr .1nother J·m"U'l"C
`1
`1 in either tle same (
`, f
`I , ..
`,
`• " •" ,
`.
`.
`.
`.
`.
`was earned out. If accepted, the manuscnpt shall not be published elsewhere m llc samco orn '
`without the consent of the Editors and Publisher.
`
`li ·d in thdr work or in the approach
`b
`1 . 1 d
`Authors must state in a covering letter when submittinn papers for publication the novelty em ot "
`, .
`. ,
`1 d' . ·I
`.
`.
`'II b, ublishcd W liC 1 oes no
`ISC OSt:
`"'
`.
`.
`taken 111 their research. Routine biocquivalence studies are unlikely to hnd favour. No paper WI
`c P
`,
`.·
`.. , W
`·k

`f . 1roduct dntn or exctplcont.


`01
`fully the nature of the formulation used or details of materials which arc key to the performance 0 a I
`. "' 1 .
`.11
`l
`'
`not 1e
`· ·ld enlnnccd dtsso uuon, WI

`which is predictable in outcome, for example the inclusion of another drug in a cyclodcxtnn to yte

`•
`published unless it provides new insight into fundamental principles.
`
`f(Jr: Europe, Africa, and the Near East
`
`F<>r: The Americas and Australia
`
`F<>r: Japan and Far East
`
`EDITORS-IN-CHIEF
`
`Editor-in-Chief: A.T. FLORENCE
`Editor: G. BUCKTON
`The School of Pharmacy,
`University or London
`29/39 Brunswick Square
`London WCIN lAX, U.K.
`E-mail: ijp@ulsop.ac.uk
`
`J.l!. RYTTING
`Pharmaceutical Chemistry Dept.,
`University or Kansas
`2095 Constant Avenue
`Lawrence, KS 66047
`U.S.A.
`E-mail: ijp@ku.edu
`
`Editor-in-Chief: T. NAGAI
`Associate Editor: T. SONOBE
`Dept. of Pharmaceutical Engineering
`School of Pharmaceutical Sciences
`University of Shizuoka 52-I Yada
`Shizuoka-shi 422-8526 Japan
`E-mai 1: sonobe@ u-shizuoka-ken.ac.jp
`
`All manuscripts should be addressed to the
`;\~·sociate Editor
`
`G. Alderborn (Uppsala, Sweden)
`M.J. Alonso (Santiago de Compostela, Spain)
`D. Attwood (Manchester, U.K.)
`K.L. Audus (Lawrence, KS, U.S.A.)
`G. Borchard (Piscataway, NJ, U.S.A.)
`J. Bouwstra (Leiden, The Netherlands)
`H.-K. Chan (Sydney, NSW, Australia)
`W.N. Channan (!'arkville, Australia)
`J.H. Collett (Manchester, U.K.)
`D.Q.M. Craig (Norwich, U.K.)
`D..T.A. Cromrnelin (Utrecht, The Netherlands)
`D. Duchene (Chatenay-Malabry, France)
`J.L. Ford (Liverpool, U.K.)
`
`EDITORIAL BOARD
`
`H. 1-larashima (Hokkaido, Japan)
`W.L Higuchi (Salt Lake City, UT, U.S.A.)
`L. Ilium (Nottingham, U.K.)
`H.G. Kristensen (Copenhagen, Denmark)
`A. Lloyd (Brighton, U.K.)
`T. Lortsson (Reykjavik, Iceland)
`1'. Macheras (Athens, Greece)
`Y. Maitani (Tokyo, Japan)
`G.P. Martin (London, U.K.)
`A.K. Mitra <Kansas City, MO, U.S.A.)
`R.H. MUller (Berlin, Germany)
`J.M. Newton (London, U.K.)
`N. Pcppas (Austin, TX, U.S.A.)
`F. Podczeck (Sunderland, U.K.)
`
`J.P. Remon (Gent, Belgium)
`A.J. Repta (San Carlos, CA, U.S.A.)
`J.R. Robinson (Madison, WI, U.S.A.)
`E. Shcftcr (San Diego, CA, U.S.A.)
`K. Sugibayashi (Saitama, Japan)
`Y. Sugiyama (Tokyo, Japan)
`!.G. Tucker (Dunedin, New Zealand)
`I.F. Uchegbu (Glasgow, U.K.)
`K. Uckama (Kumamoto, Japan)
`A. Urtti (Kuopio, Finland)
`S.P. Vyas (Sagar, India)
`D.E. Wurster (Iowa City, lA, U.S.A.)
`S. Yalkowsky (Tucson, AZ, U.S.A.)
`1\. Yamamoto (Kyoto, Japan)
`
`J. Hadgraft (London, U.K.)
`
`
`Page 2 of 35
`
`

`

`INTERNATIONAL
`JOURNAL OF
`PHARMACEUTICS
`
`Volume 289/1 2 (2005)
`
`Page 3 of 35
`
`

`

`INTERNATIONAL
`JOURNAL OF
`PHARMACEUTICS
`
`Editors-in-Chief
`A.T. FLORENCE (London, U.K.)
`T. NAGAI (Tokyo, Japan)
`J.H. RYTTING (Lawrence, KS, U.S.A.)
`
`Editor
`G. BUCKTON (London, U.K.)
`
`Associate Editor
`T. SONOBE (Shizuoka-shi, Japan)
`
`Editorial Board
`
`G. ALDERBORN (Uppsala, Sweden)
`M.J. ALONSO (Santiago de Compostela, Spain)
`D. ATTWOOD (Manchester, U.K.)
`K.L. AUDUS (Lawrence, KS, U.S.A.)
`G. BORCHARD (Piscataway, NJ, U.S.A.)
`J. BOUWSTRA (Leiden, The Netherlands)
`H.-K. CHAN (Sydney, NSW, Australia)
`W.N. CHARMAN (Parkville, Australia)
`J.H. COLLETT (Manchester, U.K.)
`D.Q.M. CRAIG (Norwich, U.K.)
`D.J.A. CROMMELIN (Utrecht, The Netherlands)
`D. DUCHENE (Chfitenay-Malabry, France)
`J.L. FORD (Liverpool, U.K.)
`J. HADGRAFT (London, U.K.)
`H. HARASHlMA (Hokkaido, Japan)
`W.l. HIGUCHI (Salt Lake City, UT, U.S.A.)
`L. JLLUM (Nottingham, U.K.)
`H.G. KRISTENSEN (Copenhagen, Denmark)
`A. LLOYD (Brighton, U.K.)
`T. LOFTSSON (Reykjavik, Iceland)
`P. MACHERAS (Athens, Greece)
`
`Y. MAITANI (Tokyo, Japan)
`G.P. MARTIN (London, U.K.)
`A.K. MITRA (Kansas City, MO, U.S.A.)
`R.H. MULLER (Berlin, Germany)
`J.M. NEWTON (London, U.K.)
`N. PEPPAS (Austin, TX, U.S.A.)
`F. PODCZECK (Sunderland, U.K.)
`J.P. REMON (Gent, Belgium)
`A.J. REPTA (San Carlos, CA, U.S.A.)
`J.R. ROBINSON (Madison, WI, U.S.A.)
`E. SHEFTER (San Diego, CA, U.S.A.)
`K. SUGIBAYASHI (Saitama, Japan)
`Y. SUGIYAMA (Tokyo, Japan)
`!.G. TUCKER (Dunedin, New Zealand)
`!.F. UCHEGBU (Glasgow, U.K.)
`K. UEKAMA (Kumamoto, Japan)
`A. URTTI (Kuopio, Finland)
`S.P. VYAS (Sagar, India)
`D.E. WURSTER (Iowa City, lA, U.S.A.)
`S. YALKOWSKY (Tucson, AZ, U.S.A.)
`A. YAMAMOTO (Kyoto, Japan)
`
`ELSEVIER
`
`Amsterdam • Boston • Jena • London • New York • Oxford • Paris • Philadelphia • San Diego • St. Louis
`
`VOL. 289/1-2 (2005)
`
`doi: 10.10 16/S0378-5173(04)00750-l
`
`Page 4 of 35
`
`

`

`rg 2005 Elsevier B.V. All rights reserved
`·t
`· d ·

`This journal and the individual contributions contame m I are
`and conditions apply to their usc:
`
`protected by the copyright of Elsevier B.V., and the following tenns
`
`P~lOtocopying .
`. b wde for persornl use as allowed by national copyright laws. Permission of the Publishe
`... 1 .
`1. . 1
`Smnle photocopies o smg emile es m<ty en'

`'
`.


`f
`d
`.
`and" a ment of a fee is required for all other photocopying, including multiple or s~stematic copymg, copymg or a vcrtisi~1 g 01
`p ~
`II f r 11 . elf document delivery Special rates arc availabk for educatwnal mstitutwns that w 1sh to
`1
`d
`promotwna purposes, resa e, an a
`o 1 s

`1
`make photocopies for non-profit educational classroom use.
`Permissions may be sought directly from Elsevier's Rights Department in Oxford, UK: .phon~: (+44) .186? 843830; fax: (+4-1-)
`1865 853333; e-mail: permissions@elsevier.com. Requests may also be completed on-line Vlil the Elsevier homcpagc (http://
`www.elscvier.com/!ocate/permissions).
`In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood Drive.
`Danvers, MA 01923, USA; phone: (+!) (978) 7508400; fax: (+I) (978) 7504744, and 111 the UK through the Copynght Licensing
`Agency Rapid Clearance Service (CLARCS), 90 Tottcnham Court Road, London WIP OLP, UK; phone: (+44) 20 7631 5555; fax:
`(+44) 20 763 I 5500. Other countries may have a local reprographic rights agency for payments.
`
`Derivative Works
`Subscribers may reproduce tables of contents or prepare lists of articles inc!udi.ng abst~act~ for internal circulation within their
`institutions. Permission of the Publisher is required for resale or distribution outside the mstitution.
`
`Permission of the Publisher is required for all other derivative works, including compilations and translations.
`
`Electronic Storage or Usage
`Pennission of the Publisher is required to store or use electronically any material contained in this journal, including any article or pan
`of an article.
`
`Except as outlined above, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
`any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the Publisher.
`
`Address permissions requests to: Elsevier Rights Department, at the fax and e-mail addresses noted above.
`
`Notice
`No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products liability.
`negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein.
`Because of rapid advances in the medical sciences, in particular, independ<!nt verification of diagnoses and drug dosages should be
`made.
`
`Although all advertising material is expected to conform to ethical (medical) standards, inclusion in this publication does not constitute
`a guarantee or endorsement of the quality or value of such product or of th<! claims made of it by its manufacturer.
`Adver~ising information: Advertising orders and enquiries can be sent to: USA, Canada and South America: Mr Tino DeCarlo The
`AdvertiSing Department, Elsevier Inc., 360 Park Avenue South, New York, NY 10010-1710, USA; phone: (+I) (212) 633 38!S;, fax:
`~+I) (212) 633 3820; e-mail: t.decarlo@elscvier.com. Europe and ROW: Katrina Barton, Print Operations Co-ordinator, Elsevier 84
`fheoba!ds Road, London WCJX 8RR, phone: (+44) (0) 20 7611 4117; fax: +44 (()) 20 7611 4463; e-mail: k.barton@e!sevicr.~om
`Orders, claims, and journal enquiries: please contact the Customer Service Department at the Regional Sales Office nearest you:
`0[ r:~ndo: Elsevier, Customer Service Department, 6277 Sea Harbor Drive, Orlando, FL 32887-4800, USA; phone:(+!) (877) 83
`p(:
`97
`~'~
`.free number for US customers], or (+!) (407) 3454020 [customers outside US]; fax: (+!) (407) 3631354· c-nnil· -Lis·
`t1o
`e sevter.co1n


`'
`'

`, JCS ~
`~8m5s3·t7crdam: Elsevier, Customer Service Department, PO Box 21 I, I 000 AE Amsterdam The Netherlands; phone: ( +31) (.
`~~~:~;;44El~~vier: Customer Service Department, 4F Higashi-Azabu, 1-Chomc llldg, 1-9-15 lligashi-Azabu, Minato-ku, Tokyo
`• d]ldn, phone: (+81) (3) 5561 5037; fax: (+81) (3) 5561 5047; e-mail: jp.info@elsevier.com
`,.
`Smgaporc: Elsevier c 'I
`. s

`. .
`.
`• us ome• . crvicc Depa:t~1ent, 3 ~IIlmey Road, 1108-01 Wmsland House I, Singapore 239519; phone: (+
`63490222 . fax:
`•
`· (+65) 67331510, e-mail: asiamto@elscvier.com
`@ The paper used in this publication
`Printed in the United Kingdom
`
`C))
`
`2
`
`S)
`
`6
`
`57; fax: ( +3 I) (20) 4853432; e-mail: n!info-f@elsevier.com
`
`'
`
`meets the requirements of ANSI/NISO Z39.48- I 992 (Permanence of Paper)
`
`Page 5 of 35
`
`

`

`International Journal of Pharmaceutics 289 (2005) 1–30
`
`Review
`Protein aggregation and its inhibition in biopharmaceutics
`∗
`
`Wei Wang
`
`Biotechnology Division, Bayer HealthCare, 800 Dwight Way, Berkeley, CA 94701, USA
`
`Received 13 May 2004; received in revised form 20 August 2004; accepted 12 November 2004
`
`Abstract
`
`Protein aggregation is arguably the most common and troubling manifestation of protein instability, encountered in almost
`all stages of protein drug development. Protein aggregation, along with other physical and/or chemical instabilities of proteins,
`remains to be one of the major road barriers hindering rapid commercialization of potential protein drug candidates. Although
`a variety of methods have been used/designed to prevent/inhibit protein aggregation, the end results are often unsatisfactory
`for many proteins. The limited success is partly due to our lack of a clear understanding of the protein aggregation process.
`This article intends to discuss protein aggregation and its related mechanisms, methods characterizing protein aggregation,
`factors affecting protein aggregation, and possible venues in aggregation prevention/inhibition in various stages of protein drug
`development.
`© 2004 Elsevier B.V. All rights reserved.
`
`Keywords Protein aggregation; Aggregation mechanism; Protein refolding; Protein formulation; Protein stabilization
`
`Abbreviations A␤, amyloid ␤ peptide; BSA, bovine serum albumin; CAB, carbonic anhydrase B; CD, circular dichroism; rConIFN,
`recombinant consensus ␣-interferon; CspA, cold shock protein A; rhDNase, recombinant human deoxyribonuclease; DSC, differential scan-
`ning calorimetry; DTT, dithiothreitol; EDTA, ethylenediaminetetraacetic acid; aFGF, acidic fibroblast growth factor; bFGF, basic fibroblast
`growth factor; rFVIII, recombinant factor VIII; rFIX, recombinant factor IX; rFXIII, recombinant factor XIII; rhGCSF, recombinant human
`granulocyte colony stimulating factor; GDH, glutamate dehydrogenase; pGH, porcine growth hormone; rhGH, recombinant human growth
`hormone; GdnHCl, quanidine hydrochloride; GSH, reduced glutathione; GSSG, oxidized glutathione; rHA, recombinant human albumin; HP-
`␤-CD, hydroxypropyl-␤-cyclodextrin; HSA, human serum albumin; IFN-␤, interferon-␤; IFN-␥, interferon-␥; IgG, immunoglobulin G; IL-1␤,
`interleukin-1␤; IL-2, interleukin-2; rhIL-1ra, recombinant human interleukin-1 receptor antagonist; IR, infrared spectroscopy; rhKGF, recombi-
`nant human keratinocyte growth factor; LDH, lactate dehydrogenase; LMW-UK, low molecular weight urokinase; Mab, monoclonal antibody;
`rhMGDF, recombinant human megakaryocyte growth and development factor; NMR, nuclear magnetic resonance spectroscopy; PAGE, poly-
`acrylamide gel electrophoresis; PBS, phosphate buffered saline; PEG, polyethylene glycol; PVA, polyvinyl alcohol; RH, relative humidity;
`RP-HPLC, reversed phase HPLC; RNase A, ribonuclease A; TNF, tumor necrosis factor; tPA, tissue plasminogen activator; SDS, sodium
`dodecyl sulfate; SEC-HPLC, size exclusion HPLC
`∗
`Present address: Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield, MO 63017, USA. Tel.: +1 636 247 2111; fax: +1 636 247 5030.
`E-mail address wei.2.wang@pfizer.com.
`
`0378-5173/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
`doi:10 1016/j.ijpharm.2004.11.014
`
`Page 6 of 35
`
`

`

`2
`
`Contents
`
`W. Wang / International Journal of Pharmaceutics 289 (2005) 1–30
`
`1.
`
`2.
`
`Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`Protein aggregation and its influencing factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`2.1. Mechanisms of physical aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`2.1.1.
`Folding/unfolding intermediates and protein aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`2.1.2. Nucleation and growth of protein aggregates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`2.1.3. Reversibility and specificity of physical aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`2.1.4. Thermodynamics and kinetics of protein aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`2.1.5. Computer-assisted probing of protein aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`2.2. Chemically-induced protein aggregation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`2.2.1. Disulfide bond formation/exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`2.2.2. Non-disulfide crosslinking pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`2.2.3. Oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`2.2.4. Maillard reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Factors affecting protein aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`2.3.1.
`Primary structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`2.3.2.
`Secondary structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`2.3.3. External factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`2.3.
`
`3. Characterization of protein aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`3.1. Morphology of protein aggregates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`3.2.
`Structure and dissolution of protein aggregates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`3.3. Analytical techniques in monitoring protein aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`4.
`
`Inhibition of protein aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`4.1. Refolding of proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`4.1.1. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`4.1.2.
`Protein concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`4.1.3. Denaturant concentration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`4.1.4. Use of additives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`4.1.5. Miscellaneous techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Processing of proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`4.2.1. Heat treatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`4.2.2.
`Shaking and shearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`4.2.3.
`Freezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`4.2.4. Drying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`4.2.5. Miscellaneous processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`Storing of proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`4.2.
`
`4.3.
`
`5.
`
`Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`2
`
`3
`3
`3
`4
`4
`5
`6
`6
`6
`6
`7
`7
`7
`7
`7
`9
`
`9
`10
`10
`11
`
`13
`13
`13
`18
`18
`19
`19
`19
`19
`20
`21
`21
`21
`22
`
`23
`
`24
`
`References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
`
`24
`
`1. Introduction
`
`The past two decades saw an explosive growth
`in biopharmaceutics, fueled by the advancement of
`
`sensitive and high-throughput analytical methodolo-
`gies. Yet, a rapid commercialization of protein drug
`candidates has not been fully realized due to the
`presence of many road barriers. One undisputable
`
`Page 7 of 35
`
`

`

`W. Wang / International Journal of Pharmaceutics 289 (2005) 1–30
`
`3
`
`barrier is the physical and chemical instabilities of
`proteins (Wang, 1999, 2000). Among these physical
`and chemical deterioration pathways, protein aggre-
`gation is arguably the most common and troubling
`manifestation of protein instability, almost
`in all
`phases of protein drug development. Presence of any
`insoluble aggregates in a protein pharmaceutical is
`generally unacceptable for product release.
`Protein aggregation is also well represented in
`human etiology. More than 20 different diseases are
`caused at least partially by abnormal protein aggre-
`gation (Stefani and Dobson, 2003), which may result
`from mutations and physical or chemical changes
`of cellular environment (Koo et al., 1999). Among
`these are Alzheimer’s disease, Parkinson disease,
`prion diseases (bovine spongiform encephalopathy
`and Creutzfeldt-Jacob diseases), Huntington’s disease,
`Down’s syndrome, cataract, and sickle cell disease.
`Some of these diseases are characterized by formation
`of protein fibrils, such as sickling cell disease (intra-
`cellular fibrillation of hemoglobin) and Alzheimer
`disease (extracellular fibrillation of amyloid ␤ peptide
`(A␤) (Koo et al., 1999). It is the protein aggregates
`(such as fibrils) that usually cause cytotoxicities
`(Stefani and Dobson, 2003).
`Although significant progress has been made,
`our current understanding of protein aggregation is
`still
`incomplete (Gupta et al., 1998; Carpenter et
`al., 1999; Chi et al., 2003). Its prevention or even
`moderate inhibition has been mostly experimental.
`Therefore, achieving a better understanding of protein
`aggregation is critical not only in various biophar-
`maceutical processes but also in finding a solution
`to those devastating diseases. This review article
`intends to discuss protein aggregation and its related
`mechanisms,
`to analyze factors affecting protein
`aggregation, and more importantly,
`to summarize
`possible venues in aggregation prevention/inhibition.
`It is not the intention of this paper to be exhaustive in
`literature review but to stimulate more intensive and
`vigorous investigation on protein aggregation.
`
`2. Protein aggregation and its influencing
`factors
`
`Protein molecules may aggregate simply by
`physical association with one another without any
`changes in primary structure (physical aggregation)
`
`or by formation of a new covalent bond(s) (chemical
`aggregation). Formation of such a bond(s) can either
`directly crosslink proteins (aggregation), or indirectly
`alter the aggregation tendency of the original protein
`(Finke et al., 2000). Both mechanisms can occur
`simultaneously to a protein and may lead to formation
`of either soluble or insoluble aggregates, depending
`on the protein, environmental condition, and stage
`of the aggregation process. For example, insulin can
`undergo both physical aggregation process, leading
`to formation of either soluble hexamers or insoluble
`fibrils and chemical aggregation process,
`leading
`to formation of either soluble dimmers via cyclic
`anhydride intermediate or insoluble disulfide-bonded
`aggregates (Sluzky et al., 1991, 1992; Costantino et
`al., 1994a, 1994b; Darrington and Anderson, 1995).
`Protein aggregation has been observed frequently
`in several key biopharmaceutical processes, including
`fermentation (Georgiou and Valax, 1999; Finke et al.,
`2000), refolding (van den Berg et al., 1999a, 1999b;
`Smith and Hall, 2001; Nguyen and Hall, 2002), shear-
`ing/shaking (Katakam et al., 1995), freeze-thawing
`(Kreilgaard et al., 1998a, 1998b), drying (Andya et
`al., 1999), reconstitution (Zhang et al., 1995a, 1995b),
`and storage (Vemuri et al., 1993; Costantino et al.,
`1994a, 1994b). The following section will discuss
`aggregation mechanisms and its influencing factors.
`
`2.1. Mechanisms of physical aggregation
`
`2.1.1. Folding/unfolding intermediates and
`protein aggregation
`A traditional view of protein aggregation is the asso-
`ciation of the unfolded state(s) of proteins. This view
`is supported by model predictions and experimental
`data as well (De Young et al., 1993; Stigter and Dill,
`1993). However, there is overwhelming evidence that
`protein folding/unfolding intermediates are precursors
`in protein aggregation (Fields et al., 1992; Fink, 1998),
`even though the intermediates are usually not stable
`and poorly populated (Murphy et al., 1992). In contrast,
`completely folded or unfolded proteins do not aggre-
`gate easily as the hydrophobic side chains are either
`mostly buried out of contact with water, or randomly
`scattered (Uversky et al., 1999). It is the patches of con-
`tiguous hydrophobic groups in the folding/unfolding
`intermediates that initiate the aggregation process. Ag-
`gregation of many proteins has been shown to be initi-
`
`Page 8 of 35
`
`

`

`4
`
`W. Wang / International Journal of Pharmaceutics 289 (2005) 1–30
`
`ated by intermediates, such as scrapie amyloid (prion)
`protein (PrP27–30) (Safar et al., 1994), carbonic an-
`hydrase B (CAB) (Cleland and Wang, 1992; Ham-
`marstrom et al., 1999), recombinant human growth hor-
`mone (rhGH) (Bam et al., 1996), insulin (Brange et al.,
`1997), human lysozyme variants (Booth et al., 1997),
`P22 tailspike polypeptide (Speed et al., 1997; Schuler
`et al., 1999), and phage P22 wild-type coat protein and
`its mutants (A108V, G232D, F353L) (Teschke, 1999).
`Computer simulation studies also demonstrate origi-
`nation of the aggregation process primarily from in-
`teractions of partially folded intermediates (Gupta et
`al., 1998; Istrail et al., 1999). Thermal treatment can
`easily generate protein-unfolding intermediates, which
`can rapidly aggregate, such as ovalbumin (Kato and
`Takagi, 1988), and a mutant of Cro repressor (Fabian
`et al., 1999). Another factor contributing to the rapid
`aggregation of intermediates is their high rate of diffu-
`sion relative to the folded state (Damodaran and Song,
`1988). The high diffusion rate can significantly increase
`the chance of association of the intermediates.
`The intermediates can be formed either from the
`folded or unfolded state (Wetzel, 1996). In many cases,
`more than one intermediate may exist, such as CAB
`(Wetlaufer and Xie, 1995), staphylococcal nuclease
`(Uversky et al., 1999), a mutant of Cro repressor
`(Fabian et al., 1999), and immunoglobulin G (IgG)
`(Vermeer and Norde, 2000). In addition, the number
`and structure of folding intermediates may be different
`from those of unfolding intermediates (Kim and Yu,
`1996). Since the folding intermediates can be formed
`locally or globally, these intermediates may have sig-
`nificant amount of secondary structures, and even ter-
`tiary structures (Safar et al., 1994; Kendrick et al.,
`1998a, 1998b; Uversky et al., 1999).
`
`2.1.2. Nucleation and growth of protein
`aggregates
`Based on the above analysis, the aggregation process
`can be described as scheme (1), where proteins form
`reversible unfolding intermediates, which then form re-
`versible unfolded proteins or irreversible/reversible ag-
`gregates.
`
`to the
`The intermediate state (I) is equivalent
`aggregation-competent state (A) or transition state
`(TS*) as proposed recently by other investigators
`(Krishnamurthy and Manning, 2002; Chi et al., 2003).
`The process from N to A can be considered as the nu-
`cleation step, which is usually rate limiting; in another
`word, the aggregation process is nucleation dependent.
`Nucleation has been demonstrated or suggested to be
`the initial step for fibrillation of a sequence of E. coli.
`OsmB protein (Jarrett and Lansbury, 1993), aggrega-
`tion of K97I interleukin 1␤ during refolding (Finke
`et al., 2000), and aggregation of ␤-amyloid peptide
`(Lomakin et al., 1997; Szabo et al., 1999).
`Further growth of protein aggregates after nucle-
`ation can be divided into two types: monomer–cluster
`aggregation (addition of a monomer to a growing mul-
`timer) and cluster–cluster aggregation (addition of a
`multimer to another multimer) (Speed et al., 1997).
`These two processes can be described as schemes (2)
`and (3) (Patro and Przybycien, 1994).
`nI + Am → (n − 1)I + Am+1
`Am + An → Am+n
`where Am and An are aggregates composed of m and n
`monomers. These two processes can occur at the same
`time to the same protein. Examples of the first type of
`aggregation include staphylococcal nuclease (Uversky
`et al., 1999), and amyloid formation (Tomski and
`Murphy, 1992; Lomakin et al., 1997). Cluster–cluster
`polymerization was responsible for the aggregation of
`P22 tailspike polypeptide (a trimer) chains during in
`vitro refolding (Speed et al., 1997). The initial protein
`aggregates are soluble but gradually become insoluble
`as they exceed certain size and solubility limits (Fink,
`1998; Uversky et al., 1999). Such examples include ag-
`gregation of CAB during refolding (Cleland and Wang,
`1990) and aggregation of human serum albumin (HSA)
`◦
`during storage at 40, 55 or 70
`C (Oliva et al., 1999).
`
`(2)
`
`(3)
`
`2.1.3. Reversibility and specificity of physical
`aggregation
`The reversibility of protein aggregation is usually
`dependent on the stage of the aggregation process.
`The initial formation of soluble aggregates (nucle-
`ation) may be reversible but the later formation of in-
`soluble aggregates is usually irreversible, unless pre-
`cipitation is artificially induced such as during salt-
`
`Page 9 of 35
`
`

`

`W. Wang / International Journal of Pharmaceutics 289 (2005) 1–30
`
`5
`
`ing out. The two different stages correspond, res

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket