throbber
& Ping_K30000_N60000_RW4_CW4_Simulate.m
`% Simulate transmission and decoding of a systematic regular Ping
`code.
`% Copyright Brendan J Frey, January 29, 2018.
`% Software written and debugged from 8.00pm to 9.04pm on January
`29, 2018.
`% Parameters
`K=30000; % Number of data bits
`N=60000; % Number of codeword bits
`T=4; % Column weight of Hd
`EbNo=[0.975,1.15,1.225]; % List of Gaussian noise levels (dB)
`B=[2000,10000,10000]; % Number of blocks per noise level
`I=20; % Number of iterations for decoding
`rng(0); % Seed random number generator
`% Report information, compute other parameters
`if mod(N-K,T)~=0 | mod(K*T,N-K)~=0 % Check N, K and T
` error('N, K and T not compatible');
`end;
`fprintf('Number of information bits = %d\n',K);
`fprintf('Number of transmitted bits = %d\n',N);
`R=K/N;
`fprintf('Rate = %f\n',R);
`L=K*T; % Length of convolutional encoder
`A=K*T/(N-K); % Puncturing rate of convolutional encoder
`s=(2*R*10.^(EbNo/10)).^-.5; % Standard deviation of Gaussian
`noise
`Lf=zeros(1,L+1); % Forward messages (log-ratios)
`Lb=zeros(1,L); % Backward messages (log-ratios)
`Lx=zeros(1,K); % Combined messages at information bits (log-
`ratios)
`Lxd=zeros(1,L); % Messages sent from information bits down to
`accumulator
`Lxu=zeros(1,L); % Messages sent from accumulator up to
`information bits
`% Mapping from convolutional code to data bits, using Ping
`P=zeros(1,L);
`for t=1:T % Loop over sub-blocks of Hd
` P((t-1)*K+1:t*K)=randperm(K); % Random permutation for sub-
`block
`end;
`% Simulation
`ber=zeros(1,length(EbNo)); % Bit error rate
`wer=zeros(1,length(EbNo)); % Word error rate
`der=zeros(1,length(EbNo)); % Decoding failure rate
`tic;
`for j=1:length(s) % Loop over noise levels
` for b=1:B(j) % Loop over transmitted blocks
`y=randn(1,L+K)*s(j)+1; % Generate channel output assuming
`Apple v. Caltech
`IPR2017-00701
`Apple 1168
`
`(cid:20)
`
`1
`
`

`

`+1 sent
` Lc=-2*y/s(j)^2; % Channel log-likelihood ratio
` for l=2:A Lc(l:A:L)=0; end; % Puncture convolutional code
` Lf(1)=-1e20; % Initialize forward state of Markov chain
`to 0
` Lb(L)=Lc(L); % Initialize backward message to channel llr
` Lx=Lc(L+1:L+K); % Initialize information bit llr to
`channel llr
` Lxu(:)=0; % Initialize messages set up to information
`bits to 0
` for i=1:I % Apply I iterations of decoding
` for n=1:L % Messages sent down to accumulator
` Lxd(n)=Lx(P(n))-Lxu(n);
` end;
` for n=1:L % Forward pass
` Lf(n+1)=Lc(n)+f(Lf(n),Lxd(n));
` end;
` for n=L:-1:2 % Backward pass
` Lb(n-1)=Lc(n-1)+f(Lb(n),Lxd(n));
` end;
` Lx=Lc(L+1:L+K); % Initialize information bit llr to
`channel llr
` for n=1:L % Messages sent up to information bits
` Lxu(n)=f(Lf(n),Lb(n));
` Lx(P(n))=Lx(P(n))+Lxu(n);
` end;
` end;
` xhat=1-(Lx<0);
` ber(j)=ber(j)+sum(xhat); % Update BER
` wer(j)=wer(j)+(sum(xhat)>0); % Udate WER
` der(j)=der(j)+(mean(xhat)>.1); % Update DER
` end;
` ber(j)=ber(j)/K/B(j); % Compute BER
` wer(j)=wer(j)/B(j); % Compute WER
` der(j)=der(j)/B(j); % Compute FER
` fprintf(' Eb/No=%f, ber=%.2e, wer=%.2e, der=%.2e\n', ...
` EbNo(j),ber(j),wer(j),der(j));
`end;
`toc
`% Message passing for accumulator
`function c = f(a,b)
`if a>b c=a+log(1+exp(b-a));
`else c=b+log(1+exp(a-b));
`end;
`if a+b>0 c=c-(a+b+log(1+exp(-a-b)));
`else c=c-log(1+exp(a+b));
`end;
`end
`
`2
`
`(cid:21)
`
`

`

`& Ping_Plus_MacKay_K30000_N60000_RW458_CW39_Simulate.m
`% Simulate transmission and decoding of a systematic Ping code,
`made
`% irregular using a MacKay construction.
`% Copyright Brendan J Frey, January 29, 2018.
`% Software written and debugged from 9.15pm to 10.30pm on January
`30, 2018.
`% Parameters
`K=30000; % Number of data bits
`N=60000; % Number of codeword bits
`EbNo=[0.7,0.775,0.85,0.95]; % List of Gaussian noise levels (dB)
`B=[100,100,1000,40000]; % Number of blocks per noise level
`I=40; % Number of iterations for decoding
`rng(2); % Seed random number generator
`% Construct irregular Ping code using MacKay-like permutation
`matrices.
`% Row weight is 4,5, or 8. Column weight is 3 or 9
`% 1 4 1 indicates a K/6 x K/6 permutation matrix
`% 44 4 is a superposition of 4 K/6 x K/6 permutation
`matrices
`% 1- 2- 1-
`% |\ |\ |\ 1- is a K/3 x K/3 permutation matrix
`% 11 1- 20 |\
`% 1 |\ 20
`H=sparse(K,K); % Matrix that Ping calls Hd
`G=K/6; % Smallest sub-block size
`H=H+sparse(1:G,randperm(G),ones(1,G),K,K);
`for j=1:4 H=H+sparse(1:G,5*G+randperm(G),ones(1,G),K,K); end;
`for j=1:4 H=H+sparse(G+[1:G],4*G+randperm(G),ones(1,G),K,K); end;
`for j=1:4 H=H+sparse(G+[1:G],5*G+randperm(G),ones(1,G),K,K); end;
`H=H+sparse(2*G+[1:2*G],randperm(2*G),ones(1,2*G),K,K);
`for j=1:2 H=H+sparse(2*G+[1:2*G],2*G+randperm(2*G),ones(1,2
`*G),K,K); end;
`H=H+sparse(2*G+[1:2*G],4*G+randperm(2*G),ones(1,2*G),K,K);
`H=H+sparse(4*G+[1:G],randperm(G),ones(1,G),K,K);
`H=H+sparse(4*G+[1:G],G+randperm(G),ones(1,G),K,K);
`H=H+sparse(5*G+[1:G],G+randperm(G),ones(1,G),K,K);
`H=H+sparse(4*G+[1:2*G],2*G+randperm(2*G),ones(1,2*G),K,K);
`for j=1:2 H=H+sparse(4*G+[1:G],4*G+randperm(G),ones(1,G),K,K);
`end;
`for j=1:2 H=H+sparse(5*G+[1:G],4*G+randperm(G),ones(1,G),K,K);
`end;
`H(H(:)>1)=1;
`P=mod(find(H')-1,K)+1; % Mapping from convolutional code to data
`bits
`L=length(P); % Length of convolutional encoder
`A=zeros(1,L); A(cumsum(full(sum(H,2))))=1;% Puncturing pattern
`% Report information, compute other parameters
`fprintf('Number of information bits = %d\n',K);
`
`3
`
`(cid:20)
`
`

`

`fprintf('Number of transmitted bits = %d\n',N);
`R=K/N;
`fprintf('Rate = %f\n',R);
`s=(2*R*10.^(EbNo/10)).^-.5; % Standard deviation of Gaussian
`noise
`Lf=zeros(1,L+1); % Forward messages (log-ratios)
`Lb=zeros(1,L); % Backward messages (log-ratios)
`Lx=zeros(1,K); % Combined messages at information bits (log-
`ratios)
`Lxd=zeros(1,L); % Messages sent from information bits down to
`accumulator
`Lxu=zeros(1,L); % Messages sent from accumulator up to
`information bits
`% Simulation
`ber=zeros(1,length(EbNo)); % Bit error rate
`wer=zeros(1,length(EbNo)); % Word error rate
`der=zeros(1,length(EbNo)); % Decoding failure rate
`for j=1:length(s) % Loop over noise levels
` for b=1:B(j) % Loop over transmitted blocks
` y=randn(1,L+K)*s(j)+1; % Generate channel output assuming
`+1 sent
` Lc=-2*y/s(j)^2; % Channel log-likelihood ratio
` Lc(1:L)=Lc(1:L).*A; % Puncture convolutional code
` Lf(1)=-1e20; % Initialize forward state of Markov chain
`to 0
` Lb(L)=Lc(L); % Initialize backward message to channel llr
` Lx=Lc(L+1:L+K); % Initialize information bit llr to
`channel llr
` Lxu(:)=0; % Initialize messages set up to information
`bits to 0
` for i=1:I % Apply I iterations of decoding
` for n=1:L % Messages sent down to accumulator
` Lxd(n)=Lx(P(n))-Lxu(n);
` end;
` for n=1:L % Forward pass
` Lf(n+1)=Lc(n)+f(Lf(n),Lxd(n));
` end;
` for n=L:-1:2 % Backward pass
` Lb(n-1)=Lc(n-1)+f(Lb(n),Lxd(n));
` end;
` Lx=Lc(L+1:L+K); % Initialize information bit llr to
`channel llr
` for n=1:L % Messages sent up to information bits
` Lxu(n)=f(Lf(n),Lb(n));
` Lx(P(n))=Lx(P(n))+Lxu(n);
` end;
` end;
` xhat=1-(Lx<0);
` ber(j)=ber(j)+sum(xhat); % Update BER
` wer(j)=wer(j)+(sum(xhat)>0); % Udate WER
` der(j)=der(j)+(mean(xhat)>.1); % Update DER
`
`4
`
`(cid:21)
`
`

`

` end;
` ber(j)=ber(j)/K/B(j); % Compute BER
` wer(j)=wer(j)/B(j); % Compute WER
` der(j)=der(j)/B(j); % Compute FER
` fprintf(' Eb/No=%f, ber=%.2e, wer=%.2e, der=%.2e\n', ...
` EbNo(j),ber(j),wer(j),der(j));
`end;
`% Message passing for accumulator
`function c = f(a,b)
`if a>b c=a+log(1+exp(b-a));
`else c=b+log(1+exp(a-b));
`end;
`if a+b>0 c=c-(a+b+log(1+exp(-a-b)));
`else c=c-log(1+exp(a+b));
`end;
`end
`
`5
`
`(cid:22)
`
`

`

`% Ping_Plus_MacKay_K30000_N60000_RW5_CW459_Simulate.m
`% Simulate transmission and decoding of a systematic Ping code,
`made
`% irregular using a MacKay construction.
`% Copyright Brendan J Frey, January 29, 2018.
`% Software written and debugged from 9.15pm to 10.30pm on January
`30, 2018.
`% Simulation run Feb 1 to Feb 4, 2018.
`% Parameters
`K=30000; % Number of data bits
`N=60000; % Number of codeword bits
`EbNo=[0.775,0.85,0.95,1.025]-.2; % List of Gaussian noise levels
`(dB)
`B=[1000,1000,10000,80000]; % Number of blocks per noise level
`I=40; % Number of iterations for decoding
`rng(0); % Seed random number generator
`% Construct irregular Ping code using MacKay-like permutation
`matrices
`% Row weight is 5, column weight is 4, 5 or 9.
` 1 4 1 indicates a K/6 x K/6 permutation matrix
`% 14 4 is a superposition of 4 K/6 x K/6 permutation
`matrices
`% 2- 2- 1-
`% |\ |\ |\ 1- is a K/3 x K/3 permutation matrix
`% 11 2- 1 |\
`% 1 |\ 2
`H=sparse(K,K); % Matrix that Ping calls Hd
`G=K/6; % Smallest sub-block size
`H=H+sparse(1:G,randperm(G),ones(1,G),K,K);
`for j=1:4 H=H+sparse(1:G,5*G+randperm(G),ones(1,G),K,K); end;
`H=H+sparse(G+[1:G],4*G+randperm(G),ones(1,G),K,K);
`for j=1:4 H=H+sparse(G+[1:G],5*G+randperm(G),ones(1,G),K,K); end;
`for j=1:2 H=H+sparse(2*G+[1:2*G],randperm(2*G),ones(1,2*G),K,K);
`end;
`for j=1:2 H=H+sparse(2*G+[1:2*G],2*G+randperm(2*G),ones(1,2
`*G),K,K); end;
`H=H+sparse(2*G+[1:2*G],4*G+randperm(2*G),ones(1,2*G),K,K);
`H=H+sparse(4*G+[1:G],randperm(G),ones(1,G),K,K);
`H=H+sparse(4*G+[1:G],G+randperm(G),ones(1,G),K,K);
`H=H+sparse(5*G+[1:G],G+randperm(G),ones(1,G),K,K);
`for j=1:2 H=H+sparse(4*G+[1:2*G],2*G+randperm(2*G),ones(1,2
`*G),K,K); end;
`H=H+sparse(4*G+[1:G],4*G+randperm(G),ones(1,G),K,K);
`for j=1:2 H=H+sparse(5*G+[1:G],4*G+randperm(G),ones(1,G),K,K);
`end;
`H(H(:)>1)=1;
`P=mod(find(H')-1,K)+1; % Mapping from convolutional code to data
`bits
`L=length(P); % Length of convolutional encoder
`
`%%
`
`6
`
`(cid:20)
`
`

`

`A=zeros(1,L); A(cumsum(full(sum(H,2))))=1;% Puncturing pattern
`% Report information, compute other parameters
`fprintf('Number of information bits = %d\n',K);
`fprintf('Number of transmitted bits = %d\n',N);
`R=K/N;
`fprintf('Rate = %f\n',R);
`s=(2*R*10.^(EbNo/10)).^-.5; % Standard deviation of Gaussian
`noise
`Lf=zeros(1,L+1); % Forward messages (log-ratios)
`Lb=zeros(1,L); % Backward messages (log-ratios)
`Lx=zeros(1,K); % Combined messages at information bits (log-
`ratios)
`Lxd=zeros(1,L); % Messages sent from information bits down to
`accumulator
`Lxu=zeros(1,L); % Messages sent from accumulator up to
`information bits
`% Simulation
`ber=zeros(1,length(EbNo)); % Bit error rate
`wer=zeros(1,length(EbNo)); % Word error rate
`der=zeros(1,length(EbNo)); % Decoding failure rate
`tic;
`for j=1:length(s) % Loop over noise levels
` for b=1:B(j) % Loop over transmitted blocks
` y=randn(1,L+K)*s(j)+1; % Generate channel output assuming
`+1 sent
` Lc=-2*y/s(j)^2; % Channel log-likelihood ratio
` Lc(1:L)=Lc(1:L).*A; % Puncture convolutional code
` Lf(1)=-1e20; % Initialize forward state of Markov chain
`to 0
` Lb(L)=Lc(L); % Initialize backward message to channel llr
` Lx=Lc(L+1:L+K); % Initialize information bit llr to
`channel llr
` Lxu(:)=0; % Initialize messages set up to information
`bits to 0
` for i=1:I % Apply I iterations of decoding
` for n=1:L % Messages sent down to accumulator
` Lxd(n)=Lx(P(n))-Lxu(n);
` end;
` for n=1:L % Forward pass
` Lf(n+1)=Lc(n)+f(Lf(n),Lxd(n));
` end;
` for n=L:-1:2 % Backward pass
` Lb(n-1)=Lc(n-1)+f(Lb(n),Lxd(n));
` end;
` Lx=Lc(L+1:L+K); % Initialize information bit llr to
`channel llr
` for n=1:L % Messages sent up to information bits
` Lxu(n)=f(Lf(n),Lb(n));
` Lx(P(n))=Lx(P(n))+Lxu(n);
` end;
`
`7
`
`(cid:21)
`
`

`

` end;
` xhat=1-(Lx<0);
` ber(j)=ber(j)+sum(xhat); % Update BER
` wer(j)=wer(j)+(sum(xhat)>0); % Udate WER
` der(j)=der(j)+(mean(xhat)>.1); % Update DER
` end;
` ber(j)=ber(j)/K/B(j); % Compute BER
` wer(j)=wer(j)/B(j); % Compute WER
` der(j)=der(j)/B(j); % Compute FER
` fprintf(' Eb/No=%f, ber=%.2e, wer=%.2e, der=%.2e\n', ...
` EbNo(j),ber(j),wer(j),der(j));
`end;
`toc
`% Message passing for accumulator
`function c = f(a,b)
`if a>b c=a+log(1+exp(b-a));
`else c=b+log(1+exp(a-b));
`end;
`if a+b>0 c=c-(a+b+log(1+exp(-a-b)));
`else c=c-log(1+exp(a+b));
`end;
`end
`
`8
`
`(cid:22)
`
`

`

`
`t
`~~ Ping CW=4 RW=4
`4
`aaa ——_ Ping+MacKay CWe=4,5,9 RW=5
`
`[otaececeececectteeeteeetdpescteettteeecteectteesteeetteee{eesectiesttteetttestteeetteeetlges|ooteeetteeectees ne Ping+MacKay CW=3,9 RW=4,5,8 |
`10°
`
`
`
`
`
`
`a
`
`— S
`
`
`
`Biterrorrate o
`
`k
`
`10°
`
`10°
`
`10°"
`|
`|
`|
`|
`|
`
`0.7
`0.8
`0.9
`1
`1.4
`1.2
`E/N, (dB
`
`9
`
`

This document is available on Docket Alarm but you must sign up to view it.


Or .

Accessing this document will incur an additional charge of $.

After purchase, you can access this document again without charge.

Accept $ Charge
throbber

Still Working On It

This document is taking longer than usual to download. This can happen if we need to contact the court directly to obtain the document and their servers are running slowly.

Give it another minute or two to complete, and then try the refresh button.

throbber

A few More Minutes ... Still Working

It can take up to 5 minutes for us to download a document if the court servers are running slowly.

Thank you for your continued patience.

This document could not be displayed.

We could not find this document within its docket. Please go back to the docket page and check the link. If that does not work, go back to the docket and refresh it to pull the newest information.

Your account does not support viewing this document.

You need a Paid Account to view this document. Click here to change your account type.

Your account does not support viewing this document.

Set your membership status to view this document.

With a Docket Alarm membership, you'll get a whole lot more, including:

  • Up-to-date information for this case.
  • Email alerts whenever there is an update.
  • Full text search for other cases.
  • Get email alerts whenever a new case matches your search.

Become a Member

One Moment Please

The filing “” is large (MB) and is being downloaded.

Please refresh this page in a few minutes to see if the filing has been downloaded. The filing will also be emailed to you when the download completes.

Your document is on its way!

If you do not receive the document in five minutes, contact support at support@docketalarm.com.

Sealed Document

We are unable to display this document, it may be under a court ordered seal.

If you have proper credentials to access the file, you may proceed directly to the court's system using your government issued username and password.


Access Government Site

We are redirecting you
to a mobile optimized page.





Document Unreadable or Corrupt

Refresh this Document
Go to the Docket

We are unable to display this document.

Refresh this Document
Go to the Docket