throbber
TSMC Exhibit 1015
`
`Page 1 of 16
`
`REDACTED
`
`REDACTED
`
`REDACTED
`
`RE
`DA
`CT
`ED
`
`

`

`EDACTE
`D
`
`REDACTED
`
`DACTE
`D
`
`ACT
`ED
`
`Page 2 of 16
`
`RE
`DA
`CT
`ED
`
`

`

`
`
` l-I.
`
`
`
`.
`.. 1
`.3.» .Il.”¢\.~i-‘ =.
`
`
`
`ELSEVIER
`
`Volume 307, Numbers 1-; 10 October 1997
`
`Contents of Volume
`
`
`
`The structure and residual stress in Si containing diamond-like carbon coating
`W.-J. Wu and M.-H. I-Ion .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`1
`
`6
`
`Transmission electron microscopy study of Si 6-doped GaAs/AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility
`transistor structures
`S.I. Molina and T. Walther .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`10
`
`The peroxide route of the successive ionic layer deposition procedure for synthesizing nanolayers of metal oxides, hydroxides and
`peroxides
`V.P. Tolstoy .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Investigation of the plasma polymer deposited from pyrrole
`J. Zhang, M.Z. Wu, T.S. Pu, Z.Y. Zhang, R.P. Jin. Z.S. Tong, D.Z. Zhu, D.X. Cao, F.Y. Zhu and J.Q. Cao .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`14
`
`21
`
`Effect of sandblasting on adhesion strength of diamond coatings
`B. Zhang and L. Zhou.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Deposition of boron carbide by laser CVD: a comparison with thennodynamic predictions
`J.C. Oliveira and O. Conde .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Correlation between microstructure and the optical properties of Ti02 thin fihns prepared on different substrates
`Y. Leprince-Wang, K. Yu-Zhang, V. Nguyen Van, D. Souche and J. Rivory .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`29
`
`38
`
`43
`
`A structural approach to gallium phosphate thin solid films
`F. Tourtiu, P. Armand, A. Ibanez, A. Manteghetti and E. Philippot .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Preparation and characterization of ZnO:Al films by pulsed laser deposition
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Z.Y. Ning, S.H. Cheng, S.B. Ge, Y. Chao, Z.Q. Gang, Y.X. Zhang and Z.G. Liu .
`Characterization of C—N thin films deposited by reactive excimer laser ablation of graphite targets in nitrogen atmosphere
`A.P. Caricato, G. Leggieri. A. Luches, A. Perrone, E. Gyorgy, l.N. Mihailescu, M. Popescu, G. Barucca, P. Mengucci, J.
`Zemek and M. Trchova .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`50
`
`54
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`60
`
`C—'I‘he synthesis of CeO2+,, - n H20 nanolayers on silicon and fused-quartz surfaces by the successive ionic layer deposition
`technique
`V.P. Tolstoy and A.G. Ehrlich .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Multivariate analysis of noise-corrupted PECVD data
`A. von Keudell, A. Annen and V. Dose .
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`65
`
`71
`
`A kinetic model for photochemical vapor deposition from germane and silane
`M. Tao .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Crystallographic and morphological characterization of reactively sputtered Ta, Ta—N and Ta—N—0 thin films
`M. Stavrev. D. Fischer, C. Wenzel, K. Drescher and N. Mattem .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`79
`
`89
`
`96
`
`Texture in evaporated Ag thin fihns and its evolution during encapsulation process
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Y. Zeng, Y.L. Zou and T.L. Alford .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Nucleation and growth of Cu thin films on silicon wafers deposited by radio frequency sputtering
`J.-C. Lin and C. Lee .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`100
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`106
`
`110
`
`.
`
`.
`
`.
`
`Surface dilational behavior of docosanic acid monolayers spread on the surface of drops of polymer solutions
`R. Wiistneck, J. Reiche and S. Forster .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`A model of oxide layer growth on Ag"' and Pt‘* ion implanted nickel anode in aqueous alkaline solution
`I.S. Tashlylcov .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Effects of polymer substrate surface energy on nucleation and growth of evaporated gold films
`R.L.W. Smithson, D.J. McClure and DP. Evans .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Elsevier Science S.A.
`
`Page 3 of 16
`
`Page 3 of 16
`
`REDACTED
`
`REDACTED
`
`

`

`
`
`Volume 307, Numbers l—?.. 10 October 1997
`
`Contents of Volume
`
`
`
`
`
`The structure and residual stress in Si containing diamond-like carbon coating
`W.—J. Wu and M.-H. Hon .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Transmission electron microscopy study of Si 8-doped GaAs/AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility
`transistor structures
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`1
`
`6
`
`S.l. Molina and T. Walther .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`10
`
`The peroxide route of the successive ionic layer deposition procedure for synthesizing nanolayers of metal oxides, hydroxides and
`peroxides
`V.P. Tolstoy .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Investigation of the plasma polymer deposited from pyrrole
`J. Zhang, M.Z. Wu. T.S. Pu, Z.Y. Zhang, R.P. Jin, Z.S. Tong, D.Z. Zhu, D.X. Cao, F.Y. Zhu and J.Q. Cao .
`
`Effect of sandblasting on adhesion strength of diamond coatings
`B. Zhang and L. Zhou .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`14
`
`21
`
`Deposition of boron carbide by laser CVD: a comparison with thermodynamic predictions
`J.C. Oliveira and O. Conde .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Correlation between microstructure and the optical properties of TiO2 thin films prepared on different substrates
`Y. Leprince—Wang, K. Yu-Zhang, V. Nguyen Van, D. Souche and J. Rivory .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`29
`
`38
`
`43
`
`A structural approach to gallium phosphate thin solid films
`F. Touitin, P. Armand, A. lbanez. A. Manteghetti and E. Philippot .
`
`.
`
`Preparation and characterization of ZnO:Al films by pulsed laser deposition
`Z.Y. Ning. S.l-l. Cheng, S.B. Ge. Y. Chao, Z.Q. Gang, Y.X. Zhang and Z.G. Liu .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`50
`
`Characterization of C—N thin films deposited by reactive excimer laser ablation of graphite targets in nitrogen atmosphere
`A.P. Caricato, G. Leggieri, A. Luches. A. Peirone, E. Gyorgy. I.N. Mihailescu, M. Popescu, G. Barucca, P. Mengucci, J.
`Zemek and M. Trchova .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`54
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`60
`
`C—The synthesis of CeO3+“ - n H30 nanolayers on silicon and fused-quartz surfaces by the successive ionic layer deposition
`technique
`V.P. Tolstoy and A.G. Ehrlich .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Multivariate analysis of noise—corrupted PECVD data
`A. von Keudell, A. Annen and V. Dose .
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`65
`
`7]
`
`A kinetic model for photochemical vapor deposition from germane and silane
`M. Tao .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Crystallographic and morphological characterization of reactively sputtered Ta. Ta—N and Ta—N—O thin films
`M. Stavrev. D. Fischer‘. C. Wenzel. K. Drescher and N. Mattem .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`Texture in evaporated Ag thin films and its evolution during encapsulation process
`Y. Zeng, Y.L. Zou and T.L. Alford .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`79
`
`89
`
`96
`
`Nucleation and growth of Cu thin films on silicon wafers deposited by radio frequency sputtering
`J.—C. Lin and C. Lee .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`Surface dilational behavior of docosanic acid monolayers spread on the surface of drops of polymer solutions
`R. Wilstneck. J. Reiche and S. Forster .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`A model of oxide layer growth on Ag+ and Ptl ion implanted nickel anode in aqueous alkaline solution
`l.S. Tashlykov .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`Effects of polymer substrate surface energy on nucleation and growth of evaporated gold films
`R.L.W. Smithson, D.J. McClure and DF. Evans .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`100
`
`106
`
`110
`
`Elsevier Science SA.
`
`Page 4 of 16
`
`Page 4 of 16
`
`

`

`REDACTE
`D
`
`REDACTED
`
`Page 5 of 16
`
`REDACTED
`
`

`

`Comparison of adsorption characteristics of methyl orange and oz-naphthol orange molecules onto the cationic Langmuir-—Blodgett
`films
`
`M. Takahashi, K. Kobayashi, K. Takaoka and K. Tajima .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`274
`
`280
`
`vii
`
`Self-assembled multilayer formation of an aromatic bifunctional molecule via selective ionic interaction
`V. Patil, K.S. Mayya and M. Sastry .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`Photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy
`J.F. Sanchez-Royo, A. Segura, 0. Lang, C. Peuenkofer, W. Jaegermarm, A. Chevy and L. Roa .
`
`Sol—ge1 prepared In2O3 thin films
`A. Gurlo, M. Ivanovskaya, A. Pfau, U. Weimar and W. Gtipel
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`,-
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`283
`
`288
`
`The study of the antigen—antibody reaction by fluorescence method in LB films for immunosensor
`G.K. Chudinova, A.V. Chudinov, V.V. Savransky and A.M. Prokhorov .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`294
`
`Structural properties of a-Si
`N,:H films grown by plasma enhanced chemical vapour deposition by SiH. + NI-[3 + H2 gas mixtures
`F. Giorgis. C.F. Pirri and E. Tresso .
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`.
`Nucleation of strontium titanate films grown by PLD on silicon: a kinetic model
`R. Castro-Rodriguez, E. Vasco, F. Leccabue, B.E. Watts, M. Zapata-Torres and A.l. Oliva .
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`.
`
`.
`
`.
`.
`
`298
`
`306
`
`311
`313
`
`Author Index of Volume 307 .
`Subject Index of Volume 307 .
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`.
`.
`
`The table of contents of Thin Solid Films is included in ESTOC—Elsevier Science Tables of Contents service—which can be
`accessed on the World Wide Web at the following URL addresses:
`http://www.elsevier.nl/locate/estoc or http://www.elsevier.com/locate/estoc
`
`describing our requirements is available from the publisher upon request.
`
`The publisher encourages the submission of articles in electronic form thus saving time and avoiding rekeying errors. A leaflet
`
`Page 6 of 16
`
`Page 6 of 16
`
`REDACTED
`
`

`

`
`
`Thin Solid Films 307 (1997) 79-88
`
`the
`
`fl
`
`rid]
`
`Crystallographic and morphological characterization of reactively
`sputtered Ta, Ta—N and Ta—N—O thin films
`
`Momtchil Stavrev "°' , Dirk Fischer ", Christian Wenzel ", Kurt Drescher 3, Norbert Mattem "
`
`' Dresden University of Technology, Semiconductor and Micrcsystems Technology laboratory, Dresden 01062, Germany
`b Institute of Solid State and Materials Research Helmholtzstr. 20, Dresden 01069, Germany
`
`Received 29 January 1997; accepted 21 May 1997
`
`
`
`Abstract
`
`This paper concentrates on the deposition of Ta, Ta—N and Ta—N—O thin films by r.f. magnetron sputtering in Ar/N,/O2 gas
`mixtures. The film properties and their suitability as diffusion barriers and protective coatings in silicon devices were characterized using
`four-point probe measurements, Auger electron spectroscopy, Rutherford backscaxtering, glancing angle X-ray diffractometry, atomic
`force microscopy and scanning electron microscopy. With the addition of N, to the gas mixture a transition from tetragonal Ta to
`b.c.c.-Ta(N) was detected,
`leading to the nanocrystalline metastable b.c.c.-Ta(N) phase with approximately 20 at.% interstitially
`incorporated nitrogen. Increasing the nitrogen flow above a critical value, an abmpt transition between metal-sputtering to nitride-sputter-
`ing mode was observed, resulting in a sharp increase in the N:Ta atomic ratio slightly above the stoichiometric value for the TaN phase.
`which was found to exhibit f.c.c. structure. With the addition of oxygen at fixed nitrogen flow the films tend to grow in an amorphous
`state. Due to the lack of short-circuit diffusion paths, the as-deposited amorphous Ta(N,O) films are considered as excellent candidates for
`ultra-thin diffusion barriers and protection layers in future Cu-metalliaed ULSI devices. ©1997 Elsevier Science S.A.
`
`Keywords: Tantalum; PVD; Amorphous materials; Diffusion barrier
`
`1. Introduction
`
`In the past, Ta and Ta-based compounds have been
`investigated as thin film resistor materials with low tem-
`perature coefficient of resistivity [1] and as stable contact
`materials to Si [2]. More recently, the suitability as diffu-
`sion or drift barriers between metal layers (Al, Cu. etc.)
`and semiconductors (Si, GaAs) or dielectrics (SiO2, poly-
`imide) has been examined and a superior thermal stability
`has been reported [3—12].
`Concerning the future Cu-metallized interconnection
`systems, as the line widths diminish, the barrier layer can
`significantly increase the net line resistance. Hence, the
`barrier has to be very thin to avoid increasing net line
`resistance for a given cross-sectional area of the conductor,
`but it has to be stable enough to provide acceptable barrier
`properties [4—7]. The use of amorphous or amorphous-like
`diffusion barriers, free of extended defects, can signifi-
`
`‘ Corresponding author. Fax: +49 351 4637172;
`stavrev@ehmgw1.et.tu-dresden.de
`
`e-mail:
`
`0040-6090/97/$17.00 0 1997 Elsevier Science S.A. All rights reserved.
`PII S0040-6090(97)00319-2
`Page 7 of 16
`
`cantly improve the thermal stability and reliability of the
`Cu-based contact and interconnect systems [3].
`Sputter-deposited Ta—N alloys have been known as an
`attractive class of materials because of their high chemical
`and mechanical stability and good conductivity. As has
`been reported earlier,
`the electrical properties,
`the stoi-
`chiometry, the crystallographic structure and the morphol-
`ogy of these metallic compounds depend on the sputtering
`conditions, substrate type, pre-treatment and film thick-
`ness. In order to optimize the Ta—N film properties many
`researchers have investigated the role of the reactive gas
`component, either as nitrogen partial pressure or nitrogen
`partial flow rate [l,4,13-18]. The reported sequence of the
`phases produced by increasing the nitrogen content [l,l3-
`15] is consistent with the equilibrium binary phase diagram
`[19] and can be summarized as follows: (i) equilibrium
`body-centered cubic at-Ta phase or metastable tetragonal
`[3-Ta, which are known to have a low solubility for N (5 S
`at.%) at room temperature [I9]; (ii) h.c.p.-Ta,N existing
`over a range between 22 and 35 at.% N [1,13,15,19]; (iii)
`f.c.c.-TaN phase [l,l3,l4]; and (iv) various nitrogen-rich
`compounds (Ta5N5, Ta4N,, Ta3N5), at which the nitrogen
`concentration levels off [l3,l5,19].
`
`Page 7 of 16
`
`

`

`80
`
`M. Sravrev er a1. / Thin Solid Films 307 (1997) 79-88
`
`On the contrary, other researchers have observed in the
`initial stage of N2 addition a partial or complete transfor-
`mation of B-Ta to oz-Ta phase prior to the Ta2N or TaN
`formation [16—18]. Aita et al. [18] observed that after such
`transformation, a change from b.c.c. Ta(N) to f.c.c.-TaN
`occurred abruptly without deposition of Ta,N, when the
`reactive gas component was increased by only 0.3%. But
`no sufficient fundamental research on the deposition condi-
`tions leading to this transfomration and on the film compo-
`sition and microstructure is present in the literature.
`In the Ta—O binary system, up to approximately 30
`at.% of oxygen could be interstitially dissolved in the
`b.c.c.-Ta lattice prior to conversion into amorphous or
`polycrystalline Ta20, phase [1,l6]. As an impurity in
`polycrystalline Ta films, 0 is believed to increase the
`effectiveness of the diffusion barriers by decorating the
`extended defects such as grain boundaries, thereby block-
`ing the active paths for grain boundary diffusion [12].
`Furthermore, with the growth of tantalum nitrides and
`oxides a reduction in grain size was observed, leading to
`nanocrystalline or amorphous-like structure [l,5,6,l3].
`To clarify the influence of N and 0 addition on the
`diffusion barrier behaviour,
`it is necessary not only to
`determine the composition and crystalline structure of the
`thin films but also the film morphology in terms of grain
`size, grain orientation, degree of amorphization, etc. Since
`there are some discrepancies in the literature on how the
`nitrogen and oxygen influence the film properties,
`this
`paper contributes to the general understanding of the con-
`ditions for formation of different Ta, Ta—N and Ta—N—O
`
`phases. Furthermore, it concentrates on the reactive sput-
`tering of conductive diffusion barriers with a special em-
`phasis on the crystallography and the existence of
`nanocrystalline or amorphous phases in the Ta—N binary
`system and partially in the Ta—N—O ternary system.
`
`2. Experimental details
`
`Both substrate cleaning and film deposition were per-
`fonned on a five-chamber-cluster-tool including load-lock,
`dealer, Ta-PVD module and inductively coupled plasma
`(ICP) soft etch module. The base pressure in the PVD
`chamber was 3 X 10" Pa. The Ar, N2 and 02 gas flows
`were controlled within 10.1 sccm by mass flow con-
`trollers, which guarantee reproducible deposition condi-
`tions. The gas purity was 99.9999%. The base vacuum and
`the Ar/N2/O2 gas mixture were analyzed by quadrupole
`mass spectrometer, mounted in a separate throttled UHV
`chamber, which was differentially pumped down to 10"
`Pa. With this configuration a reduction in total and partial
`pressure in the spectrometer chamber occurs. This enables
`gas monitoring during sputtering and guarantees high sig-
`nal-to-noise ratio.
`
`For this study, 100 mm Q Si(100) wafers were used. A
`standard RCA clean was performed prior to loading them
`
`Page 8 of 16
`
`into the load-lock. After soft-etching at 200 W in Ar
`plasma and without breaking vacuum, 10 to 100 nm thin
`Ta-based films were deposited by r.f. magnetron sputtering
`at 1 kW forward power from a 332 m E Ta target
`(99.9S%). The target-to-substrate distance was 50 mm.
`While the Ar flow was kept at 5 sccm, the nitrogen flow
`<15": and oxygen flow (D02 were varied between 0-5 sccm
`and 0-10 sccm respectively, resulting in process pressures
`between 0.22 and 0.3 Pa. For determination of the deposi-
`tion rates and thickness non-uniforrnities the films were
`
`patterned by lift-off technique and measured by surface
`profilometry. For characterization of the film microstruc-
`ture 1.5 pm thick multilayers consisting of several single
`films were sputtered under simultaneous variation of the
`nitrogen flow from 0 to 5 sccm with the rate of 0.1
`sccm/rnin.
`The Ta, Ta—N and Ta—N—O films were analyzed by
`four-point probe sheet resistance measurements and laser
`profilometry for characterizing the resistivity and intrinsic
`film stress, respectively. The fihn composition was deter-
`mined by Auger electron spectroscopy (ABS) in combina-
`tion with Ar sputter etching using elemental sensitivity
`values from Ref. [20]. Additionally, the film composition
`was
`characterized by 3.34 MeV ‘I-le"' Rutherford
`backscattering spectrometry (RBS). The RBS measure-
`ments were quantified by RUMP simulation. For determi-
`nation of the nitrogen content a calibration using the
`procedure described by Herring [21] was performed. X-ray
`diffraction (XRD) patterns of 100 nm Ta, Ta—N and
`Ta—N—O films were recorded at a HZG4 diffractometer
`
`equipped with Siemens rotating Cu anode, thin film sup-
`plement and secondary graphite monochromator. To en-
`hance the sensitivity for X-rays, the measurements were
`performed in parallel beam geometry at a constant incident
`angle of a:= 2°. The registered angle range was 20=
`20.0—l00.0° with a step size A2@= 0.05° and a measur-
`ing time of 20 s per step. To analyze the phase composi-
`tion of the thick Ta—N multilayers, XRD patterns at differ-
`
`3a.
`
`5..
`
`-0...
`
`[Pa] 3
`PartialPressurepm»
`
`
`J.
`
`'
`
`high-nu
`maul-sputtering
`mode
`
`0.0
`0.5
`1.0
`1,5
`2.0
`2.5
`3.0
`3.5
`4.0
`4.5
`5.0
`
`Nitrogen Flow Rate (DN: [sccm]
`
`Fifi. l. Nitrogen partial pressure p"; in the quadrupole chamber VS-
`“i“'°8¢|1 flow <15": Parameters: Ar flow £15,“: 5 sccm; forward power! 1
`kW; total pressure: 0.22. . .0.3 Pa.
`
`Page 8 of 16
`
`RED
`ACT
`ED
`
`

`

`/.2"?ammm...ammm...an4%l.|n.0«z..<HA55Aamnzv
`
`
`
`
`oar...GL95A50divq?_E\E5MA50036A50035nEo8v9mmmouamaflmaE=_S:22=owo.=_Z.mmo.=m.b_>cu_woM.82:oE»onoQ$6:NO.>6=«Z.Boc._<EE:5...
`
`
`
`
`
`MandmadIone:own93.Nonnouzua.W,I3..8..2,...I3%2:onmZIa._.UII«E3..IEm~«.2o..m218...Hms;84Cl3..Iasmaconnzua.WoiIw:_m._Imen9.8onnznfl.mweas.8:3:8n5;.o3nzua.FRdI.33...:S:as.oNnzua.WR...IIEdiR.23o2mZ13.
`SandIEd3Im:3..ogmZuah%«no85vmodV«mo:mm:newoomup.
`
`
`88
`
`.uo.:.m3E82AIv
`
`cm.25¢55OIZIE.EaZluh.5..«o8:32..a5nobuEE_._w
`
`
`
`
`
`
`M._2..."...
`
`Page 9 of 16
`
`Page 9 of 16
`
`

`

`82
`
`M. Staurev er a1. / Thin Solid Films 307 (1997) 79-88
`
`Resistivityp[|,LQcm] 10’
`
`2
`
`3
`
`4
`
`5
`
`e
`
`1
`
`o
`
`1
`
`Oxygen Flow 00: [sccm]
`
`Fig. 2. Resistivity of Ta—N—O thin films vs. oxygen flow 4502 at fixed
`nitrogen flow CDNZ.
`
`ent angles of incidence from a = 1° to 20° were measured.
`The penetration depth, t of the X-rays perpendicular to the
`film surface is determined by the absorption coefficient ].L
`(for Ta—N: p. z 2500 cm“) and the angle of incidence a.
`t is given as:
`
`t
`
`sina
`P-
`
`(1)
`
`The XRD represents therefore only the upper 70 nm of the
`film in the case of a = 1°, whereas in the case of a = 20°
`
`with t= 1.5 pm the contribution comes from the whole
`multilayer.
`For analyzing the surface topography, measurements
`were performed on a D1 Nanoscope III atomic force
`microscope (AFM) in contact mode. Both height and
`friction type data were collected. Root mean square (RMS)
`roughness values were calculated from the 500 X 500 um’
`images by use of the Nanoscope HI software. Due to the
`limitations of the conventional AFM technique in deter-
`mining smaller features [22] and gathering in-depth infor-
`mation on the film structure, only a qualitative survey of
`the thin film morphology was possible. Additionally,
`cleaved multilayers were characterized by scanning elec-
`tron microscopy (SEM) using a Zeiss DSM 962 micro-
`scope.
`
`3. Results
`
`3.1. Deposition of Ta, Ta—N and Ta—N—O films
`
`Results from reactive sputtering of Ta in Ar/N2 mix-
`ture are presented in Fig. 1. This figure shows a typical
`hysteresis change in nitrogen partial pressure with increas-
`ing nitrogen flow 451.2. The arrows indicate whether the
`measurements are taken during increasing or decreasing
`QM. In order to operate in the high-rate metal-sputtering
`mode, two critical threshold N2 flows have to be taken
`into account, <D,,',1=2.6 sccm and ¢15,,‘,2' =2 sccm for
`
`Page 10 of 16
`
`increasing and decreasing the flow, respectively. Due to
`the differential pumping of the quadrupole mass spectrom-
`eter the measured partial pressure values are reduced by a
`factor of approximately 5000.
`Concurrently,
`the deposition rate of Ta—N films de-
`creases and the resistivity increases by increasing the
`nitrogen flow as listed in Table l with only a very slight
`drop in both below <1>,;1. Without nitrogen, the film resis-
`tivity is very close to the resistivity of B-Ta (165 p.() cm).
`For nitrogen flow above the threshold value 45,;
`the
`resistivity dramatically changes up to 4 m0, cm, due to
`sputtering of reaction products from the poisoned target
`and formation of Ta—N compounds on the substrate. Nev-
`ertheless, for 45,,‘ S 3.5 sccm Ta—N films with resistivity
`below 1 mil cm have been achieved. Resistivity in this
`range is reported as acceptable for diffusion barriers [23].
`The intrinsic stress,
`(7
`in the films was found to be
`compressive, with oz -0.9 j; 0.2 GPa for <I>N1 5 (N1
`and oz -1.5 ;t 0.3 GPa for <15NZ > <15,.‘,z.
`The addition of oxygen above a specific oxygen flow
`4502 at fixed <15”: results always in oxide target poisoning
`and leads to drastic decrease of Ta—N—O deposition rate
`and increase in Ta—N—O resistivity (see Fig. 2). In this
`study, a parameter set (QM: tI>Nz:<.‘l5oz = 5:2.5:2) for deposi-
`tion of Ta-N-O thin films was chosen, which guarantees
`high deposition rates and resistivities about 250 /1.0 cm.
`
`(3) 1oo
`
`0
`
`3
`
`.
`
`(b) 100
`
`15
`12
`9
`Sputter Time [min]
`
`18 “ 24
`
` Atomic
`
`Fraction[Va]
`0|0
`
`
`
`
`
`Atomicfraction[96]
`
`0
`
`3
`
`e
`
`1
`12
`I
`9
`Sputter time [min]
`
`15
`
`24
`
`Fig. 3. M38 depth profiles of Ta-N films sputtered at (a) 415": = 2.5 80¢!“
`and ‘par ‘ 5 50cm: (b) 45": — 3.5 sccm and 45,, = 5 sccm.
`
`RED
`ACT
`ED
`
`REDACTED
`
`Page 10 of 16
`
`

`

`M. Staurev et al. / Thin Solid Films 307 (1997) 79-88
`
`83
`
` Nitrogen Flow
`
`5 seem
`
`out
`
`3.5 SOCIT1
`
`3 seem
`
`2.5 seem
`
`2 seem
`
`1.5 SCCITI
`
`1 seem
`
`0 seem
`
`
`
`Intensity(a.u.)
`
`550
`
`500
`
`450
`
`400
`
`0) 01O
`
`008
`
`250
`
`200
`
`150
`
`100
`
`50
`
`0
`
`o
`
`10
`
`20
`
`so 40 so so 70
`
`so so 1oo
`
`Fig. 4. XRD patterns of 100 nm Ta—N thin films sputtered in Ar/N, gas mixture.
`
`28 [deg]
`
`Table 1 gives a summaiy of the main properties of the
`investigated Ta—N—O films.
`
`3.2. Composition of the Ta, Ta—N and Ta—N-0 thin films
`
`The nitrogen-to-tantalum (N:Ta) atomic ratio in the
`films as determined by RBS and AES is presented in Table
`1. As measured by both techniques, there is only a slight
`increase in the nitrogen concentration between 0 and 2.5
`sccm, resulting in about 20 at.% of N for ID": = 2.5 sccm.
`By further addition of nitrogen, an abrupt increase of the
`N:Ta-ratio is observed. Neither by RBS nor by ABS,
`N:Ta—ratios typical for the fonnation of the Ta2N phase
`were found. According to ABS, for <15", =3.5 sccm a
`nearly stoichiometric N:Ta-ratio was detemiined, suggest-
`ing the deposition of a TaN phase. Above 3.5 sccm N2
`flow a saturation of the N:Ta atomic ratio at 1.1 occurs.
`
`On the other hand, using RBS a much higher N:Ta-ratio of
`about 1.6 is estimated. In order to exclude non-uniformity
`effects, ABS depth profiling was performed. The results,
`plotted in Fig. 3 for 45": = 2.5 sccm and 47”, - 3.5 sccm,
`show uniform distribution of the nitrogen throughout both
`
`films. As further impurities small amounts of 0, C and Ar
`(total impurity concentration 5 5 at.%) were found in the
`Ta—N films.
`
`In the case of Ta—N—O films, sputtered at <PA,:<15N2:¢oz
`= 5:2.5:2, the predominant impurity dissolved in the films
`was found to be nitrogen (about 17 at.%). Furthennore,
`approximately 3 at.% oxygen were measured by AES.
`
`Table 2
`
`Summary of the XRD results on Ta and Ta—N thin films
`
`Nitrogen
`flow, <17"1
`(sccm)
`
`Crystalline
`structure/
`phase
`
`0
`1
`
`1.5
`2
`2.5
`3
`3.5
`5
`
`predominantly tetragonal Ta
`tetragonal Ta +
`b.c.c.-Ta
`b.c.c.-Ta(N)
`b.c.c.-Ta(N)
`b.c.c.-Ta(N)
`f.c.c.-TaN
`f.c.c.-TaN
`f.e.c.-TaN + amorphous
`
`Lattice
`constants.
`no (nm)/
`co (nm)
`
`0.53/ 1 .006
`0.53/ 1.006
`0.334
`0.335
`0.337
`0.342
`0.436
`0.435
`0.435
`
`Mean
`crystallite
`size,
`D (nm)
`
`90
`80
`10
`5.5
`4
`3
`6
`5
`5
`
`Page 11 of 16
`
`Page 11 of 16
`
`

`

`M. Slaureu et al. / Thin Solid Film: 307 (1997) 79-88
`
`3.3. Crystallographic and morphological characterization
`of thin Ta—based films
`
`Fig. 4 shows the X-ray diffraction patterns of 100 nm
`Ta—N films grown in various Ar/N, mixtures on Si(100)
`
`substrates. The variations in position, intensity and shape
`of the reflections indicate changes in the phase composi-
`tion of the Ta—N films. The analysis of the angle depen-
`dence of the width at half maximum points to grain size
`effects. The calculation of the mean crystallite size, D
`
`
`
`
`.....,,......n»_e.....esm.m.m..:.....ami.at.§..._._eE3....e.wa..%eh...L....._....mrw....K$.LE.“
`
`
`
`
`..4...l.....,3»)
`
`
`
`
`0.‘3...............2...fl..»..5.....a.u.....:
`
`Fig. 5. AFM images of 100 nm Ta-N thin films sputtered in Ar ‘-
`/N gum’:
`scan size: 500 X 500 nmz; Note an differences
`Z ranlgetflt On
`seem: (0 3.5 socm
`
`Page 12 of 16
`
`'..
`
`gt
`
`t,.__.n.,ew__
`..~dfi
`. 4%.. '~
`;()3
`-
`-.
`-
`s'1oo.
`I(
`) (a) 0 sccm. (b) 1 sccm. (c) 1.5 sccm. (d) 2.5 Sccm 9
`
`..
`..£.,..
`.._
`...
`
`.
`
`.....a............
`...u..2...~..H
`
`
`....m?%...M..%...
`
`Page 12 of 16
`
`
`

`

`M. Staureu er al. / Thin Solid Films 307 (I997) 79-88
`
`85
`
`500
`
`‘5°
`400
`
`350
`
`amorphous Ta(N,O)
`
`300
`
`250
`
`
`
`100 50
`
`from the full width at half maximum (FWHM) after
`correction for instrumental contribution using the Scherrer
`equation [24]:
`A
`D FWHM - cos0
`
`(2)
`
`with A, X-ray wave length and 9, diffraction angle, gives
`values in the nanometer range. These values along with the
`determined phase composition and the calculated lattice
`constants are given in Table 2.
`Pure Ta films sputtered in Ar plasma grow predomi-
`nantly in the tetragonal B-phase and are apparently poly-
`crystalline as determined by XRD (Fig. 4). In Fig. 5a, an
`AFM image of the film surface is plotted, showing grains
`with circular cross-section and low surface roughness
`(RMS '4 0.54 nm).
`The addition of only 1 sccm N, to the sputtering gas
`results in phase mixture of tetragonal B-Ta and b.c.c.-Ta.
`According to the AFM image (Fig. 5b) this film consists
`not only of circular grains like the [%-Ta film, but also of
`long grains parallel to the surface.
`At 4?": = 1.5 sccm, a b.c.c. phase is formed with lattice
`constant ac, = 0.335 nm, which is slightly higher than the
`value reported for the b.c.c.-Ta phase [JCPDS-ICDD 4-
`788]. As shown in Fig. 5c, this films consist predominantly
`of long. randomly oriented grains attributable to the b.c.c.
`phase. The calculated mean crystallite size is about 6 nm
`and the RMS roughness about 0.75 nm.
`By further addition of N, up to the threshold flow <1>,';2,
`the b.c.c. crystalline structure is preserved. Additionally, a
`peak broadening and a slight shift in peak position towards
`smaller 20-angles become obvious,
`the latter revealing
`further increase of the lattice constant an.

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket