`
`I-'1. Auoniczewsl-... M. xnnler, G. & Lamers. \t. 12. Eur. .r. Immun. 21. 517 626 H.991‘.-
`i5. Lu. r. 1.. Johnson. G D.. Gor:Inn.J 8. MacLennan. I. 0 Vi Jmrmin Trm‘ar13.3?-21‘.1992I.
`15. Mazda. K. in an‘.
`.r
`rmrr-on 1-II. 23-'10-2347 11992}.
`17. H21-mar‘. H.. Lanmin. I
`at Gus1au55cn.S.Eur. .r.
`.'f'l’|fl’l£lF‘, 23. t?33—;'l‘:.2 (1993:.
`I8. neuron. I’ 8. Solegeloerg H. L. J. immun. 139, 1459-1465 i19a'i'l
`I9. Mont, M at til. Nature 162, 245-24 I’ \'1993i.
`20. Reagan. A. D.. Snapper. C. M , Var. Dusen. Fl.. Paul. W. E. 8: Co"-rafl. D. H. J irrrlnun. 842.
`3B68—3H?r‘| t1989l
`21. Lup. H.. Holstelter. l-i
`. Bancr|ereau_ J. & Delespesse, G_ J lrrirrluii. 143. 2122- 2129 (19911.
`-RCKNOWLEOIGEMENTS. We thank H. Mutt.-zslaal. E. Strolling. L Egcrsdom. C. westohar and
`n Fahrenoncn rorter,nnnr.a|:issI~51.ar-ca; EL Ledermane for the B6 ES cs.» line; L Kllsdlltc ans
`22. Sherr. E._ Macy. E., it-Irtala. H.. G -V M. 8: Saudi‘. a J‘
`lrnmrm. 1.12, -131--569 H.989!
`M Koo! for Help with gene targeting; D. Conrad tor Fcer2a coht-\: and I Mccctnric-II_ fi_ Ir||l‘|oI_
`23. Saxon. it. Kurot. earner. M . Elchlc. H.. ME|x_ E. E. at. zr-eng. H. J. Jmmun. 141. 4000-4006
`‘.1991!
`P. Shaw.
`'1. Car‘sn’.'... M. E:-r.-inn and D. H. Kat: to’ cut-cal read.-rzg or the rnaru:s:rt|::. M.Ft. is a
`2-1. Street N. E et oi‘. J. tninauri. 1-“, 1629-1539 i1990'i.
`recipient ol 3 Special Felluu. award tram the |.eU:tefl'II.'| Society of ilmerica. The’. work was
`25. Campbell. K. J... Lees. .ei.. Finleielman. F. D &Conrad u. H Eur J‘ rmm-In 22. 210?—?112
`supported In part by a grant from me NIII to U H. hate. The Easel institute Ior Irnrrtiunootty
`0997:.
`was founded and I5 supported Lw Itoilnian La Roche. Basel. SWIIIEIIBFU.
`
`
`26. S r::IaIr_ N Fl‘. SIC rmnsur.-. today I, 35-36 :19a3i_
`.‘-1?. Ntstnke. L. Hour. M r. lamers. M. c Hlflifitfhnrques 1.1. 914-515 11993:
`2B. Mane. M. P . Neilser. P. & ttehler, G i\.'ucie.u: -turd:-1?;-s.11. 6722 11990;.
`29.
`lino. M . tee. w. T. 8. Conrail. U ||.J.I'fl1tTllr|'l I38. IE-15-185‘. i‘19a'l'i
`
`A mammalian protein targeted
`by G1-arresting rapaInycin-
`receptor complex
`Eric J. Brown, Mark W. Albers, Tao Bum Shin,
`Kazuo Icllikawa, Curtis T. Keith, William 5. Lane‘
`8; Stuart L. schrelberi
`
`Department of Chemistry. Howard Hughes Medical Institute and
`" Harvard Microchemistry Facility. Harvard University.
`12 Oxford Street. Cambridge. Massachusetts 02138. USA
`+ To whom correspondence should be addressed
`
`THE structurally related natural products rapamycin and Flifillo
`bind to the saute intracellular receptor. FKBPIZ. yet the resulting
`a9
`6’
`£4‘? c‘°++‘9:'>°@Q
`s<‘“.:;< er“e:< or“
`
`a
`
`-1i—FFlAP
`
`500 nM GFK-ligand
`5% 93'
`
`complexes interfere with distinct signalling pathways”. FK I11!-‘I2.-
`raparnyein inhibits progression through the Gt phase of the cell
`cycle in ostcoisarcoma". liver” and T cells” as well as in yeast”.
`and interferes with mitogenic signalling pathways that are involved
`in G1 progression°‘"'. namely with activation of the protein piflm
`(refs 5. 11-13] and cyclin-dependent kinases“"“"'. Here we isolate
`a mammalian FKBl'«-rapantycin-associated protein (l-‘ltnl-') whose
`binding to structural variants ol' rapam_\-‘cirl complexed to FKBPIZ
`correlates with the ability of these ligands to inhibit cell-cycle
`progression. Peptide sequences from purified bot-"inc I-‘RAP were
`used to isolate a human CIINA clone that is highly related to the
`DRRUTURI and DRRZXTORZ gene products from Sm:c!mro-
`my:-as ceretrirint-"“"‘“. Although it has not been previously demon-
`strated that either of the DRRI TOR ene products can bind the
`FKBP rapanlycin complex dirceti_v"' 9.
`these yeast genes have
`been genetically linked to a rapamrcin-sensitive patht-ra_1.' and are
`thought to encode lipid kinases”"“.
`
`b
`
`RBL
`
`-Jurkat
`
`ff
`+eԤq
`..<i.,«+§"‘.§*’:;-+“é+.;«~*"§"..§'i'if
`
`T
`M (K)
`
`2004-»
`
`--
`
`- -
`
`-(—-FFIAP
`
`20° _,
`153 -3-
`
`116 —:h-
`55 —r-
`
`45 _;p.
`31-1-
`
`1-: —1n-
`
`Qgggi 4i—GFl(
`
`E I I E .'.'.-E
`
`500 nM GFl<—ligand
`12.5% gal
`
`ll6%-
`97%-
`
`97*?-
`66*?‘
`45-?‘
`
`_
`.
`
`.'
`
`-
`
`-(—FH.AP
`
`2.5 pllil GFK—ligand
`5% gal
`
`CC
`”“*!gInunn
`14—‘)I-
`-u......-._..-—-"
`
`200 —1-
`I16 -1-
`
`.
`—
`
`5% gel
`
`-€-—GFK
`
`12.5% gel
`
`FlG. 1 Identification of FRAP protein in three mammalian cell lines. a.
`GFK alone or indwidual GFi-l—ligand complexes were added to MG-63
`cell lysates :2 x 10" cells per condition] to a final concentration of either
`500 nM or 2.5 pM and the mixtures incubated for 10 min at 4 C. Fusion
`protein comoiexes were recovered by glutathione-alfinity chromato-
`graphy. and the proteins detected by silver staining after 5% SD5-
`PAGE. Because of compression. FFIAF’
`IS not resolved by 12.5“-‘o SD3-
`PAGE. so both 5% and 12.5% gels are shown. The amount of FRAP that
`was retained by affinity chromatography saturated at concentrations of
`GFK—Rep greater than 500 nM [l'| these experiments and in others using
`concentrations of GFK Rap ranging from 100 nM to 5].lM (data not
`shown]. in. GFK alone or individual GFK-ligand complexes were added
`to a final concentration of 500 nM to lg.-sates prepared from either
`2 - 10‘Juri«atTIyn1phocyles or 103 rat basophilic leukaemia [RBL}ceIls
`oer condition. Lysates were treated as in a. FK8F'12. but not FKBP13 or
`FKEIP25 {ref. 23] is able to mediate the actions of rapomycin in 5.
`756
`
`cereuisiae. In addition, we found that YFK188 (ref. 24:. an FKBP12 null
`strain. could be complemented with GFK :P. K. Martin. B. Gladstone.
`G. Weiss. 0. T. Hung. S.L.S., in preparation}. Thus the GST appendage
`of the fusion protein does not preclude binding of the biologicaliy rel-
`evant target to the GFK—rapam1.rcin complex in yeast.
`METHODS. MG-63. Jurlratand RBL cells were grown in media containing
`10% FBS and lysed at 4 C in PINT bufier (150 mM NaCl. 50 mM Tris-
`HCI. pH 15. 2 mM EDTA. 2 mM EGTA. 25 mM NaF. 100 uh-‘J Na;.'u'O.t.
`25 mM 2-glycerophoephate. 0.2 mm PMSF, 1 pg rnl" leupeptin, 1 pg
`ml
`’ pepstatin A and 2 mM D'|'|'J containing 0.5% Triton X-100. Lysates
`were clarified by centrilugatlon at 25.000g. and the Triton X-100 II‘! the
`supernatant was diluted to 0.33% by adding 0.5 vol PINT buffer. GFK
`prehound to stoichiometrlc quantities of FK506. ketcu iso- or unmodified
`rapamycin was added to lysates as described. Each condition was then
`passed through a 250-pi glutathione-Sepharose column, which was
`washed with PINT buffer containing 0.5 M Nacl and 0.3% Triton X-100.
`NATURE ‘ VOL 369 - 30 JUNE 1994
`
`© 1994 Nature Publishing Group
`
`West-Ward Pharm.
`Exhibit 1006
`Page 001
`
`West-Ward Pharm.
`Exhibit 1006
`Page 001
`
`
`
`a
`
`Mm
`
`200 _}
`
`116 —}
`
`«*3‘é:2:i5’
`
`
`
`-‘(-FRAP
`
`FIG. 2 Purification of FRAP from bovine brain and CDNA cloning of
`human FR.-KP. a. Fivefd|d—enriohed bovine FRAP [S-column eluate: see
`below} was conditioned with [100 nl\i'|]. gutathione—S-transferase~
`Fl-(B912 fusion protein (GFKJ. G!-"K-FK505 or GFK-Rap. Complexes with
`fusion proteins were recovered by giutathionevafiinity chromatography
`and detected as described in Fig ‘l
`legend. We also found FRAP in
`bovine liver and thymus. 1:. Predicted translational product of the human
`FRAP cDl\:A clone. Bovine FRAP peptide sequences aligned to human
`FRAP are indicated by underlined segments in the reading frame shown
`translational stop codons were not encountered upstream of the initial-
`ing methionine. r:. Northern blot analysis of human tissue. Jurkat T cell
`and MG-63 cell poly [Al' RNA. The Jurkat/MG-B3 and multiple tissue
`Northern blots lclontechl were hybridized with "P-labelled probes
`derived from the 182 hp PCR fragment and the 5.5 lib clone ttextl.
`respectively. Hybridization to human fi—actin probe is shown as an inter-
`nal control for loading.
`METHODS. Bovine FRAP was purified by grinding 900 g of bovine brain
`in blender with 1 litre of PIP lCi.3"ii. Triton l(—10Cl. 50 rnlvi sodium phos-
`phate. pH 7.2. 2 rnlvl EDTA. 2 mM EGTA. 25 mM NaF. 100 plvl Na, V04.
`25 mM 2-glycerophosphate, 1 rnl\i"| PMSF. lug mi" leupeptin. 1 pg
`mi " pepstatin A. 1 mlvl benzamidino and 2 mlvi DTT}, The hornogenale
`was centrifuged at 25.{lOl‘.|g and the supernatant [20 g total
`protein} was loaded onto a 1 litre Séiepharose :Pharmacia]
`column. The column was then washed with PIP and eluted
`with PINP {PIP with 1M Nacli. GFH—rapamyt:in was added
`to the pooled eluate to a final concentration of 100 nM
`and recovered by glutathlone-aliinity chromatography. FRAP
`was resolved by SDS~PAGE and transferred to PVDF. Fol-
`lowing digestion with trypsin or endoproteinase Lys-C
`(Boehringer Mannheim} bFRAP peptides were micro-
`sequenced". The Jurkat T cell cDNA library [Stratagene]
`was constructed through random and ollgo cl‘l priming
`oi cytoplasmic oligo dT purified RNA iref. 25}.
`cDl'~lA
`screening. Jurliat and MG—63 RNA isolation and northern
`blotting and were performed by procedures similar to those
`previously described”. A 182 bp fragment was amplified
`from a human brain stem library lstratagenel and labelled
`by incorporation of "’P-oCTP in the course of rear-nplification
`by PCR. The sequences were analysed using BLAST [net
`25} and the University of Wisconsin GCG (ref. 2?: software.
`The human FRAP CDNA sequence has been submitted to
`Genbanli.
`
`Hm-
`”""'
`
`Hib-
`
`!.¢lr.b-
`
`LETTERS TO NATURE
`
`51
`101
`151
`I01
`251
`301
`351
`I01
`I51
`501
`551
`501
`$51
`101
`TS1
`301
`551
`I01
`951
`1001
`1051
`1101
`1151
`1201
`1251
`1301
`1351
`1101
`1151
`1501
`1551
`1501
`1651
`1?01
`1751
`I901
`1051
`1901
`1951
`2001
`3051
`2101
`2151
`8201
`2251
`3301
`2351
`2101
`2151
`I501
`
`ill. GTCPMJIT
`il|(El.Ql»l.i'tr‘llI
`SlIN£ETRill<.l
`‘Ui.lTlSSl3\l' S V LQQFAS 6 LI
`inst. I all {Gain
`EL R EHSQE E S
`r xrs:La:
`n the E F Eva:
`alzuiu. :01!
`QTRI ERFIHY
`LRNLLPSMDP vvriausiuil‘
`Fl2|N1F\I'.WlID
`NEGRRI-i-llr\i'I. VLRELAISVP
`IHL EWLCI DR
`TFFFQQVQPF
`.lEKGFDETL.l
`PKQIIKEEAV
`utiucuir Toitsvrisuqpi
`aqrirltirrr EE
`ltLlt££H£EIT
`KEKEMNRDDR
`tmtv Hoioc
`Ilrr.iiLL1i_r:E Lvlitssusaa
`GLMGF GTSP5
`viii LGTS SHQ
`K 5ML
`11 Lil L i.PnL.I
`PIKE 'l'L|fE SR
`C( RDLH EE KF
`oovcqmmc
`iuisiirisr. IQII
`srnwiisz Fl(\i'
`lFRF'§iIFTDT
`L 5 (WI! KER
`TMFQI ir.LL
`Q’YLQD‘l‘llRl'i\l
`YLPRVLUIIR
`MLPPINIH
`T\i'FT(I sriu
`ruMr.pr.1oQn
`iiFQK.D|QVl'.\|
`l<ll Lstv LI H K
`VGLS Pil LT.i\i'
`IKELLEPHLI
`LKKDIQDG LI.
`LY DLSRQIPO
`5 F El=£r.lis LT
`TTLPEIS D\i'G
`5 1 ii. in. R1‘ LG
`Pl. RHPGIIPKG
`LAHQLISPGL
`LN5 El'll( EIPJ!
`ENSITESRLL
`TPSI ill Iscli
`.IHll"i| snmro
`Ql-'\l' RHLIDHF
`WGITDPDPD
`I R‘i'(\'L.I 5 LD
`till’! WLSILL
`EN LQAL rva L
`Elif litirtaol
`II IITVGIII. S S
`L Eiiscr GRI ii
`MN Pill-‘till PFL
`RKMLIQI LIE
`NDQV FE I REI.
`'J'SN.fl PRLI RP
`YMEPILMLI
`MN’! 1 mm L:
`LKLKDPDFDP
`EQSI RIILCHI
`LEiiRl§lW'IJEL
`Lim. GQLVIS
`rlmiiii-lLoi:i
`Sstulinovl
`TI 6 E I..\QlI' S6
`LGlL|iIP'l'I.lll(
`re REII in L El.
`TG'l'll'li'E|'-‘YRK
`YPTL L EVI. L It
`FL KTEQNQGT
`LPI. as r war
`TSEH Lruhcn
` SS®S5DY5
`PQVIPTF I.N\i'
`5W1 UIIU F R
`si.Gi.aitvoi=i_
`DQSLSHIIIITH VVWITFIFK
`Ii DE tvma its
`IFt\I'CDGaIRE
`FWVIWTSIQ5
`FLFQQLC-NI.\i'
`5F\i'i(SiIIFlF'\'
`us: It in I
`vrriiiuus Pan
`\i'llGGEf|lI.'I' LPQLIPHHLR
`TIILLIEQIV
`LHLLLPPIVK LFDIPHPLP
`Sltltlmt zrvo
`RiLIESLD.f_‘LD.
`QLFGINLDDY
`r IPW moi Lv
`VFQI. SIIKYQI
`mll |IPl\l'
`RILI&5.EE.LB STIIIDTL 5 Si.
`itimiurrdnvn
`ULICRIV NLES
`ucpux srm i.olr.aiiLsL£ LLKIJSSSPSL
`um RDLF in
`n rv scns E LN
`IiS<\t'ni..lQl¥
`EDQQl'.lELIRS
`IEL-A1.‘l'SQDI
`PLPI. RDDNGI
`it Hi arsenic
`VLLGERMKE mramux
`mi TQTLLML
`in I L E 51.1 51 ll
`cvLErw
`NliLQQPEi|lI
`ELEHIISGPTP
`\i'-IYDKKIIDTN
`mops l_M1.r.rt
`Elm-ltvrs rm.
`HRCLEALGEW riomdqc-:Eit
`E'i"lC|l1PRD1
`i-roaArriu.vL
`ltllil man:
`WELEQNDSHE
`rrrtv MDETQI
`LN: E LTIWIG
`Esrsmlrcnii vscimissis
`At HQIJL Fsu
`qqclciuiltni
`EVIQYK was
`RIIEIIRQIIM
`aztqaco-R1ii_£raii1x1Luvn SLWSPHEDM
`GKSGRLALIH
` nar
`7Cl.'.l.'ll.l§Y-QSLC
`$lKhl.H.|‘l]£Sil|tlt
`IDIFQNHQHF
`\ritT3IQQi1lQ|I
`uneuooi-lit
`QELHKUIIRE
`H.llIit\||lllFE.I
`Eliniisluriml
`r LKL GENQL ll
`LQGINESTIP lt\i'LQY\'§A.AT
`rasiecsuss
`noeiuzriiru-Li ssnuITrurr
`antral. ran
`\i'|.Hl' mono:
`sIsLsRr.rulL
`SHESTENSB
`‘l'\i'Pill‘QGFF|t
`W5PtQ TLLMY
`rnrcirrlilovu uLvEr.vli.:t
`QIUTNIQVTP
`QLIaltIlJ‘rl=ii
`QDTLRVLTLI
`-l9.'I(Ii.itrnfCE
`ll STTTA RH mi
`Ptiffilil. IWQL
`LTDIGRYIIPQ lnLlYPI.'l’\i'.I5
`llli'SEEl.IHll'a
`Il.lI'rlE1»lA'HE(i
`LEEASRLYFG En.-lvmiursv
`ii5rrrLvoou.u
`L E PL Hil.MilE ll
`sciivirnnqa
`lrOEiICItl<'I'llli
`cm1L lME
`'llDL miv rruv.
`mcR
`1si<qLPqLrs LElQ'I'\i'SF'l(L
`EFVFLLILGHE oLi:doEnviIo
` WPB Kt TI.MESlIf-H
`LrcLrruTLu
`sruscucliv PHCDTLHILI
`NDPT SI. itli.ll.l._i.l.li£i'fil|I'I|‘l
`LNIEIIRIMUI
`IHPDYDIIL TL
`RDYR Elriout
`HQ|tli'..E.li'.f.EH.L_i'_*LllIAIiD3lJ..A
`GIILGLGDRH PSNLMLDRLS
`Etrwr BitIt'TllY T|lSllr\i'MSl-Iii
`Ll..l.l.1..l§SPSS
`RMLTIIIHEVT GLDIGHYRITE
`6K1 LHIDF GD
`( F EVIMTREK F PEXI FF R LT
`llT\i'|l EVL REM
`l(DSll'!i'.l|\i' LU:
`FIIYDFI. LIME
`LllD‘l'N'|'K6Nlf
`l?.1E.IliIflS_‘£§
`ra
`K1101
`
` LGEP#HKK
`INRVRDKLTG R Df SH DCITL D
`IIPIQVELLTK
`orrsnsutco crtcucprir
`
`50
`100
`150
`200
`250
`3E0
`350
`400
`I50
`5D0
`550GDO
`550
`T00
`T50
`IE0
`B50
`900
`S50
`1000
`1050
`1100
`1150
`1300
`1250
`1300
`1150
`ll00
`1d50
`1500
`1550
`1600
`1550
`IT00
`1T50
`1000
`1050
`1900
`1950
`3000
`3050
`2100
`2150
`2200
`2250
`2300
`2350
`2¢00
`2450
`2100
`2549
`
`tilt-
`ISEF
`
`uus- "'
`
`2.1 hh— _
`
`i.:sIrb— .'_=
`
`say
`6
`3”.
`C if ssisfitisiitifi yaidaamt
`..-..l
`
`. asun-
`ram-
`1.1 in-
`
`.
`
`24%-
`IJS |r.b-
`
`
`
`lo-kc1o—
`We used two structural variants of rapamycin.
`rapamycin (S. D. Meyer and S.L_S.. manuscript in preparation}
`and 25.26-iso-rzipainycin". to identify any biologically relevant
`targets of" the FKBP rupamycin complex. Both variants bind
`tightly to human l-'KBPl2. as shown by their ability to inhibit
`rotamasc activity of the recombinant protein IK, values were
`0.2 nM for rapamycin". 2 nM for lteto-rapamycin. and 0.! nM
`for iso-raparnycin). But the variants are about two orders of
`magnitude less potent than raipamycin in preventing the progres-
`sion through Gl oi" MG-63 human ostcosarcoma cells. The
`values ol‘IC,.. thall‘-maitimal inhibitory concentration) estimated
`from dose response curves are l]_| nM. 15 nlvl and 50 nM for
`l'ap£tI"i1)'Cll1. keto- and iso-rapiirnyuin, respectively. '['husl|1c cont-
`plexcs ol‘iso- and kcto-rapamycin with l~'KBP|2 should bind to
`NATURE ' VOL 369 ‘ 30 JUNE 1994
`
`less elibctivcly than |~‘KBPi3—
`
`the FKBPIZ rapamycin target
`rnpamycin itself.
`A fusion protein oi‘ glutathione—.S'—transfi:rasc with l-'KBPl2
`(G5-"Kl was used to identify candidates for the biologically
`rclcvant targets of FKBPIZ rapamycin, MG—63 cells were lyscd
`by detergent and complexes oi‘ (JFK rapamycin. GF-K—FK506
`or GFK alone were added individually to clarified lysatc at it
`linal concentration of Sill} nM or 2.5 plvl (Fig. iii}. A protein of
`approximate relative molecular mass ZZILUOU (Mp-22llK) was
`detected in the (JFK rapamycin sample by SDS—l‘r‘\GE and
`silver staining (Fig.
`la, lane 3}. This l"KBP—rapainycin-3559:.
`lil.l.(.‘{.l protein (FRAPl was not fl2l&llI'll.!(l with (JFK FK5ll6 or
`GFK alone (Fig. la. Iiuics l and 2}. No other rapzlniyt-in-specific
`prolcins were detected by silver staining (Fig. In} or by a similar
`75?
`
`© 1994 Nature Publishing Group
`
`West-Ward Pharm.
`Exhibit 1006
`Page 002
`
`West-Ward Pharm.
`Exhibit 1006
`Page 002
`
`
`
`LETTERS TO NATURE
`
`affinity purification procedure itsing Iysates from [”S] methio-
`nine—labe]|ed cells (data not shown}. The GFK -ltctorapamycin
`and G1"-‘K—isorapamyciri complexes bound l-"RAP less cflectively
`than GFK—rapamycin: at concentrations of 500 nM. the ketc-
`and iso— complexes were unable to retain the 220K protein ( Fig.
`la. lanes 4, 5). whereas at higher concentrations ofthe complexes
`(2.5 ttM) detectable quantities of F-"RAP were retained (Fig. in.
`lanes 4. 5). This is consistent with the finding that these com-
`pounds are still strong cell-cycle inhibitors. albeit less potent
`than rapantyr.-in itself. Thus. the binding of GFK ligand com-
`plexes to l-"RAP correlates with the ability of the ligands to
`impede G1 progression in MCr—o3 cells. FRAP was also detected
`in J urkat T-lymphocyte cells and rat basophilic leukaemia cells
`{Fig lb). two mammalian cell
`lines that are also sensitive to
`rapam}'cin""1. No other rapamycin-sp-ecific bands were observed
`in each case.
`FRAP purified from bovine brain [bI—'RAP] had a similar
`specificity for CrFl(—|igand (Fig. Zrr]. Microsequcrtcing of
`bFRAP protcolytic fragments [298 amino acids in total. Fig.
`lb) led to the design of a pair of degenerate oligonuclcotidcs for
`use in the polymerase chain reaction (PCR]. A 182 bp PCR
`product allowed for the isolation of overlapping clones from a
`human Jurkat T cell JIZAP [1 cDNA library. yielding 16 kb of
`contiguous sequence. Using these cl')NA sequences as probes. a
`band migrating at approximately 8.5 kilobases was detected by
`Northern blot analysis of oligo dT purified RNA isolated from
`a variety cl’ human tissues and cell lines (Fig. Zr‘). The human
`CDNA sequence encodes an arnino—acid open reading Frame
`(ORF) and aligns with 99% identity to the bl-‘RAP peptides
`(Fig. Eh]. As N-tenninai peptide sequence from purified bovine
`FRAP was not obtained, the initiating methionine shown in Fig.
`2!:
`is unconfirmed. The predicted molecular mass of this ORF
`[-300K) is greater than that inferred by the mobility of FRAP
`during SDS -PAGE (above).
`Human FRAP is highly related to the DRR.l_.-“TORI and
`DRR2,/TOR2 gene products. Overall
`it
`is 44% identical
`to
`DRRI .-"'I‘ORl and 46% identical to [)RR2,’TOR2. The region
`of greatest homology to DRRIETORI and DRREETOR2 lies
`in the C—tennin-al 660 amino acids of human FRAP (51% and
`59% identical. respectively). In addition. this region has homo-
`logy to several known phosphatidylincsitol ltiriases (21% identity
`on average).
`including matnmalian phosphzitidylinositol
`3-
`kinasem" (I-’l3K}. a yeast Pl?-K I/P.S'34 (refs. 17 and 18) and
`PIKE (ref. 20). These similarities indicate that FRAP may also
`have phosphatidylinositol kinase activity.
`Through the introduction of minute structural changes in
`rapamycin. this study implicates I"-‘RAP as a mediator ofG| cell
`cycle progression in mammalian cells. Identification of FRAP
`as the target of FKBPIZ-rapamycin together with the earlier
`demonstration oi’ calcineurin as the target of FKBPIZ-FK506
`(ref. 2) addresses a fascinating aspect of immunophilin research.
`namely that the imrnunophilin FKBPl2 can bind two distinct
`natural products and thereby gain the ability to bind two distinct
`signalling molecules involved in cell cycle entry and progression.
`Further biochemical characterization of this unique mammalian
`protein should elucidate its role in propagating the mitogcn-
`initiatcd signals that lead to the activation of p'IElS°" and cyclin-
`Cdk complexes.
`El
`
`Received 3 May: accepted 20 May 1994.
`Schrertzien S. L Science 251. 233-28? (199.11.
`Scrtreiuer. S. L. Cell ‘I'll. 365-363 t1992l
`tubers. M. W. Et al. Ann. N. Y. Mad. Sci. SIC, 54-52 H9931.
`Frances--ita. r\. et at. Hepatology ll. 371-8?? H992].
`Price. 0. J.. Grove. J R.. mt!-U. \I'.. nvruch. J. 8. Blerer. B. E. Science 251. 973-9” t.l992|.
`Eisner. B. E at at. Proc natn. Acne. Sci
`tJ'.S.-rt. 81', 923149235 {H90}.
`Dument. F. J.. Slatuch. M.
`.l.. Kcrsirdlt. S. L.. ltllciino. M R. 8: Sigal. N. H. J. l.rrrm|.rr|. 144,
`251-253 [1990]
`Hartman. 1.. Mowa. N. R. 5- Hall. M. N. Science 288. 905-909 {.1991}.
`Lane. H. .-L. Fernandez. .I.. Lamb. N. J. C. Si Ilnomas. G. Nature 311. ‘l.?0—l?2 r1993].
`1.0. Ni:-rhury C. 8. Nurse, P. A. Rev. Blocrrem. £1. i'l41—4?O r1992].
`11. Chung. J., Hue. C. l.. Crabtree. G. R 8. BIerris.J Cell In, 1227-1235 11992}
`1.2. Kua. C. 1. at al. Nature SUI. 1'0-1'3 t1.992l.
`
`
`
`E-913°.‘~'§'E-".5!-'5.“-'2-'
`
`13. C-ail-'0. \i". Crews. C. M., \I"ilt. T. ill. I! Eielei. B. PTOC. naln. Jltad. Sci. UCSJI. DU. 75i"l—?5?5
`itsozi.
`1-1 Munoz. W. 6.. wiecterrecht. 5.. Brunn, G. J.5ieI«r.-rI<a.J J. autbraham. R. T J. Oral. Chem.
`860. 22'i"3'i"-22'r'45 l19EI3l.
`15 Morica. W. 6.. arunn. G. 1.. wretlerrecht, 6.. Siel-rrerka. J. J. 8; Ahraharri. R. I’. J‘. orol. Cnerrr.
`200. 3?3r1-3?38 [19931
`16 Ari:-als. M. w. or at. r. hiol. C1‘lerI1.2iIO.22325-2'2B29[1993].
`‘LT. Caflerliey. rr. et al. iviaiec. cell. arm. .13. 6012-6023 11993:.
`15. Itunz. J. er al. Cell 1'3. 585-596 r1993].
`19. I-ieiimeii. S. B. et at Marlee. Biol. Cell 5. 1D5-118 F199-1}.
`20. Flanagan. C. A. et at Science 202. 1-1-14-}.-‘.1-18 E1993}.
`21. Hayward. c. M. Yonarines, D. at Danisltelsky. 5. J. J. Am. chem. Soc. 11:. 93d5—9:i::r3
`H.993).
`22. Ht.-ltselr. 1.. Ma.-rm. R. 8. Hartman. R. J. it-three. Biol. Cell. 3, 981-98? M992].
`:3. Galal. A. Lane. w. s. Slandaert, R. F. 3. Schretber. 5. L. Erbchemistry 3-.1, 2»12r—2-:34
`41992?
`24. Foot. F. at al. Nature aw. sa2-ea-1 r1992].
`25. Samorooiir, 1.. Fritscli, E. F.
`is Maniatis, T. Molecular cloning .1 Laboratory Manual. 2no
`eon tCoirt Staring Harbor Laboratory Press. New York. 1989}.
`'25. nhschul. S. F.. Gish. W.. Miller. W . Myers, £. W. &Lrotnan. D.J..l. rrtotec. Biol. 116. -‘I03 410
`l1990|
`2?. Deverouxi. .l.. Haetaarlr. P. & Srnithies. 0. Nucleic alclds Res. 11. 33?-395 £1984).
`ACKNOWLEDGEMENTS.
`l\-|.W.-M. and E.J.3. have made an equal contribution to this research.
`We trienk S. J. Danisrietsky and C. M. Hayward for raeraparnyciri: S. 0. Meyer for preparing
`Ivaloran. R. F. Slandaert
`for advice and assistance;
`|'-‘_ A. Seal
`for critically reading the
`manuscript: Anlana Rao and Lewis Itunl-tel tor helpful! discussions; and ‘H. Robinson, Fl. crirez
`and V. Bar:a-,- tor their assistance. this work was sunwneo by a grant mm the NIH [5.t..S.l.
`M.W..it. is a Howard Hughes Meoieai Institute p(Efl0C10|"fll fallow. EJ.a. is an NIH proooctoral
`Fellow. K.l. is a Ulfillllffs scientist sponsored by Sarikyo Co. Ltd. and $.L.3. is an investigator with
`the Howard Huyies Medical Institute.
`
`
`
`Functional dissection
`
`of the yeast cyos-Tupi.
`transcriptional
`
`co-reprossor complex
`
`Dlmltrla Tzamarlas & Itovln Strultl‘
`
`Department of Biological Chemistry and Molecular Pharmacology.
`240 Longwood Avenue. Harvard Medical School, Boston.
`Massachusetts 02115. USA
`
`DNA-ENDING repressor proteins mediate regulation of yeast genes
`by cell type (Mcn1l.io.2 and aliul). glucose (Migl) and oxygen
`(Roxll (refs I-4 respectively). An unusual feature of all these
`regulatory pathways is that transcriptional repression requires two
`physically associated proteins’ that do not bind DNA C_vc8(Sst:I6)
`and Tupl. The Cye8—Tupl complex has been proposed to be a co-
`represstrr that is recruited to target promoters by patltwayvspecific
`DNA-binding protelr$°. but the specific functions of the individual
`proteins are ttuItnr:n-i-'n. Here we show that when it
`is bound
`upstream of a functional promoter through the [ream DNA-binding
`domain. Tupi represses trariscription in the absence of Cycfl. De-
`letion analysis indicates that Tupl contains at least two non-over-
`lappittg trariscriptiorral repression regions with minimal primary
`sequence similarity. and a separable Cyc8-interaction domain.
`These Tupi domains. which do not
`include the [5-truruiduein
`Il'lDl‘lf51, are necessary and partially sulficient [or Tnpl function.
`We suggest that Tupl performs the repression function of the
`Cyefl-Tupi co-repressor complex. and that Cyc8 serves as a link
`with the pathway-specific DNA-binding proteins.
`It has been previously shown that Cyc8 can repress transcrip-
`tion in a Tupi -dependent manner when bound upstream of the
`intact (‘l"(‘I promoter through the heterologous Lcxfit DNA-
`binding domain". Similarly. a I.ertA Tupl hybrid protein confers
`a 16-fold reduction of expression from a promoter containing
`four l.exA operators upstream of the C YC! promoter (Table
`1}. Le)tA Tupl and LcrtA--Cycll also repress expression of a
`lrt'.r3 gene containing a single Lexfit operator upstream of the '1'.‘
`TATA element (Fig.
`lri). suggesting that they can inhibit basal
`transcription. Surprisingly, LexA-Tupl retains almost its entire
`‘ ‘to whom corirettlrioritlence snouio he addressed.
`
`T58
`
`© 1994 Nature Publishing Group
`
`NATURE - VOL 369 - 30 JUNE 1994
`
`West-Ward Pharm.
`Exhibit 1006
`Page 003
`
`West-Ward Pharm.
`Exhibit 1006
`Page 003
`
`